TW200845423A - Light emitting device and projector - Google Patents

Light emitting device and projector Download PDF

Info

Publication number
TW200845423A
TW200845423A TW096145689A TW96145689A TW200845423A TW 200845423 A TW200845423 A TW 200845423A TW 096145689 A TW096145689 A TW 096145689A TW 96145689 A TW96145689 A TW 96145689A TW 200845423 A TW200845423 A TW 200845423A
Authority
TW
Taiwan
Prior art keywords
light
emitting
electrode
emitting diode
type electrode
Prior art date
Application number
TW096145689A
Other languages
Chinese (zh)
Other versions
TWI369790B (en
Inventor
Hiroki Sato
Jun Okamoto
Tatsuya Kogure
Natsuko Matsudo
Naoki Kitaura
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Publication of TW200845423A publication Critical patent/TW200845423A/en
Application granted granted Critical
Publication of TWI369790B publication Critical patent/TWI369790B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/12Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the geometrical disposition of the light-generating elements, e.g. arranging light-generating elements in differing patterns or densities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

It is an object to provide a light emitting device in which light emitting elements, different polarity electrodes of which are formed on their light emitting surface, are packed in a high density and a projector. Places in an X-direction between light emitting diodes L(X, Y) neighbored in a Y-direction are different. Out of two light emitting diodes L(X, Y), a p-type electrode 45(X, Y) of one light emitting diodes L(X, Y) is connected with an n-type electrode 43(X, Y) of the other light emitting diodes L(X, Y) through a wire (X, Y). The wire W(X, Y) is inclined to the Y-direction.

Description

200845423 九、發明說明 【發明所屬之技術領域】 本發明乃關於高密度安裝發光元件之發光裝置及投影 機。 【先前技術】 做爲以往之投影機之光源,多爲使用高壓水銀燈。 但是,使用放電型燈之高壓水銀燈之光源裝置乃需要 高電壓之電源電路,伴隨難以小型化之問題,還有壽命爲 短的問題。而且,啓動時間亦長。 最近,做爲新的光源,使用LED晶片之光源則倍受 矚目。LED晶片由於小型、輕量、長壽命,而且可經由驅 動電流之控制,柔軟進行點燈、關燈、射出光晾之調整。 爲此,可適於做爲投影機之光源,且已適用於小型、攜帶 用之小畫面投影機。 然而’由單體LED晶片所得之光量乃較高壓水銀燈 爲小。爲此,配置複數之LED燈,以得期望之及發光量 〇 〔專利文獻1〕日本特開2005-84402號公報 【發明內容】 〔發明欲解決之課題〕 由於投影機之小型化及高亮度化之要求,需提高單位 面積之發光量’於安裝基板上,需高7密度安裝有多數之 -5- 200845423 ‘ LED之裸晶片(以下單稱LED )。 ^ 但是,於發光面,高密度安裝具備p型電極與η型電 極之雙導線型之LED時,接近LED加以配置之時,無法 在直列連接之一方之LED之p型電極與另一方之LED之 ^ η型電極間確保充分距離,在製造過程中,會產生無法使 ^ 用毛細尖管之打線之問題。 又,有在於LED之發光面,使被覆導線之面積變小 | ,提升高取出效率的要求。 上述之問題,除了 LED之外,在於極性不同之電極 形成於發光面之發光元件中,亦同樣會產生。 又,將在於發光面具備η型.電極,於該背面具備p型 電極之單導線型之LED直列且高密度安裝之時,需從各 LED之η型電極,在形成在安裝基板上且連接於鄰接之 LED之ρ型電極的ρ型電極墊片上,連接導線。該工程乃 經由使用毛細尖管之打線而進行者。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-emitting device and a projector for mounting a light-emitting element at a high density. [Prior Art] As a light source of a conventional projector, a high-pressure mercury lamp is often used. However, a light source device using a high-pressure mercury lamp of a discharge lamp requires a high-voltage power supply circuit, and has a problem that it is difficult to miniaturize and has a short life. Moreover, the startup time is also long. Recently, as a new light source, a light source using an LED chip has been attracting attention. The LED chip is small, lightweight, and long-lived, and can be softly adjusted for lighting, turning off the light, and emitting light by controlling the driving current. For this reason, it can be suitably used as a light source for a projector, and is suitable for a small, portable small-screen projector. However, the amount of light obtained from a single LED wafer is small compared to a higher pressure mercury lamp. For this reason, a plurality of LED lamps are arranged to obtain a desired amount of luminescence. [Patent Document 1] Japanese Laid-Open Patent Publication No. 2005-84402 [Draft of the Invention] [Problems to be Solved by the Invention] Due to the miniaturization and high brightness of the projector In order to meet the requirements, it is necessary to increase the amount of light per unit area. On the mounting substrate, a high density of 7 is required to install a large number of -5 - 200845423 'LED bare wafers (hereinafter referred to as LEDs). ^ However, when a two-conductor type LED having a p-type electrode and an n-type electrode is mounted on a light-emitting surface at a high density, when the LED is disposed close to the LED, the p-type electrode of the LED and the other LED cannot be connected in series. A sufficient distance is ensured between the n-type electrodes, and in the manufacturing process, there is a problem that the wire of the capillary tip cannot be used. In addition, there is a requirement that the light-emitting surface of the LED is such that the area of the covered wire becomes small, and the extraction efficiency is improved. The above problems, in addition to the LEDs, are also caused by the fact that electrodes having different polarities are formed in the light-emitting elements of the light-emitting surface. Further, the light-emitting surface is provided with an n-type electrode, and when the single-conductor type LED having the p-type electrode on the back surface is mounted in a high-density manner, the n-type electrode of each LED is formed on the mounting substrate and connected. Connect the wires to the p-type electrode pads of the p-type electrodes of the adjacent LEDs. The project was carried out by using a capillary tube.

| 於此,例如對於配置複數LED之矩陣之列及行,LED 之矩形之發光面之各邊在呈平行之姿態下,將LED配置 於安裝基板上時,在鄰接之led之間,作出形成於安裝 ~ 基板上之P型電極墊片露出於表面側之範圍時,該範圍之 一邊爲最短,且與led之一邊成爲相同長度。爲此,該 範圍乃成爲爲了打線接合而需要具有更長之細長形狀,而 使該範圍之面積變大。爲此,會有無法充分小型化,製造 上非常困難的問題。 上述之問題,除了 led之外,在於發光面與背面極 -6- 200845423 同樣會產生。 密度安裝極性不 往可達成小規模 〇 供高密度安裝在 之發光元件,較 置及投影機爲目 目的,第1觀點 該第1之電極具 發光之前述表面 相同之由複數發 向及行方向的發 態配置之前述發 列,於前述行方 置,前述導線乃 中,如上所述, 向配置呈非平行 性不同之電極各別形成之發光元件中,亦 本發明乃有鑑於上述問題點,提供高 同之電極形成於發光面之發光元件,較以 化及高亮度化之發光裝置及投影機爲目的 又,本發明乃有鑑於上述問題點,提 於發光面與背面極性不同之電極被各形成 以往可達成小規模化及高亮度化之發光裝 的。 〔爲解決課題之手段〕 爲解決上述以往技術問題,達成上述 之發明之發光裝置乃將第1之電極、和與 有逆極性的第2之電極備於同一表面,面 側之2次元形狀爲略矩形,將外形互爲略 光元件,各別複數配置於相互正交之列方 光裝置中,令鄰接於前述列方向且以同姿 光元件之異極間,以導線連接,形成連接 向,與前述連接列同一之列則重覆複數配 對於前述列方向而言,配置呈非平行者。 如此,第1之觀點之發明之發光裝置 形成連接列,將前述導線,對於前述列方 由此,將發光元件緊密配置之時,可於第1之發光元 件之第1之電極、和介於該連接目的之其他之導線的連接 200845423 目的之第2之發光元件之第2之電極間,具有較長之 。爲此,於製造過程中,可將連接直列連接之第1發 件之第1之電極與第2之發光元件之第2之電極的工 經由使用毛細尖管之打線接合等,容易地加以進行。 適切而言,第之觀點之發明之發光裝置之前述連 乃前述行方向之位置,與屬於該連接列之第奇數個之 發光元件之前述行方向之位置相同,與屬於該連接列 偶數個之前述發光元件之前述行方向之位置互爲相同 與前述第奇數個之發光元件之行方向位置不同。 適切而言,第1觀點之發明之發光裝置之前述發 件乃沿前述矩形之對角線,位於前述第1之電極與前 2之電極,前述複數之發光元件乃配置呈矩陣狀。 本發明之第2觀點之發明之投影機乃具有將互爲 之色以時分割加以發光的複數之發光手段、和將來自 發光裝置之光線,對應於畫像資料,以畫素單位加以 或透過,向投影方向射出之光控制手段;前述發光手 使第1電極、和具有與該第1之電極逆極性之第2之 ,備於同一表面側,面發光之前述表面側之2次形狀 矩形,將互爲外形略同之複數發光元件,各別複數配 相互正交之列方向及行方向之發光裝置中,令鄰接於 列方向且以同姿態配置之前述發光元件之異極間,以 連接,形成連接列,於前述行方向,與前述連接列同 列則重覆複數配置,前述導線乃對於前述列方向而言 置呈非平行者。 距離 光元 程, 接列 前述 之第 ,且 光元 述第 不同 前述 反射 段乃 電極 爲略 置於 前述 導線 一之 ,配 -8- 200845423 第2觀點之發明之投影機中,做爲發光手段,使用第 1之觀點之發明之發光裝置。由此,可以小規模之構成, 投影咼売度之畫像。 本發明乃將第1之電極、和與該第1之電極具有逆極 性的第2之電極備於同一表面,面發光之前述表面側之2 次元形狀爲略矩形,將外形互爲略相同之由複數發光元件 ,各別於相互正交之列方向、行方向,以一定間隔加以複 數配置的發光裝置中,於每奇數行與偶數行之前述發光元 件,以同姿態配置之前述發光元件之異極,順序以導線連 接,連接呈直列,使前述導線位在鄰接於前述行方向之前 述發光元件間地,使偶數行之前述發光元件對於奇數行之 前述發光元件而言,配置於向行方向偏移之位置。 本發明之發光裝置中,如上所述,前述導線位於鄰接 在前述行方向之前述發光元件間地,使偶數行之前述發光 兀件fef於奇數行之前述發光兀件而言,配置於向行方向偏 移之位置。爲此,即使將複數之前述發光元件配置呈高密 度之時,於前述發光元件間,可確保安裝上必要之距離( 打線接合所需)。 又’本發明之發光裝置中,發光元件之發光範圍中, 可使爲連接之導線之重合範圍變小,提升光取出效率。 適切而言,本發明之發光裝置中,前述偏移量爲前述 行方向之各列間隔之1/2。 適切而言,本發明之發光裝置中,前述第1之電極及 前述第2之電極在於矩形之對角方向,使前述對角方向與 200845423 前述列之方向一致地,配置前述各元件,奇數行與偶數移 在前述列方向,在於僅偏移各行之間隔之1 /2的位置。 適切而言,本發明之發光裝置乃具有各別發光紅色、 綠色及藍色之前述發光元件,直列連接發同色光之複數之 前述發光元件。 又,本發明之發光裝置乃將第1之電極及具有與該第 1之電極逆極性之第2之電極,備於同一表面側之複數之 發光元件,向列方向直列連接構成之發光元件群中,偶數 行之前述發光元件群對於奇數行之前述發光元件群而言, 向列方向偏移特定量而定位地,配置於基板上,前述各發 光元件群乃使奇數列之前述發光元件與偶數列之前述發光 元件,對向前述表面之一部分的姿勢下,具有連接奇數列 之前述發光元件之前述第1之電極與偶數列之前述發光元 件之前述第2之電極的層積構造,來自前述偶數行之發光 元件群之端部之前述發光元件的導線則位於該發光元件群 與在行方向鄰接之前述奇數行之發光元件群間,來自前述 奇數行之發光元件群之端部之前述發光元件的導線則位於 該發光元件群與在行方向鄰接之前述偶數行之發光元件群 間。 本發明中,將前述發光元件群,層積前述發光元件而 構仍,以實現高密度性。又,於發光元件群之間,爲配設 導線,來自發光元件之光,則經由導線阻礙之比例爲少。 由此,可實現高亮度化。 適切而言,本發明之發光裝置之前述導線乃較前述層 -10- 200845423 積之發光元件,更位於前述基板側。即,導線高度 發光元件之最高面者爲佳。由此,可更減少由於導 光線的比例,可使透鏡等之次光學系,更接近地加 〇 本發明之投影機乃具有將互爲不同之色以時分 發光的複數之發光手段、和將來自前述發光裝置之 對應於畫像資料,以畫素單位加以反射或透過,向 向射出之光控制手段;前述發光手段乃使第1電極 有與該第1之電極逆極性之第2之電極,備於同一 ,面發光之前述表面側之2次形狀爲略矩形,將互 略同之複數發光元件,相互於正交之列、行方向, 一定之間隔複數配置之發光裝置中,於各前述之列 一奇數行與偶數行之前述發光元件,以同姿勢配置 發光元件之不同極,則順序以導線連接,連接呈直 前述導線位於鄰接在前述行方向之前述發光元件間 數行之前述發光元件乃對於奇數行之發光元件而言 於向行方向偏移之配置者。 本發明之投影機中,做爲發光手段,使用本發 光裝置。 由此,可以小規模之構成,投影高亮度之畫像 本發明之發光裝置乃成爲具備形成於發光面之 電極、和與該第1之電極具有逆極性之形成於與前 面相反側之面的第2之電極的略直方體,外形略相 複數發光元件則在安裝基板上配置呈矩陣狀,前述 不超過 線阻礙 以配置 割加以 光線, 投影方 、和具 表面側 爲外形 以各別 ,於每 之前述 列,使 地,偶 ,配置 明之發 第1之 述發光 同化之 各個複 -11 - 200845423 數之發光元件則令前述發光面之矩形之各邊’對於前述矩 陣之列方向或行方向而言,傾斜而配置’在不佔有形成於 鄰接之4個前述發光元件間之前述發光元件的前述安裝基 板上之範圍,位有導通在該4個發光兀件之一個之則述發 光元件之前述第2之電極的電極墊片,前述4個之發光元 件中,前述一個發光元件之外的發光元件之前述第1之電 極、和位於前述未佔有之前述安裝基板上之範圍之前述電 極墊片則藉由導線加以連接。 本發明之發光裝置乃將導數之各個發光元件’使該發 光面之矩形之各邊,對於矩陣之列方向或行方向傾斜而配 置於安裝基板上。 由此,於鄰接之4個發光元件間,產生以較發光元件 之一邊爲短之邊,形成各邊之接合範圍(例如略長方形之 範圍)。 爲此,經由調整上述傾斜之角度、和鄰接之發光元件 間之距離,將上接合範圍,成爲以爲了接合之必需最小之 縱橫之邊而構成之矩形範圍。即,較不傾斜配置發光元件 之時,可使上述接合範圍縮小到可連接導線之極限。結果 ,可將發光元件更高密度地加以安裝,提高單位面積之發 光量。 適切而言,本發明之發光裝置乃前述電極墊片乃具有 位於前述未佔有安裝基板上之範圍的第1之範圍、介入存 在於前述發光元件之前述第2之電極與前述安裝基板間的 第2之範圍。 -12- 200845423 於前述電極墊片之前述第2之範圍,載置對應於此之 發光元件之前述第2之電極。在所有前述發光元件載置於 安裝基板上之狀態下,前述電極墊片之前述第1之範圍乃 由於發光元件而不被佔有,露出於外側。 該第1之範圍中,接合來自前述鄰接之發光元件之第 1之電極的導線。 適切而言,本發明之發光裝置乃前述第2之範圍爲沿 前述發光面之2次元方向,位於前述發光元件所佔有之範 圍之內側,且較該範圍面積爲小者。 由此,縮短鄰接發光元件之距離,使發光元件緊密配 置時,仍可於前謙述電極墊片間,保持充分距離,使電性 干涉之影響變小。 適切而言,本發明之發光裝置乃沿一方向而定位的複 數之前述發光元件之則經由導線直接連接。 適切而言,本發明之發光裝置乃前述鄰接之4個發光 元件,經由導線直.接連接。 適切而言,本發明之發光裝置乃具有各別發光紅色、 綠色及藍色之前述發光元件,直列連接發同色光之複數之 前述發光元件。 本發明之其他之發光裝置乃成爲具備形成於發光面之 第1之電極、和與該第1之電極具有逆極性之形成於與前 述發光面相反側之面的第2之電極的略直方體,外形略相 同之複數發光元件則在安裝基板上配置呈矩陣狀,正交於 第1之前述發光元件之前述發光面的第1之側面之一部分 -13- 200845423 則具備與鄰接於前述第1之發光元件之第2之前述發 件之第2之側面對向,鄰接於前述第1之側面之前述 分以外之部分,未配置前述發光元件之第1之範圍’ 前述第1之發光元件與安裝基板間,連接於前述第1 光元件之前述第2之電極的第2之範圍所成電極圖案 述電極圖案之前述第1之範圍乃與述第1之發光元件 之前述發光元件之前述第1之電極、藉由導線加以連 本發明之投影機乃具有將互爲不同之顏色以時分 以發光的複數之發光手段,和將來自前述發光裝置之 ,對應於畫像資料,以畫素單位加以反射或透過,向 方向射出之光控制手段;前述發光手段乃成爲具備形 發光面之第1之電極、和與該第1之電極具有逆極性 成於與前述發光面相反側之面的第2之電極的略直方 外形略相同化之複數發光元件則在安裝基板上配置呈 狀,前述各個複數之發光元件則令前述發光面之矩形 邊,對於前述矩陣之列方向或行方向而言,傾斜而配 形成於鄰接之4個之前述發光元件間,在不佔有該4 前述發光元件的前述安裝基板上之範圍,位有導通在 個發光元件之一個之前述發光元件之前述第2之電極 極墊片,該電極墊片藉由前述未佔有之前述安裝基板 範圍,於前述4個之發光元件中之前述一個之發光元 外之發光元件之前述第1之電極,藉由導線加以連接 本發明之投影機中,發光手段乃令互爲不同之顏 以時分割加以發光。來自前述發光手段之光線,乃經 光元 一部 和在 之發 5刖 以外 接。 割加 光線 投影 成於 之形 體, 矩陣 之各 置, 個之 該4 的電 上之 件以 〇 色, 由光 -14- 200845423 控制手段,對應於像畫像資料,欲畫素單位加 過,向投影方向射出。 本發明之投影機中,可以小規模之構成, 之畫像。 本發明之其他之投影機乃具有將互爲不同 分割加以發光的複數之發光手段,和將來自前 之光線,對應於畫像資料,以畫素單位加以反 向投影方向射出之光控制手段;前述發光手段 形成於發光面之第1之電極、和與該第1之電 性之形成於與前述發光面相反側之面的第2之 方體,外形略相同之複數發光元件則在安裝基 矩陣狀,正交於第1之前述發光元件之前述發 之側面之一部分則具備與鄰接於前述第1之發 2之前述發光元件之第2之側面對向,鄰接於 側面之前述一部分以外之部分,未配置前述發 1之範圍,和在前述第1之發光元件與安裝基 於前述第1之發光元件之前述第2之電極的第 成電極圖案,前述電極圖案之前述第1之範匱 之發光元件以外之前述發光元件之前述第1之 導線加以連接。 〔發明之效果〕 根據本發明所成之時,可提供高密度安裝 電極形成於發光面之發光元件,較以往可達 以反射或透 投影高亮度 之顏色以時 述發光裝置 射或透過, 乃成爲具備 極具有逆極 電極的略直 板上配置呈 光面的第1 光元件之第 前述第1之 光元件之第 板間,連接 2之範圍所 乃與述第1 電極、藉由 極性不同之 小規模化及 -15- 200845423 高亮度化之發光裝置及投影機。 又,根據本發明之時,可提供高密度安裝 與背面極性不同之電極被各形成之發光元件, 成小規模化及高亮度化之發光裝置及投影機。 【實施方式】 以下,對於關於本發明之實施形態之投景 明。 〔第1實施例形態〕 首先,說明本實施形態之構成要素,與才 要素的對應關係。 圖1所示LED光源模組11R、UG、11E 發光裝置之一例,DMD17爲本發明所使用之 一例。 又,圖2所示發光二極體L(X,Y)乃β 之發光元件之一例。 然而,資料線側LDD範圍43b乃關於9 1之接合範圍」之一例,畫素電極側LDD範g 本發明之「第2之接合範圍」之一例。 又,例如發光二極體L ( X,1 )〜L ( X, 接爲本發明之連接列之一例。又,圖2所示 發明之行方向之一例,γ方向爲本發明之列:ΐ 圖1乃關於本發明之實施形態之投影機 在於發光面 較以往可達 機,加以說 =發明之構成 ;爲本發明之 :反射手段的 色用於本發明 Ρ發明之「第 圏4 5 c乃關於 6 )之直列連 X方向爲本 ί向之一例。 1之整體構成 -16- 200845423 圖。 圖1所示投影機1乃例如使用單晶片DLP( Digital Light Processing )(註冊商標)方式,使用 DMD ( Digital Mirror Device)(註冊商標),將對應於畫像資 料之畫像,投影於螢幕。 如圖1所示,投影機1乃例如具有3個LED光源模 組11R、11G、11B、光學系13、聚光透鏡15、DMD17及 投影透鏡19。各LED光源模組1 1R、1 1G、1 1B乃將複數 之LED以後述特定之佈局加以高密度安裝。 LED光源模組1 1R、1 1G、1 1B乃將各別之R、G、B 之光線,朝向光學系加以射出。此時,LED光源模組1 1 R 、1 1 G、1 1 B乃僅開啓任一之LED光源模組,其他爲關閉 地,經由未圖示之驅動電路,以一定間隔,時分割切換開 /關加以控制。如此,本實施形態中,經由LED光源模組 11R、11G、11B之開/關切換控制,而不需要色輪。LED 光源模組11R、11G、11B之開/關切換間隔爲例如1〜4 msec° 對於LED光源模組1 1 R、1 1 G、1 1 B之構成,於設加 以詳細說明。 光學系13乃將從LED光源模組1 1R、1 1G、1 1B入 射之R、G、B光,向聚光透鏡15射出。 聚光透鏡15乃聚光從光學系13入射之R、G、B光 ,向DMD17射出。 DMD17乃例如在使用CMOS技術之Si晶片上,敷上 -17- 200845423 數十萬〜數百萬個之微小鏡子的構造。該微小鏡子對於i 畫素而言,經由將該角度對應畫素資料加以切換,可將入 射至各鏡子之光線,控制是否朝向投影透鏡1 9加以射出 〇 本實施形態中’如上所述,LED光源模組1 1 R、1 1 G 、1 1 B以時分割控制開啓/關閉之故,從聚光透鏡1 5,時 分乾順序射出R、G、B光。然後,於d M D17中,對於畫 像資料,以時分割控制R、G、Β光之畫素單位之反射( 各鏡子之角度)。 投影透鏡1 9乃將以DMD17所反射之r、G、B光, 投影至投影機1之外部螢幕。 以下,說明圖1所示投影機1之整體動作例。 LED光源模組1 1R、1 1G、11B乃以特定之時間間隔 ,經由時分割,進行R、G、B光線之光線的開啓/關閉。 由此,從LED光源模組1 1 R、1 1 G、1 1B射出之R、 G、B光乃於光學系1 3,以時分割加以入射。 然後,於光學系1 3,入射之R、G、B光則朝向聚光 透鏡1 5射出,以聚光透鏡1 5聚光,以互爲不同之時間, 入射至DMD17。 DMD17乃根據來自對應於含於畫像資料之R、G、B 資料之未圖示之控制電路的控制,在從聚光透鏡1 5入射 各別R、G、B光之時,控制各鏡子之角度,於各鏡子, 控制將R、G、B光朝向投影透鏡1 9加以反射,或朝向投 影透鏡1 9以外加以反射之動作 -18- 200845423 此時,上述時分割之時間間隔乃短達1〜4msec ,藉由投影透鏡1 9投影至螢幕之畫像乃對於人而言 爲R、G、B光線以畫素單位被合成之彩色畫像而被 〇 以下,對於LED光源模組1 1 R加以詳細說明。 然而,除了 LED光源模組1 1G、1 1B乃使用發光 B光之發光二極體之外,與LED光源模組1 1R相同 成之故,省略說明。 圖2乃爲說明圖1所示之LED光源模組1 1R之 晶片布局之圖,圖3乃將LED光源模組1 1R,從圖 示箭頭A之方向所視之圖。 本實施形態中,例示圖2所示之X方向之位置 列連接同一之6個之發光二極體L( Χ,Υ )之情形。Here, for example, for a matrix and a row in which a plurality of LEDs are arranged, each side of the rectangular light-emitting surface of the LED is formed in a parallel posture, and when the LED is disposed on the mounting substrate, the adjacent LEDs are formed. When the P-type electrode pad on the mounting substrate is exposed on the surface side, one side of the range is the shortest and has the same length as one side of the led. For this reason, the range is such that it is necessary to have a longer elongated shape for wire bonding, and the area of the range is made larger. For this reason, there is a problem that it is not sufficiently miniaturized and it is very difficult to manufacture. The above problems, in addition to the led, are generated in the same way as the light-emitting surface and the back-end pole -6-200845423. The density of the mounting polarity is not sufficient to achieve a small-scale, high-density mounting of the light-emitting element, and the projector and the projector are for the purpose. In the first aspect, the first surface of the first electrode has the same surface and is in the same direction. In the foregoing arrangement, in the above-mentioned row, in the above-mentioned wires, as described above, in the case of arranging light-emitting elements each having electrodes different in non-parallelism, the present invention is also in view of the above problems. In order to provide a light-emitting device in which a high-electrode electrode is formed on a light-emitting surface, the present invention is directed to a light-emitting device and a projector having a higher luminance and a higher brightness. Each of the conventional light-emitting devices that can achieve small scale and high brightness has been formed. [Means for Solving the Problems] In order to solve the above-described conventional problems, the light-emitting device of the above-described invention has the first electrode and the second electrode having the opposite polarity on the same surface, and the two-dimensional shape on the surface side is The rectangles are slightly rectangular, and the outer shapes are mutually light-emitting elements, and the respective plurality of light-emitting elements are arranged in mutually orthogonal array light-emitting devices, so that adjacent poles are adjacent to the column direction and are connected by wires between the opposite-pole light elements to form a connection direction. In the same column as the aforementioned connection column, the repeated multiples are arranged in a non-parallel manner for the column direction. In the light-emitting device of the first aspect of the invention, the light-emitting device is formed in a connection row, and when the light-emitting element is closely arranged in the row, the first electrode of the first light-emitting device can be placed between The other wires of the connection purpose are connected to the second electrode of the second light-emitting element of the purpose of 200845423. Therefore, in the manufacturing process, the first electrode of the first hair piece connected to the in-line connection and the second electrode of the second light-emitting element can be easily joined by wire bonding using a capillary tip tube or the like. . In the above, the position of the light-emitting device of the invention of the first aspect is the same as the position of the row direction of the odd-numbered light-emitting elements belonging to the connection row, and the number of the rows belonging to the connection row is even The positions of the light-emitting elements in the row direction are the same as the positions of the odd-numbered light-emitting elements in the row direction. According to a first aspect of the invention, in the light-emitting device of the first aspect of the invention, the first electrode and the first electrode are disposed along a diagonal line of the rectangle, and the plurality of light-emitting elements are arranged in a matrix. According to a second aspect of the present invention, a projector includes a plurality of light-emitting means for dividing a color of each other in time, and light emitted from the light-emitting device is transmitted or transmitted in a pixel unit in accordance with image data. a light control means for emitting light in a projection direction; wherein the first light electrode and the second electrode having the opposite polarity to the first electrode are provided on the same surface side, and the second surface shape rectangle on the surface side of the surface light emission is In the light-emitting device in which the plurality of light-emitting elements having the same shape and the same shape are arranged in a mutually orthogonal direction and in the row direction, the different light-emitting elements arranged adjacent to each other in the column direction and connected to each other are connected The connection row is formed, and in the row direction, the same arrangement as the connection row is repeated and plural, and the wires are non-parallel to the column direction. The distance from the optical element, which is the same as the above, and the optical element is different from the above-mentioned reflective segment, the electrode is slightly disposed on the aforementioned wire, and is used as a light-emitting means in the projector of the invention of the second aspect of -8-200845423 A light-emitting device of the invention of the first aspect is used. Thereby, it is possible to construct a small-scale image and project a portrait of the twist. In the present invention, the first electrode and the second electrode having the opposite polarity to the first electrode are provided on the same surface, and the second-order shape of the surface side of the surface light emission is slightly rectangular, and the outer shapes are slightly the same. In the light-emitting device in which the plurality of light-emitting elements are arranged in plural at a predetermined interval in the direction orthogonal to the column direction and the row direction, the light-emitting elements arranged in the same posture are arranged in the odd-numbered rows and the even-numbered rows. The different poles are sequentially connected by wires, and the wires are connected in series so that the wire positions are adjacent to the light-emitting elements adjacent to the row direction, and the light-emitting elements of the even rows are arranged in the row for the light-emitting elements of the odd rows. The position of the direction offset. In the light-emitting device of the present invention, as described above, the lead wires are positioned adjacent to the light-emitting elements in the row direction, and the light-emitting elements of the even-numbered rows are arranged in an odd-numbered row of the light-emitting elements. The position of the direction offset. For this reason, even when a plurality of the light-emitting elements are disposed at a high density, a necessary distance (which is required for wire bonding) can be secured between the light-emitting elements. Further, in the light-emitting device of the present invention, in the light-emitting range of the light-emitting element, the overlapping range of the wires to be connected can be made small, and the light extraction efficiency can be improved. In the light-emitting device of the present invention, the offset amount is 1/2 of the interval between the columns in the row direction. In the light-emitting device of the present invention, the first electrode and the second electrode are arranged in the diagonal direction of the rectangle, and the diagonal direction is aligned with the direction of the column of 200845423, and the respective elements are arranged, and the odd-numbered rows are arranged. The shift with the even number in the aforementioned column direction is to shift only the position of 1 / 2 of the interval between the lines. Preferably, the light-emitting device of the present invention has the above-described light-emitting elements that emit red, green, and blue colors, and is connected in series to the plurality of light-emitting elements that emit light of the same color. Further, in the light-emitting device of the present invention, the first electrode and the second electrode having the second polarity opposite to the first electrode are provided on the same surface side, and the light-emitting elements are connected in series in the column direction. The light-emitting element group of the even-numbered rows is disposed on the substrate by shifting by a specific amount in the column direction for the light-emitting element group of the odd-numbered rows, and the light-emitting elements of the odd-numbered rows are arranged in the odd-numbered rows. The light-emitting element of the even-numbered column has a laminated structure of the first electrode of the light-emitting element of the odd-numbered column and the second electrode of the light-emitting element of the even-numbered column in a posture facing one of the surfaces, and The lead wires of the light-emitting elements at the end portions of the light-emitting element groups of the even-numbered rows are located between the light-emitting element group and the odd-numbered light-emitting element groups adjacent to each other in the row direction, and are from the end portions of the odd-numbered light-emitting element groups The wire of the light-emitting element is located between the group of light-emitting elements and the group of light-emitting elements of the even-numbered rows adjacent in the row direction. In the present invention, the light-emitting element group is laminated to form the light-emitting element to achieve high density. Further, between the light-emitting element groups, a wire is disposed, and light from the light-emitting element is less likely to be blocked by the wire. Thereby, high luminance can be achieved. Suitably, the light-emitting device of the light-emitting device of the present invention is located on the side of the substrate more than the light-emitting element of the layer -10-200845423. That is, the highest height of the wire height illuminating element is preferred. Therefore, it is possible to further reduce the ratio of the light guide rays, and to enable the sub-optical system such as a lens to more closely add to the projector of the present invention, and to have a plurality of light-emitting means for emitting light of different colors in time-division, and a light control means for reflecting or transmitting the image data corresponding to the image data from the light-emitting device in a pixel unit; the light-emitting means is such that the first electrode has a second electrode opposite to the first electrode In the same manner, the second surface shape of the surface side of the surface light emission is a substantially rectangular shape, and the light-emitting elements of the plurality of light-emitting elements are arranged in a plurality of mutually orthogonal rows and rows, and are arranged at a predetermined interval. In the foregoing arrangement, the light-emitting elements of the odd-numbered rows and the even-numbered rows are arranged with the different poles of the light-emitting elements in the same posture, and are sequentially connected by wires, and the wires are connected in a row between the light-emitting elements adjacent to the row direction. The light-emitting element is a configurator that shifts in the row direction for an odd-numbered row of light-emitting elements. In the projector of the present invention, the present light-emitting device is used as a light-emitting means. According to the configuration of the present invention, the light-emitting device of the present invention has the electrode formed on the light-emitting surface and the surface having the reverse polarity formed on the opposite side to the front surface of the first electrode. The electrode of 2 has a slightly rectangular parallelepiped shape, and the plurality of light-emitting elements are arranged in a matrix on the mounting substrate. The above-mentioned lines are not obstructed to be arranged to cut light, and the projection side and the surface side are different in shape. The above-mentioned columns, the ground, the even, and the light-emitting elements of the first embodiment of the light-emitting assimilation - the light-emitting elements of the light-emitting surface are such that the sides of the rectangle of the light-emitting surface are in the direction of the column or the direction of the matrix. In the range of the light-emitting element that is disposed on the mounting substrate of the light-emitting elements that are formed between the adjacent four light-emitting elements, the light-emitting element is disposed in a range that does not occupy the light-emitting element formed between the adjacent four light-emitting elements. In the electrode pad of the second electrode, among the four light-emitting elements, the first electrode of the light-emitting element other than the one of the light-emitting elements and the first electrode are located The above-mentioned electrode pads of the range on the aforementioned mounting substrate which are not occupied are connected by wires. In the light-emitting device of the present invention, each of the light-emitting elements of the derivative is placed on the mounting substrate such that the respective sides of the rectangular surface of the light-emitting surface are inclined with respect to the matrix direction or the row direction. Thereby, a side shorter than one side of the light-emitting element is formed between the adjacent four light-emitting elements, and a bonding range (for example, a substantially rectangular range) of each side is formed. Therefore, by adjusting the angle of the above inclination and the distance between the adjacent light-emitting elements, the upper bonding range is a rectangular range formed by the side of the vertical and horizontal directions which are required to be the smallest. That is, when the light-emitting elements are disposed less obliquely, the above-described bonding range can be reduced to the limit of the connectable wires. As a result, the light-emitting element can be mounted at a higher density to increase the amount of light emitted per unit area. In the light-emitting device of the present invention, the electrode pad has a first range in the range in which the mounting substrate is not occupied, and is interposed between the second electrode of the light-emitting element and the mounting substrate. 2 range. -12- 200845423 The second electrode of the light-emitting element corresponding thereto is placed in the second range of the electrode pad. In a state in which all of the light-emitting elements are placed on the mounting substrate, the first range of the electrode pads is exposed to the outside without being occupied by the light-emitting elements. In the first range, the wires from the first electrode of the adjacent light-emitting element are joined. In the light-emitting device of the present invention, the second range is located in the second dimension direction of the light-emitting surface, and is located inside the range occupied by the light-emitting element, and is smaller than the area of the range. Thereby, when the distance between the adjacent light-emitting elements is shortened and the light-emitting elements are closely arranged, the distance between the electrode pads can be maintained at a sufficient distance, and the influence of electrical interference can be reduced. Suitably, the light-emitting device of the present invention is directly connected to the plurality of light-emitting elements positioned in one direction via wires. Suitably, the light-emitting device of the present invention is connected directly to the four adjacent light-emitting elements via wires. Preferably, the light-emitting device of the present invention has the above-described light-emitting elements that emit red, green, and blue colors, and is connected in series to the plurality of light-emitting elements that emit light of the same color. Another light-emitting device of the present invention is a substantially rectangular body including a first electrode formed on a light-emitting surface and a second electrode formed on a surface opposite to the light-emitting surface with a reverse polarity to the first electrode. The plurality of light-emitting elements having substantially the same shape are arranged in a matrix on the mounting substrate, and one of the first side faces 13-200845423 orthogonal to the light-emitting surface of the first light-emitting element is adjacent to the first The second side surface of the second one of the second light-emitting elements is opposed to the first one of the first light-emitting elements, and the first light-emitting element is not disposed. Between the mounting substrates, the first range of the electrode pattern electrode pattern formed in the second range of the second electrode of the first optical element is the first of the light-emitting elements of the first light-emitting element The electrode of 1 is connected to the projector of the present invention by a wire, and has a plurality of light-emitting means for emitting light of different colors in time to emit light, and corresponding to the light-emitting device a light control means that reflects or transmits in a pixel unit and emits in a direction; the light-emitting means is a first electrode having a shape-emitting surface, and has a reverse polarity with the first electrode and the light-emitting surface The plurality of light-emitting elements having the slightly straight outer shape of the second electrode on the opposite side are arranged on the mounting substrate, and the plurality of light-emitting elements have the rectangular sides of the light-emitting surface in the direction of the matrix Or the row direction is formed between the adjacent ones of the light-emitting elements that are obliquely arranged, and the light-emitting elements that are turned on one of the light-emitting elements are located in a range that does not occupy the mounting substrate of the four light-emitting elements. The electrode pad of the second electrode, wherein the electrode pad is the first electrode of the light-emitting element other than the one of the four light-emitting elements, by the range of the mounting substrate that is not occupied, By connecting the wires to the projector of the present invention, the illuminating means causes the mutually different faces to be illuminated in time. The light from the above-mentioned illuminating means is connected to one of the optical elements and the other. The cut light is projected into the shape, and the matrix is set, and the electric parts of the 4 are in the color of the light, and the light is controlled by the light-14-200845423, corresponding to the image data, and the pixel unit is added. The projection direction is emitted. In the projector of the present invention, a portrait can be constructed on a small scale. The other projector of the present invention has a plurality of light-emitting means for dividing light beams by different divisions, and light control means for emitting light from the front light corresponding to the image data in a reverse projection direction in units of pixels; The first electrode formed on the light-emitting surface and the second square body formed on the surface opposite to the light-emitting surface of the first electrical property, and the plurality of light-emitting elements having substantially the same outer shape are in the matrix of the mounting base And a portion of the side surface of the light-emitting element orthogonal to the first light-emitting element is disposed to face a second side surface of the light-emitting element adjacent to the first light-emitting element 2, and is adjacent to a portion other than the portion of the side surface. The first aspect of the present invention is not disposed, and the first electrode pattern of the first light-emitting element and the second electrode based on the second light-emitting element, and the first light-emitting element of the electrode pattern The first lead wires other than the light-emitting elements described above are connected. [Effects of the Invention] According to the present invention, it is possible to provide a light-emitting element in which a high-density mounting electrode is formed on a light-emitting surface, and it is possible to reflect or transmit a high-brightness color in the past to emit or transmit a light-emitting device. Between the first plates of the first optical element having the first optical element having the light surface disposed on the slightly straight plate having the reverse electrode, the range of the connection 2 is different from the polarity of the first electrode. Small-scale and -15- 200845423 High-brightness lighting device and projector. Further, according to the present invention, it is possible to provide a light-emitting device and a projector which are high-density mounting and light-emitting elements in which electrodes having different back-side polarities are formed, and which are small-scale and high-intensity. [Embodiment] Hereinafter, a description will be given of an embodiment of the present invention. [First embodiment mode] First, the correspondence relationship between the components of the present embodiment and the elements will be described. An example of a light-emitting device of the LED light source module 11R, UG, and 11E shown in Fig. 1 is an example of the use of the DMD 17 of the present invention. Further, the light-emitting diode L (X, Y) shown in Fig. 2 is an example of a light-emitting element of β. However, the data line side LDD range 43b is an example of the "joint range of 9 1", and the pixel electrode side LDD is an example of the "second bonding range" of the present invention. Further, for example, the light-emitting diodes L (X, 1) to L (X, which are examples of the connection columns of the present invention. Further, an example of the direction of the invention shown in Fig. 2, the γ direction is the list of the invention: ΐ BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a projector according to an embodiment of the present invention in which a light-emitting surface is more accessible than in the prior art, and is a construction of the invention; the color of the reflection means of the present invention is used in the invention of the present invention. It is an example in which the direct direction of the 6th direction is the direction of the X direction. The overall configuration of the 1-16-200845423 is shown in Fig. 1. The projector 1 shown in Fig. 1 is, for example, a single-chip DLP (Digital Light Processing) (registered trademark) method. The image corresponding to the image data is projected on the screen using DMD (Digital Mirror Device) (registered trademark). As shown in Fig. 1, the projector 1 has, for example, three LED light source modules 11R, 11G, and 11B, and an optical system. 13. The condensing lens 15, the DMD 17, and the projection lens 19. Each of the LED light source modules 1 1R, 1 1G, and 1 1B is mounted at a high density in a specific layout of a plurality of LEDs to be described later. LED light source module 1 1R, 1 1G 1 1B is to direct the light of each of R, G, and B toward the optical system. At this time, the LED light source modules 1 1 R , 1 1 G, and 1 1 B only turn on any of the LED light source modules, and the others are turned off, and are separated at a certain interval by a driving circuit not shown. In this embodiment, the ON/OFF switching control of the LED light source modules 11R, 11G, and 11B is performed without the color wheel. The LED light source modules 11R, 11G, and 11B are turned on/off. The switching interval is, for example, 1 to 4 msec. The configuration of the LED light source modules 1 1 R, 1 1 G, and 1 1 B will be described in detail. The optical system 13 will be the LED light source module 1 1R, 1 1G, The incident light R, G, and B light is emitted to the condensing lens 15. The condensing lens 15 condenses the R, G, and B light incident from the optical system 13 and emits it to the DMD 17. The DMD 17 is, for example, a CMOS technology. On the Si wafer, a structure of hundreds of thousands to millions of tiny mirrors is applied to the -17-200845423. The micro-mirror can be incident on each pixel by switching the angle corresponding to the pixel data. The light of the mirror is controlled to be emitted toward the projection lens 119. In the present embodiment, as described above, the LED The source modules 1 1 R, 1 1 G , and 1 1 B are turned on/off by the time division control, and the R, G, and B lights are sequentially emitted from the collecting lens 15 in a time division manner. Then, in the d M D17 For the image data, the reflection of the pixel units of R, G, and Twilight (the angle of each mirror) is controlled by time division. The projection lens 19 projects the r, G, and B lights reflected by the DMD 17 onto the external screen of the projector 1. Hereinafter, an overall operation example of the projector 1 shown in Fig. 1 will be described. The LED light source modules 1 1R, 1 1G, and 11B are turned on/off by R, G, and B rays at a specific time interval. Thereby, the R, G, and B lights emitted from the LED light source modules 1 1 R, 1 1 G, and 1 1B are incident on the optical system 13 by time division. Then, in the optical system 13, the incident R, G, and B lights are emitted toward the condensing lens 15 and condensed by the condensing lens 15 to be incident on the DMD 17 at different times. The DMD 17 controls each mirror when the respective R, G, and B lights are incident from the collecting lens 15 based on control from a control circuit (not shown) corresponding to the R, G, and B data contained in the image data. Angle, in each mirror, control to reflect R, G, B light toward the projection lens 19, or to reflect outside the projection lens -18-200845423 At this time, the time interval of the above-mentioned time division is as short as 1 ~4msec, the image projected onto the screen by the projection lens 19 is the following for the color image in which the R, G, and B rays are synthesized in pixel units, and the LED light source module 1 1 R is detailed. Description. However, the LED light source modules 1 1G and 1 1B are the same as the LED light source module 11R except that the light-emitting B-light emitting diodes are used, and the description thereof will be omitted. 2 is a view showing the layout of the wafer of the LED light source module 1 1R shown in FIG. 1, and FIG. 3 is a view of the LED light source module 1 1R as viewed from the direction of the arrow A. In the present embodiment, the case where the same position of the six light-emitting diodes L (?, Υ) is connected in the positional direction in the X direction shown in Fig. 2 is exemplified.

如圖2及圖3所示,LED光源模組1 1 R乃將RAs shown in Figure 2 and Figure 3, the LED light source module 1 1 R will be R

之36個發光二極體L(X,Y),配置於安裝基板31J 在此,如圖2所示,規定X,Y方向,做爲γ方 位置相同之6個發光二極體L之「X」,從圖2中左 序分配,做爲發光二極體L之「Υ」,則從該發光二 L所屬之行之圖2中上端依序加以分配。 然後,在於發光二極體L,分配使用分配於該發 極體L之「X」、「Υ」的索引(Χ,Υ)。在此,Υ乃 〇 圖4乃發光二極體L( Χ,Υ)之外觀斜視圖。 如圖4所示,發光二極體L ( Χ,Υ )乃在該表面 之故 ,做 辨識 G、 之構 LED 2所 乃直 發光 〇 向之 端依 極體 光二 行號 側之 -19 - 200845423 P型半導體層側,具有2次元形狀爲略矩形之P側面4 1 ( Χ,γ ) 。P側面41 ( X,Y )則呈發光面。複數之發光二極 體L(X,Y)乃具有互爲同一之外形。 於P側面上,η型電極43(X,Y)與p型電極45( X,Υ )則沿Υ方向加以形成。ρ側面4 1之一邊長度乃例如 可爲 3 2 0 μιη。 η型電極43 ( Χ,Υ)乃位於ρ側面41 ( Χ,Υ)內之圖 4中X方向之中央附近,且位於Υ方向之一方端邊附近。 Ρ型電極45(Χ,Υ)乃位於ρ側面41(Χ,Υ)內之圖4中 X方向之中央附近,且位於Υ方向之另一方端邊附近。 未形成Ρ側面41 ( Χ,Υ)之範圍中之η型電極43 ( Χ,Υ)與Ρ型電極45 ( Χ,Υ)之範圍則成爲發光範圍。 以下,對於LED光源模組1 1R之發光二極體L ( Χ,Υ )之佈局加以說明。 如圖2所示,於LED光源模組1 1R,於各別安裝基 板31上之Y方向之不同之6個之位置,沿X方向,配置 6個發光二極體L( Χ,Υ)。 LED光源模組1 1R中,例如於2mm2程度範圍,配置 約36個之發光二極體L(X,Y)。 配置發光二極體L(X,Y)之Y方向之不同之6個位 置中,在於第奇數個之位置之發光二極體L ( X,1 ) ,L( X,2 ) ,L ( X,3 )之X方向之位置爲相同。 又,在於第偶數個之位置之發光二極體L ( X,2) ,L (X,4) ,L(X,6)之X方向之位置爲相同者。 -20- 200845423 更且,在於第偶數個之位置之發光二極體 ,L ( X,4 ) ,L ( X,6 )之X方向之位置乃在於 數個之位置之發光二極體L(X,1) ,L(X,2) )之X方向所鄰接之2個發光二極體L(X,Y) 之位置的中間位置。 於LED光源模組11R中,發光二極體L(3 該η型電極43 ( X,Y),位於圖2中上側(Υ方 ,使該Ρ型電極45 ( Χ,Υ),位於圖2中下側( 側),而配置於安裝基板3 1上。The 36 light-emitting diodes L (X, Y) are disposed on the mounting substrate 31J. Here, as shown in FIG. 2, the X and Y directions are defined as the six light-emitting diodes L having the same γ-square position. X" is assigned from the left order in Fig. 2, and is used as the "Υ" of the light-emitting diode L, and is sequentially allocated from the upper end of Fig. 2 of the line to which the light-emitting two L belongs. Then, in the light-emitting diode L, an index (Χ, Υ) assigned to "X" and "Υ" of the emitter L is used. Here, Fig. 4 is an oblique view of the appearance of the light-emitting diode L (Χ, Υ). As shown in Fig. 4, the light-emitting diode L (Χ, Υ) is on the surface, so that the identification LED G, the LED 2 is directly illuminated, and the end of the body is the second side of the body. 200845423 The P-type semiconductor layer side has a P-side 4 1 ( Χ, γ ) having a 2-dimensional shape and a slightly rectangular shape. The P side 41 (X, Y) is a light emitting surface. The plurality of light-emitting diodes L(X, Y) have the same outer shape. On the side of the P, the n-type electrode 43 (X, Y) and the p-type electrode 45 (X, Υ) are formed in the z-direction. The length of one side of the ρ side face 4 1 may be, for example, 3 2 0 μmη. The n-type electrode 43 (Χ, Υ) is located near the center in the X direction in Fig. 4 in the ρ side surface 41 (Χ, Υ), and is located near one end side in the Υ direction. The Ρ-type electrode 45 (Χ, Υ) is located near the center of the X direction in Fig. 4 in the ρ side surface 41 (Χ, Υ), and is located near the other end side in the Υ direction. The range of the n-type electrode 43 (Χ, Υ) and the Ρ-type electrode 45 (Χ, Υ) in the range in which the Ρ side surface 41 (Χ, Υ) is not formed becomes the light-emitting range. Hereinafter, the layout of the light-emitting diodes L ( Χ, Υ ) of the LED light source module 1 1R will be described. As shown in Fig. 2, in the LED light source module 1 1R, six light-emitting diodes L (Χ, Υ) are arranged in the X direction at six different positions in the Y direction on the respective mounting substrates 31. In the LED light source module 1 1R, for example, about 36 light-emitting diodes L (X, Y) are arranged in a range of about 2 mm 2 . Among the six positions in which the Y direction of the light-emitting diode L (X, Y) is different, the light-emitting diodes L (X, 1), L (X, 2), L (X) at the odd-numbered positions are arranged. , 3) The position in the X direction is the same. Further, the positions of the light-emitting diodes L (X, 2), L (X, 4), and L (X, 6) at the even-numbered positions are the same in the X direction. -20- 200845423 Moreover, in the light-emitting diode of the even number of positions, the position of the X direction of L ( X, 4 ) and L ( X, 6 ) is the LED of several positions ( The intermediate position of the position of the two light-emitting diodes L (X, Y) adjacent to the X direction of X, 1) and L (X, 2). In the LED light source module 11R, the light-emitting diode L (3) of the n-type electrode 43 (X, Y) is located on the upper side of FIG. 2 (the square electrode 45 (Χ, Υ) is located in FIG. 2 The lower middle side (side) is disposed on the mounting substrate 31.

又,於發光二極體L ( 1,6) ,L ( 2,6) ,L L(4,6) ,L(5,6) ,1^(6,6)之圖2中丫方向 置 6個電極銲墊 39(1)〜39(6)。於 LED 11R之驅動時’在電極婷塾39 ( 1)〜39 (6) ’ 特定電位。 以下,說明LED光源模組1 1R之發光二極1 )間之連接關係。 圖2中,將連接於發光二極體(X,Y)之ρ (Χ,Υ )之導線,表示爲W ( Χ,Υ )。 LED光源模組1 1R中,6個發光二極體L ( (X,6)則順序直列連接。 即,發光二極體L ( X,1 )之η型電極43 發光二極體L(X,6)之ρ型電極45(Χ,6)間, 線 W1 ( X,1 ) ,W1 ( X,2 ) ,W1 ( X,3 ) > W1 W1 ( X,5) ,W1 ( X,6),直接加以連接。 L ( X,2 ) 位於第奇 ,L ( X,3 之X方向 :,Y)乃使 向正側) Y方向負 (3,6), 負側,配 光源模組 施加正之 1 L ( X5Y 型電極45 X,1 )〜L (X,Y)與 則藉由導 (Χ,4), -21 - 200845423 然而,P型電極45(又,6)乃連接於電極銲墊 )° 如上所述,LED光源模組1 1R中,如圖2所 36個發光二極體L(X,Y)配置呈鋸齒狀,將此等 接,非平行於Y方向(連結同一發光二極體M(X η型電極43(X,Y)與p型電極45(X,Y)之方向 是對於Y方向具有傾斜地加' 以實現。爲此,將3 6 二極體L ( X,Y )緊密配置之時,在於直列連接之 光二極體L(X,Y)之n型電極43(X,Y)與p型1 (X,Y )間,可保持使用毛細尖管之打線所需之距 際上必要之距離)。 又,不需將導線W1 ( X,1 )〜W1 ( Χ,6 )落於 板31上,連接發光二極體L ( Χ,Υ)之間。由此, 個之發光二極體L( Χ,Υ )緊密地安裝於安裝基板: 可使單位面積之發光量變大。 以下,對於LED光源模組1 1 R之動作例加以該 於LED光源模組11R中,當投入電源之時, 墊3 9 ( X )則設定呈特定電位。 由此,於直列連接之發光二極體L ( X,6 )之 極45(X,6)、與發光二極體L(X,1)之η型電ί X,Υ )間,則產生對應於上述特定之電位的電位差 結果,從發光二極體L ( Χ,6 )之ρ型電極45 、朝向發光二極體L(X,1)之η型電極43(Χ,\ 電流,發光二極體L ( X,1 )〜L ( Χ,6 )之側面41 39 ( X 示,將 間之連 ,γ)之 ),而 個發光 2個發 霪極45 離(實 安裝基 ,將36 Η上, ί明。 電極銲 P型電 亟43 ( 〇 (X,6) 。流有 (x,l ) -22- 200845423 〜(X,6)則會發光。 LED光源模組11R中,發光二極體L ( X,Y)中,同 樣分配至X之發光二極體L ( Χ,Υ )雖直接連接,分配到 不同X之發光二極體L ( X,Υ )間則並列連接。 爲此,於發光二極體L(X,Y)或該導線W1(X,Y) ,即使產生缺陷·,亦不會影響分配不同X之發光二極體L (X,Y)之發光。 以下,說明LED光源模組11R之製造方法。 首先,於安裝基板31上,形成電極銲墊39(X)。 接著’於配置安裝基板31上之發光二極體L( X,Y ) 之位扯,塗佈黏劑材。接著,於塗佈安裝基板31上之上 述黏著材之位置,載置發光二極體L ( Χ,Υ),於安裝基 板31上,固定發光二極體L(X,Y)。 接著,使用毛細尖管,進行打線接合,如圖2所示, 於發光二極體L(X,Y)之n型電極43(X,Y)及p型電 極4 5 ( X,Y )間,形成導線w 1 ( X,Y )。 如以上說明,投影機丨之LED光源模組1 1 R、U G、 11B中,η型電極43 ( X,Y)與p型電極45 ( X,Y)則沿 Υ方向定位而安裝發光二極體L( Χ,Υ )時,於Υ方向, 使在於不同位置之鄰接之發光二極體L(X,Y)之X方向 之位置爲不同地,將發光二極體L( X,Y ),配置於安裝 基板3 1上。由此’將導線wi ( χ,γ ) [γ=1〜5],對於將 發光二極體Μ(χ,γ)內之^型電極43(Χ,Υ)與ρ型電 極45 ( Χ,Υ )連結之方向,使之具傾斜地加以配置。 -23- 200845423 爲此,與於γ方向,使在於不同位置鄰接之 向之位置爲相同之情形比較’在於直列連接之一 二極體L(X,Y)之ρ型電極45(χ,γ)與另一 二極體l(x,y)2 η型電極43(x,Y)間’可 . 距離。 結果,即使高密度安裝發光二極體L ( Χ,Υ 造工程,可容易進行使用毛細尖管於上述電極之: 又,於LED光源模組1 1R、1 1G、1 1Β中, 線W1 ( X,1 )〜W1 ( X,6)落於安裝基板31上 發光二極體L ( X,Y )之間。由此,將36個之發 L ( Χ,Υ)緊密地安裝於安裝基板31上,可使單 發光量變大。 經由此等之效果,將LED光源模組1 1R、1 呈小規模且高亮度地加以構成,結果,可提供小 亮度之投影機1。 〔第1實施形態之變形例〕 #· 上述之第1實施形態中,如圖2所示,例示 ‘ 有發光二極體L ( X,Y)間,將該η型電極43 () 型電極45 ( Χ,Υ )配置於用側之情形。 關於第1實施形態之變形例之LED光源模耜 ’如圖5所示,在X爲奇數之發光二極體L(X 爲偶數之發光二極體L ( X,Y )間,使η型電極 )及Ρ型電極45 ( Χ,Υ)所在位置側(發光二4 .之X方 方之發光 方之發光 確保長的 ),於製 盯線。 不需將導 ,可連接 光二極體 位面積之 1 G、1 1 Β 規模且高 了在於所 “Υ)及 Ρ L 1 IRa 中 ,γ)與 X 43 ( Χ,Υ 亟體Μ ( -24- 200845423 χ,γ)之配置姿態)呈相反,而加以布局。 因此關於本實施形態之LED光源模組發光11 Ra中, 可得與第1實施形態之LED光源模組1 1 R相同的效果。 又,根據LED光源模組llRa時,將施加特定電位之 電極銲墊39a(2) 、39a(4)、39a(6)及電極銲墊39a (1) 、39a(3) 、39a(5),分爲發光二極體 M(X,Y) 之Y方向正側與負側加以配置之故,可避免於安裝基板 3 1上之一方側,集中高電位之範圍。 〔第2實施例形態〕 本實施形態中,做爲發光二極體,沿該發光面側之2 次元形狀之矩形之對角線,使用位有η型電極與p型電極 之情形加以說明。 圖6乃爲說明關於本發明之第1實施形態之LED光 源模組41 1R之LED晶片布局構成的方塊圖。 上述之第1實施形態中,如圖4所示,例示了做爲發 光二極體L ( X,Y ),沿該側之2次元形狀之矩形之一方 之邊,使用位有η型電極43(Χ,Υ)與ρ型電極45(Χ,Υ )之情形。 對此,本實施形態中,說明如圖6所示,例示了做爲 發光二極體Μ ( Χ,Υ),沿該ρ側面341 ( Χ,Υ)側之2次 元形狀之矩形之對角線,使用位有η型電極343 ( Χ,Υ) 與Ρ型電極3 45 ( Χ,Υ)之情形。 關於本實施形態之投影機乃,除了 LED光源模組之 -25- 200845423 構成,與第1實施形態之投影機1相同。 以下,說明本實施形態之投影機所使用R發光之 LED光源模組41 1R。G發光及B發光之LED光源模組乃 各別使用發光G、B光之發光二極體之外,與LED光源模 組1 1 R相同之構成之故,省略說明。 如圖6所示,於LED光源模組41 1R,於各別安裝基 板31上之Y方向之不同之6個之位置,沿X方向,配置 6個發光二極體Μ ( X,Y)。 配置發光二極體L(X,Y)之Υ方向之不同之6個位 置中,在於第奇數個之位置之發光二極體M(X,1) ,M (X,2 ) ,Μ ( X,3 )之X方向之位置爲相同。 又,在於第偶數個之位置之發光二極體M ( X,2 ), M(X,4) ,M(X,6)之X方向之位置爲相同者。 更且,在於第偶數個之位置之發光二極體M(X,2) ,M ( X,4 ) ,M ( X,6 )之X方向之位置乃在於位於第奇 數個之位置之發光二極體M(X,1) ,M(X,2) ,M(X,3 )之X方向所鄰接之2個發光二極體L( X,Y)之X方向 之位置的中間位置。 於LED光源模組41 1R中,發光二極體Μ ( Χ,Υ)乃 使該Ρ型電極345 ( Χ,Υ),位於Υ方向負側(圖6中之 下側),使該η型電極45 ( X,Υ ),位於Υ方向正側(圖 6中下側),而配置於安裝基板3 1上。 LED光源模組41 1R中,如圖6所示,6個發光二極 體M ( X,1 )〜1^1(乂,6)則直列連接。 -26- 200845423 艮P,發光二極體Μ ( X,1 )之η型電極3 4 3 ( X,1 )則 連接於地線。 即’發光二極體M(X,1)之p型電極345(X,1)、 和發光二極體M(X52)之η型電極343 (X,2)則藉由導 線W4 ( Χ,2)加以連接。 發光二極體Μ(Χ,2)之ρ型電極345 (Χ,2)、和發 光二極體Μ(Χ,3)之η型電極343 (X,3)則藉由導線 W4 ( Χ,2 )加以連接。 發光二極體Μ ( Χ,3 )之ρ型電極345 ( Χ,3 )、和發 光二極體Μ ( Χ,4 )之η型電極343 ( Χ,4 )則藉由導線 W4 ( Χ,3 )加以連接。 發光二極體Μ(Χ,5)之ρ型電極345 (Χ,5)、和發 光二極體Μ ( Χ,6 )之η型電極343 ( Χ,6 )則藉由導線 W4(X,5)加以連接。 發光二極體Μ (X,6)之P型電極345 (X,Y)則連接 於電極銲墊423(Χ)。 經由本實施形態,亦可得與第1實施形態相同的效果 〇 然而,上述第2實施形態中’雖例示有使所有發光二 極Μ ( Χ,Υ )以同樣姿勢加以配置之情形,但如圖7所示 ’在X爲奇數之發光二極體Μ(Χ,Υ)與X爲偶數之發光 二極體Μ(Χ,Υ)間,使η型電極343 (Χ,Υ)及ρ型電極 345 (Χ,Υ)之朝向反轉亦可。 圖7所示例中,電極銲墊423 ( 1 ) 、423 ( 3 ) 、423 -27- 200845423 (5)乃在X爲奇數之發光二極體Μ (χ,γ)供給電 又,電極銲墊423(2) 、423(4) 、423(6)乃在 偶數之發光二極體Μ( Χ,Υ)供給電壓。 於此時,亦可得相同的效果。 〔第3實施例形態〕 本實施形態中,與第2實施形態相同,沿該ρ 341 ( Χ,Υ)側之2次元形狀之矩形之對角線,使用位 型電極343(Χ,Υ)與ρ型電極345(Χ,γ)之發光二 Μ ( Χ,Υ)。 圖8乃爲說明關於本發明LED光源模組5 11R之 布局之圖。 如圖8示,LED光源模組5 1 1R乃將36個發光 體M ( X,Y ),配置呈6X6之矩陣狀。 在此,所有發光二極體Μ(Χ,Υ)乃以同姿勢加 置,使該η型電極443 ( Χ,Υ),位於(Υ方向正側( 中上),使該Ρ型電極445 ( Χ,Υ ),位於Υ方向負 圖8中下側)。 LED光源模組51111中,如圖8所示,屬於同一 發光二極體M ( X,1 )〜M ( X,6 )則直列連接。 發光二極體Μ(Χ,1)之η型電極343 (Χ,1)則 於地線。 又,發光二極體Μ(Χ,6)之ρ型電極345 (Χ,Υ 連接於電極銲墊539 (X)。 壓。 X爲 側面 有η 極體 晶片 二極 以配 圖8 側( 列之 連接 )則 -28- 200845423 經由本實施形態,亦可得與第1實施形態相同的效果 〇 然而,上述第3實施形態中,雖例示有使所有發光二 極Μ ( X,Y )以同樣姿勢加以配置之情形,但如圖9所示 ’於奇數列之發光二極體Μ ( Χ,Υ )與偶數列之發光二極 體Μ(Χ,Υ),使η型電極343(Χ,Υ)及ρ型電極345( Χ,Υ )之朝向反轉之姿勢加以配置亦可。 又,此時,發光二極體M(l,6) ,Μ(3,6) ,Μ( 5,6)之 ρ 型電極 345(1,6) 、345(3,6) 、345( 5,6 ), 連接於電極銲墊 5 3 9b ( 1 ) 、5 3 9b ( 3 ) 、5 3 9b ( 5 )。 又,偶數列中,發光二極體M(2,6) ,M(4,6), 1^(6,6)之?型電極 345 (2,6) 、345 (4,6) 、345 (6,6 ),連接於電極銲墊 539b(2) 、539b(4)、539b(6) ο 於此時,亦可得相同的效果。 本發明乃非限定於上述之實施形態。 即該業者,於本發明之技術範圍或該均等之範匱|內, 關於上述實施形態之構成要素,可進行種種變更、,組合、 次組合以及代替。 上述實施形態中,做爲發光二極體L ( χ,γ ) ,Μ ( Χ,Υ ),例示了發光面(Ρ側面)爲平均者,亦可於% $ η型電極43 ( Χ,Υ) ’ 343 ( Χ,Υ)之面、和形成ρ型電極 45 ( Χ,Υ) ,345 ( Χ,Υ)之面間有階差存在。 又,發光元件之發光面,具備η型電極與ρ型電極即 -29- 200845423 可,此等之位置關係或電極之形狀等乃非特定於上述 狀。 又,上述實施形態中,做爲發光二極體L ( X,Y Μ ( X,Y ),雖例示了發光面(表面)側之2次元形 略正方形者,但亦可爲長方形。 上述實施形態中,例示了 Υ方向之第偶數個之 之發光二極體之X方向之位置,在於Υ方向之第奇 之位置之發光二極體之X方向鄰接之位置的中間位 時。但是,本發明只要是Υ方向之第偶數個之位置 光二極體之X方向之位置,與Υ方向之第奇數個之 之發光二極體之X方向之位置爲不同之下,除了上 間位置以外亦可。 又,例如,如圖10所示,使用電極銲墊539(] (3 )鄰接之連接列的一端部中,連接發光二極體L )之Ρ型電極45 ( X,1 )、和發光二極體M ( X+1,] η型電極43(Χ+1,1)亦可。由此,12段之發光二植 (Χ,Υ)則直接連接。 〔第4實施例形態〕 圖1 1乃爲說明圖1所示之LED光源模組1 1 R < 實施形態之LED晶片布局之圖,圖12乃將LED光源 1 1 R,從圖1 1所示箭頭A之方向所視之圖。 本實施形態中,例示圖1 1所示之X方向之位漏 列連接同一之6個之發光二極體L ( X,Y )之情形。 之形 狀爲 位置 數個 置之 之發 位置 述中Further, in the light-emitting diode L (1,6), L (2,6), LL (4,6), L (5,6), 1^(6,6), FIG. Electrode pads 39(1) to 39(6). When the LED 11R is driven, the electrode is at a specific potential of 39 (1) to 39 (6) '. Hereinafter, the connection relationship between the light-emitting diodes 1 of the LED light source module 1 1R will be described. In Fig. 2, a wire connected to ρ (Χ, Υ) of the light-emitting diode (X, Y) is denoted as W (Χ, Υ). In the LED light source module 1 1R, six light-emitting diodes L ((X, 6) are sequentially connected in series. That is, the n-type electrode 43 of the light-emitting diode L (X, 1) is a light-emitting diode L (X). , 6) ρ-type electrode 45 (Χ, 6), line W1 (X, 1), W1 (X, 2), W1 (X, 3) > W1 W1 (X, 5), W1 (X, 6), connect directly. L ( X, 2 ) is located in the odd, L (X, 3 X direction:, Y) is the positive side) Y direction negative (3, 6), negative side, with the light source mode The group applies a positive 1 L (X5Y type electrode 45 X,1 )~L (X,Y) and then by a guide (Χ,4), -21 - 200845423 However, the P-type electrode 45 (again, 6) is connected to Electrode pad) ° As described above, in the LED light source module 1 1R, as shown in Fig. 2, the 36 LEDs L (X, Y) are arranged in a zigzag shape, which are connected in parallel, not parallel to the Y direction (connected The same light-emitting diode M (the direction of the X-n-type electrode 43 (X, Y) and the p-type electrode 45 (X, Y) is obliquely added to the Y direction to achieve. For this, the 3 6 diode L When (X, Y) is closely arranged, it is maintained between the n-type electrode 43 (X, Y) and the p-type 1 (X, Y) of the photodiode L (X, Y) connected in series. The distance necessary for the distance between the sharp tubes is required.) Further, it is not necessary to drop the wires W1 (X, 1 ) to W1 ( Χ, 6 ) on the board 31 to connect the light-emitting diodes L (Χ, Υ Therefore, the light-emitting diodes L (Χ, Υ) are closely attached to the mounting substrate: the amount of light per unit area can be increased. Hereinafter, the operation example of the LED light source module 1 1 R is used. In the LED light source module 11R, when the power is turned on, the pad 3 9 ( X ) is set to a specific potential. Thus, the poles of the light-emitting diodes L ( X, 6 ) connected in series are 45 (X, 6). Between the n-type electric X X, 与 ) of the light-emitting diode L (X, 1), a potential difference result corresponding to the specific potential is generated, and the p-type from the light-emitting diode L ( Χ, 6 ) The electrode 45, the n-type electrode 43 facing the light-emitting diode L (X, 1) (Χ, \ current, the side of the light-emitting diode L (X, 1) ~ L (Χ, 6) 41 39 (X shows, The connection between the two, γ)), and one illuminating 2 hairpins 45 away (the actual mounting base, will be 36 ,, ί 明. Electrode welding P-type electric 亟 43 ( 〇 (X, 6). Flow has (x,l) -22- 200845423 ~(X,6) will shine In the LED light source module 11R, in the light-emitting diode L (X, Y), the light-emitting diodes L (Χ, Υ) which are also assigned to X are directly connected, and are assigned to the light-emitting diodes L of different X ( X, Υ) are connected in parallel. For this reason, even if a defect is generated in the light-emitting diode L (X, Y) or the wire W1 (X, Y), the light emission of the light-emitting diode L (X, Y) to which the different X is assigned is not affected. Hereinafter, a method of manufacturing the LED light source module 11R will be described. First, an electrode pad 39 (X) is formed on the mounting substrate 31. Then, the adhesive material is applied by disposing the light-emitting diodes L (X, Y) on the mounting substrate 31. Next, a light-emitting diode L (?) is placed on the mounting substrate 31 at a position where the above-mentioned adhesive material is applied, and the light-emitting diode L (X, Y) is fixed to the mounting substrate 31. Next, wire bonding is performed using a capillary tip tube, as shown in FIG. 2, between the n-type electrode 43 (X, Y) and the p-type electrode 4 5 (X, Y) of the light-emitting diode L (X, Y). , forming a wire w 1 (X, Y ). As described above, in the LED light source module 1 1 R, UG, and 11B of the projector, the n-type electrode 43 (X, Y) and the p-type electrode 45 (X, Y) are positioned in the x-direction to mount the light-emitting diode. When the body L ( Χ, Υ ) is in the Υ direction, the positions of the adjacent light-emitting diodes L (X, Y) at different positions in the X direction are different, and the light-emitting diode L (X, Y) is used. It is disposed on the mounting substrate 31. Thus, the wire wi ( χ, γ ) [γ = 1 to 5] is used for the electrode 43 (Χ, Υ) and the p-type electrode 45 in the light-emitting diode Μ (χ, γ) (Χ, Υ ) The direction of the connection is configured so that it is tilted. -23- 200845423 For this reason, compared with the case where the position of the adjacent direction in the γ direction is the same, 'the p-type electrode 45 (χ, γ) which is one of the diodes L(X, Y) connected in series. ) is a distance from the other diode 1 (x, y) 2 n-type electrode 43 (x, Y). As a result, even if the light-emitting diode L is mounted at a high density, it is easy to use the capillary tip tube on the above electrode: Also, in the LED light source module 1 1R, 1 1G, 1 1Β, the line W1 ( X, 1) to W1 (X, 6) are placed between the light-emitting diodes L (X, Y) on the mounting substrate 31. Thereby, 36 hairs L (Χ, Υ) are closely attached to the mounting substrate. In the case of 31, the amount of single light emission can be increased. With this effect, the LED light source modules 1 1R and 1 are configured to be small-scale and high-intensity, and as a result, the projector 1 having a small brightness can be provided. Modification of the form] In the first embodiment described above, as shown in Fig. 2, the n-type electrode 43 () type electrode 45 is exemplified between the light-emitting diodes L (X, Y). Υ) In the case of the LED light source module of the modification of the first embodiment, as shown in FIG. 5, the LED is an odd-numbered light-emitting diode L (X is an even-numbered light-emitting diode L ( Between the X and Y), the n-type electrode and the Ρ-type electrode 45 (Χ, Υ) are located on the side of the position (the illuminating side of the X-ray of the light-emitting diode is ensured to be long), and the line is formed. It will be connected to the 1 G, 1 1 Β scale of the photodiode, and the height is in the “Υ” and Ρ L 1 IRa, γ) and X 43 (Χ,Υ 亟 Μ ( -24- 200845423 χ In the LED light source module illumination 11 Ra of the present embodiment, the same effect as the LED light source module 1 1 R of the first embodiment can be obtained. According to the LED light source module 11Ra, electrode pads 39a (2), 39a (4), 39a (6) and electrode pads 39a (1), 39a (3), 39a (5) of a specific potential are applied. Since the positive side and the negative side of the light-emitting diode M (X, Y) are arranged in the Y direction, it is possible to avoid the range of the high potential on one side of the mounting substrate 31. [Second embodiment] In the embodiment, as a light-emitting diode, a diagonal line of a rectangular shape along the light-emitting surface side is described using a case where an n-type electrode and a p-type electrode are located. FIG. 6 is a description of the present invention. A block diagram of the LED chip layout of the LED light source module 41 1R according to the first embodiment. In the first embodiment, as shown in FIG. As the light-emitting diode L (X, Y), along one side of the rectangle of the 2-dimensional shape of the side, the n-type electrode 43 (Χ, Υ) and the p-type electrode 45 (Χ, Υ) are used. In this case, in the present embodiment, as illustrated in Fig. 6, a rectangular shape as a light-emitting diode Μ (Χ, Υ) and a 2-dimensional shape along the ρ side surface 341 (Χ, Υ) side is exemplified. For the diagonal line, the case where the n-type electrode 343 (Χ, Υ) and the Ρ-type electrode 3 45 (Χ, Υ) are used is used. The projector of the present embodiment is the same as the projector 1 of the first embodiment except for the configuration of the LED light source module -25-200845423. Hereinafter, an LED light source module 41 1R for R illumination used in the projector of the embodiment will be described. The LED light source module of the G light emission and the B light emission is the same as the LED light source mode group 1 1 R except for the light-emitting diodes of the G and B light, and the description thereof is omitted. As shown in Fig. 6, in the LED light source module 41 1R, six light-emitting diodes X (X, Y) are arranged in the X direction at six different positions in the Y direction on the respective mounting substrates 31. Among the six positions in which the direction of the light-emitting diode L (X, Y) is different, the light-emitting diodes M(X, 1), M (X, 2), Μ (X) at the odd-numbered positions , 3) The position in the X direction is the same. Further, the positions of the light-emitting diodes M (X, 2), M (X, 4), and M (X, 6) at the even-numbered positions are the same in the X direction. Furthermore, the positions of the light-emitting diodes M(X, 2), M (X, 4), M (X, 6) in the even-numbered positions are in the X-th position at the odd-numbered positions. The intermediate position of the positions of the two light-emitting diodes L (X, Y) adjacent to each other in the X direction of the polar body M (X, 1), M (X, 2) and M (X, 3). In the LED light source module 41 1R, the light-emitting diodes Χ (Χ, Υ) are such that the Ρ-type electrode 345 (Χ, Υ) is located on the negative side of the Υ direction (the lower side in FIG. 6), so that the n-type The electrode 45 (X, Υ) is located on the positive side in the Υ direction (the lower side in FIG. 6) and is disposed on the mounting substrate 31. In the LED light source module 41 1R, as shown in Fig. 6, six light-emitting diodes M (X, 1) to 1^1 (乂, 6) are connected in series. -26- 200845423 艮P, the n-type electrode 3 4 3 (X,1 ) of the light-emitting diode Μ (X,1) is connected to the ground. That is, the p-type electrode 345 (X, 1) of the light-emitting diode M (X, 1) and the n-type electrode 343 (X, 2) of the light-emitting diode M (X52) are connected by the wire W4 (Χ, 2) Connect. The n-type electrode 343 (X, 3) of the light-emitting diode (Μ, 2), the p-type electrode 345 (Χ, 2), and the light-emitting diode (Μ, 3), by the wire W4 (Χ, 2) Connect. The n-type electrode 343 ( Χ, 4 ) of the light-emitting diode Μ ( Χ, 3 ), the n-type electrode 343 ( Χ , 4 ) of the light-emitting diode Μ ( Χ , 4 ) is connected by the wire W4 ( Χ, 3) Connect. The n-type electrode 343 (Χ, 6) of the light-emitting diode Μ (Χ, 5) and the n-type electrode 343 (Χ, 6) of the light-emitting diode Μ (Χ, 6) are connected by a wire W4 (X, 5) Connect. The P-type electrode 345 (X, Y) of the light-emitting diode Μ (X, 6) is connected to the electrode pad 423 (Χ). According to the present embodiment, the same effects as those of the first embodiment can be obtained. However, in the second embodiment, the case where all the light-emitting diodes (Χ, Υ) are arranged in the same posture is exemplified. Fig. 7 shows an 'n-type electrode 343 (Χ, Υ) and a p-type between a light-emitting diode X (Χ, Υ) whose X is an odd number and a light-emitting diode Μ (Χ, Υ) whose X is an even number. The orientation of the electrode 345 (Χ, Υ) may be reversed. In the example shown in FIG. 7, the electrode pads 423 (1), 423 (3), and 423 -27-200845423 (5) are supplied with electric power and electrode pads of an odd-numbered light-emitting diode (χ, γ). 423(2), 423(4), and 423(6) supply voltage to even-numbered LEDs (Χ, Υ). At this time, the same effect can be obtained. [Embodiment of the third embodiment] In the present embodiment, as in the second embodiment, the bit electrode 343 (Χ, Υ) is used along the diagonal line of the rectangular shape of the 次 341 (Χ, Υ) side. The light-emitting diode (Μ, Υ) with the p-type electrode 345 (Χ, γ). Fig. 8 is a view for explaining the layout of the LED light source module 5 11R of the present invention. As shown in Fig. 8, the LED light source module 5 1 1R has 36 illuminants M (X, Y) arranged in a matrix of 6X6. Here, all of the light-emitting diodes Χ (Χ, Υ) are placed in the same posture so that the n-type electrode 443 (Χ, Υ) is located on the positive side (middle upper side), so that the Ρ-shaped electrode 445 ( Χ, Υ ), located in the lower side of the negative direction of Figure 8). In the LED light source module 51111, as shown in Fig. 8, the same light-emitting diodes M (X, 1) to M (X, 6) are connected in series. The n-type electrode 343 (Χ, 1) of the light-emitting diode Μ (Χ, 1) is at the ground. Further, the p-type electrode 345 of the light-emitting diode Χ (Χ, 6) is connected to the electrode pad 539 (X). The X is the side of the η-pole wafer diode with the side of the figure 8 (column) -28-200845423 According to the present embodiment, the same effects as those of the first embodiment can be obtained. However, in the third embodiment, it is exemplified that all the light-emitting diodes (X, Y) are the same. The posture is configured, but as shown in Fig. 9, the light-emitting diodes (Χ, Υ) in the odd-numbered columns and the light-emitting diodes Χ (Χ, Υ) in the even-numbered columns make the n-type electrode 343 (Χ, Υ) and the p-type electrode 345 ( Χ, Υ ) may be arranged in a posture in which the orientation is reversed. At this time, the light-emitting diodes M (l, 6), Μ (3, 6), Μ (5, 6) The p-type electrodes 345 (1, 6), 345 (3, 6), 345 (5, 6) are connected to the electrode pads 5 3 9b ( 1 ) , 5 3 9b ( 3 ) , 5 3 9b ( 5). Also, in the even-numbered columns, the light-emitting diodes M(2,6), M(4,6), 1^(6,6)-type electrodes 345 (2,6), 345 (4,6 ), 345 (6,6), connected to electrode pads 539b (2), 539b (4), 539b (6) ο At this time, the same effect can be obtained. The present invention is not limited to the above-described embodiments. In the technical scope of the present invention or the equivalents, the constituent elements of the above-described embodiments can be variously modified, combined, sub-combined, and replaced. In the embodiment, the light-emitting diodes L ( χ, γ ) and Μ ( Χ , Υ ) are exemplified as the light-emitting surface (the side surface of the crucible) as an average, and may also be used in the % $ η-type electrode 43 (Χ, Υ). There is a step between the surface of the '343 ( Χ, Υ) and the surface forming the p-type electrode 45 (Χ, Υ), 345 (Χ, Υ). The light-emitting surface of the light-emitting element has an n-type electrode and ρ. The type electrode is -29-200845423, and the positional relationship or the shape of the electrode is not specific to the above-described shape. Further, in the above embodiment, the light-emitting diode L (X, Y Μ (X, Y) is used. Although the second dimension of the light-emitting surface (surface) side is slightly square, it may be a rectangle. In the above embodiment, the position of the even-numbered light-emitting diode in the X direction is illustrated in the X direction. The position of the light-emitting diode in the X direction adjacent to the odd position in the direction of the 邻接However, the present invention is different in position in the X direction of the even-numbered position photodiode in the x-direction, and in the X-direction of the odd-numbered light-emitting diodes in the x-direction. In addition to the upper position, for example, as shown in FIG. 10, the Ρ-type electrode 45 to which the light-emitting diode L) is connected is used in one end portion of the connection row adjacent to the electrode pad 539 (] (3) ( X, 1 ), and the light-emitting diode M (X+1,] n-type electrode 43 (Χ+1, 1) may also be used. Thus, the 12-segment illuminating two plants (Χ, Υ) are directly connected. [Embodiment of the fourth embodiment] Fig. 11 is a view showing the layout of the LED chip of the embodiment of the LED light source module 1 1 R shown in Fig. 1, and Fig. 12 is an LED light source 1 1 R from Fig. 11. The view of the direction of arrow A is shown. In the present embodiment, the case where the horizontal drain column in the X direction shown in Fig. 11 is connected to the same six light-emitting diodes L (X, Y) is exemplified. The shape of the position is a number of positions.

(x,l )之 i體L 第4 模組 乃直 -30- 200845423 如圖1 1及圖12所示,LED光源模組1 1R乃將R發 光之3 6個發光二極體L(X,Y),配置於安裝基板31上 〇 在此,如圖11所示,規定Χ,γ方向,做爲Y方向之 位置相同之6個發光二極體1之「X」,從圖Η中左端 依序分配,做爲發光二極體L之「Υ」,則從該發光二極 體L所屬之行之圖Π中上端依序加以分配。 然後,在於發光二極體L,分配使用分配於該發光二 極體L之「X」、「Υ」的索弓丨(Χ,Υ)。 以下,對於LED光源模組1 1R之發光二極體L ( Χ,Υ )之佈局加以說明。 如圖1 1所示,於LED光源模組1 1R,於各別安裝基 板3 1上之Y方向之不同之6個之位置,沿X方向,配置 6個發光二極體L( X,Y)。 LED光源模組1 1R中,例如於2mm2程度範圍,配置 約36個之發光二極體L ( X,Y)。 配置發光二極體L(X,Y)之Υ方向之不同之6個位 置中,在於第奇數個之位置之發光二極體L(X,1) ,L( X,2 ) ,L ( X,3 )之X方向之位置爲相同。 又,在於第偶數個之位置之發光二極體L(X,2) ,L (X,4 ) ,L ( X,6 )之X方向之位置爲相同者。 即,與γ方向之複數位置中,在跳過一個之位置間 ,於該位置沿X方向所在之發光二極體L ( X,Y)之X方 向之位置相同。 -31 - 200845423 更且,在於第偶數個之位置之發光二極體L(X,2) ,L ( X,4 ) ,L ( X,6 )之X方向之位置乃在於位於第奇 數個之位置之發光二極體L(X,1) ,L(X,2) ,L(X,3 )之X方向所鄰接之2個發光二極體L ( X,Y)之X方向 之位置的中間位置。 即,與Υ方向之複數位置中,鄰接2個之位置間, 在於一方位置之複數之發光二極體L(X,Y)之X方向之 位置之中間位置,配置另一方之位置之發光二極體L( X,Y)。(x, l) i body L The fourth module is straight -30- 200845423 As shown in Fig. 11 and Fig. 12, the LED light source module 1 1R is the LED 6 light emitting diode L (X) , Y), disposed on the mounting substrate 31. Here, as shown in FIG. 11, the Χ, γ direction is defined as the "X" of the six LEDs 1 having the same position in the Y direction, from the figure The left end is sequentially allocated, and as the "Υ" of the light-emitting diode L, the upper end of the row to which the light-emitting diode L belongs is sequentially allocated. Then, in the light-emitting diode L, a cable bow (Χ, Υ) assigned to "X" and "Υ" of the light-emitting diode L is used. Hereinafter, the layout of the light-emitting diodes L ( Χ, Υ ) of the LED light source module 1 1R will be described. As shown in FIG. 11, in the LED light source module 1 1R, six LEDs L (X, Y) are arranged along the X direction at six different positions in the Y direction on the respective mounting substrates 31. ). In the LED light source module 1 1R, for example, about 36 light-emitting diodes L (X, Y) are disposed in the range of 2 mm 2 . Among the six positions in which the direction of the light-emitting diode L (X, Y) is different, the light-emitting diodes L(X, 1), L(X, 2), L (X) at the odd-numbered positions are arranged. , 3) The position in the X direction is the same. Further, the positions of the light-emitting diodes L(X, 2), L (X, 4), and L (X, 6) at the even-numbered positions are the same in the X direction. That is, in the complex position with respect to the γ direction, the position in the X direction of the light-emitting diode L (X, Y) located in the X direction is the same at the position where one is skipped. -31 - 200845423 Moreover, the positions of the light-emitting diodes L(X, 2), L (X, 4), L (X, 6) in the even-numbered positions are located in the odd-numbered Position of the light-emitting diode L (X, 1), L (X, 2), L (X, 3) in the X direction of the two light-emitting diodes L (X, Y) in the X direction middle place. In other words, in the plural position of the Υ direction, the position between the two adjacent positions is at the middle of the position of the plurality of light-emitting diodes L (X, Y) in the X direction, and the other position is arranged. Polar body L (X, Y).

於LED光源模組11R中,發光二極體L ( 1,Y) 、L (3,Υ) 、1^(5,¥)乃使該11型電極43(乂,丫),位於圖 1 1中上側(Υ方向正側),使該ρ型電極45 ( Χ,Υ ),位 於圖1 1中下側(Υ方向負側),而配置於安裝基板3 1上 〇 又,偶數列之發光二極體L ( 2,Y ) 、L ( 4,Y ) 、L ( 6,Y )乃使該ρ型電極45 ( X,Y ),位於圖1 1中上側(Υ 方向正側),使該η型電極43 ( Χ,Υ ),位於圖1 1中下 側(Y方向負側),而配置於安裝基板3 1上。 又,於發光二極體 L(l,6) ,L(2,6) ,L(3,6), L ( 4,6) ,L ( 5,6) ,L ( 6,6 )之圖2中Y方向負側,配 置6個電極銲墊2 1 3 ( 1 )〜2 1 3 ( 6 )。於LED光源模組 1 1 R之驅動時,在電極銲墊2 1 3 ( 1 )〜2 1 3 ( 6 ),施加正 之特定電位。 又,於發光二極體 L ( 1,1 ) ,L ( 2,1 ) ,L ( 3,1 ), -32- 200845423 L(4,l) ,L(5,1) ,L(6,1)之圖 11 中 Y 方向正側, 配置6個電極銲墊223(1)〜223(6)。於LED光源模 組11R之驅動時,在電極銲墊223(1)〜223(6),施 加正之特定電位。 以下,對於LED光源模組11R之發光二極體L ( X,Y )之連接關係加以說明。 本實施形態中,於Υ方向在於第奇數個之位置之3 個發光二極體L ( Χ,Υ)間,進行3段之直列連接,於Υ 方向在於第偶數個之位置之3個發光二極體L ( Χ,Υ )間 ,進行3段之直列連接, 圖1 1中,將連接於發光二極體(X,Υ )之?型電極 45 ( Χ,Υ )之導線,表示爲W2 ( Χ,Υ )。 LED光源模組1 1R中,在Υ方向經由在於第奇數個 之位置之發光二極體L(X,1) 、L(X,3) 、L(X,5), 進行3段之直列連接。 又,在Y方向經由在於第偶數個之位置之發光二極 體L ( X,2) 、L ( X,4) 、:L ( X,6),進行3段之直列連 接。 在此,於Y方向在於第奇數個之發光二極體(X,Y) 之Ρ型電極45 ( Χ,Υ )乃鄰接於該在於第奇數個之第偶數 個位置的發光二極體(Χ,Υ )中,透過相互鄰接之發光二 極體(Χ,Υ )間,在於鄰接於該第偶數個之位置之其他第 奇數個位置的發光二極體(Χ,Υ )中,與X方向位置相同 之其他之發光二極體(Χ,Υ )之η型電極43,藉由導線加 -33- 200845423 以連接。 在此,於γ方向在於第偶數個之發光二極體( 之p型電極45 ( Χ,Υ)乃鄰接於該在於第偶數個之 第奇數個位置的發光二極體(Χ,Υ )中,透過相互 發光二極體L ( Χ,Υ)間,在於鄰接於該第奇數個 之其他第偶數個位置的發光二極體(Χ,Υ)中,與 位置相同之其他之發光二極體(Χ,Υ)之η型電極 由導線加以連接。 即,電極銲墊213 ( X)與發光二極體(Χ,5 ), 電極45 ( Χ,5 ),則藉由導線W2 ( Χ,5 )加以連接 發光二極體L ( Χ,5 )之η型電極43 ( Χ,5 )、 二極體Μ ( Χ,3 )之ρ型電極45 ( Χ,3 )則藉由導鑛 X,3 )力〇以連接。 發光二極體L(X,3)之η型電極43(Χ,3)、 二極體L ( X,1 )之ρ型電極45 ( X,1 )則藉由導竊 χ,1 )加以連接。 艮Ρ,發光二極體L ( X,1 )之η型電極43 ( X,1 接於地線。 又,電極銲墊223 (X)與發光二極體(X,2) 電極45 ( X,2),則藉由導線W2 ( X,2)加以連接 發光二極體L(X,2)之η型電極43(X,2)、 二極體L ( X,4)之ρ型電極45 ( X,4)則藉由導箱 X,4 )加以連接。 發光二極體L(X,4)之η型電極43(X,4)、 X,Y) 位置之 鄰接之 之位置 X方向 43,藉 之Ρ型 〇 和發光 { W2 ( 和發光 ^ W2 ( )則連 之Ρ型 〇 和發光 % W2 ( 和發光 -34- 200845423 二極體L ( X,6 )之p型電極4 5 ( X,6 )則藉由導線w 2 ( X,1 )加以連接。 發光二極體L(X,6)之η型電極43 (X,6)則接地 如此,在LED光源模組1 1 R中,係將3 6個發光二極 體L ( X,Y )之間的連接,在γ方向一個跳耀位置之間, 即在Υ方向爲奇數號之位置之發光二極體L(X,Y)之間 ’以及在爲偶數號之位置之發光二極體L ( X,Y )之間, 各自實現,因此,即使在緊密地配置36個發光二極體L (X,Υ )之情況,亦可於做爲串連連接之2個的發光二極 體L(X,Y)之η型電極43(χ,γ)與ρ型電極45(Χ,Υ )之間’具有安裝上必要之距離(對於使用毛細管之線接 合必要的距離)。 另外,在L E D光源模組1 1 R中,係如上述,由將w 2 (Χ,Υ )配線之情況,在γ方向位於奇數號(偶數號)之 位置的發光二極體L( Χ,Υ )之間的配線則未重疊於,在 Υ方向位於奇數號(偶數號)之位置的發光二極體L ( Χ,Υ)之ρ側側面41 (發光範圍)之情況,而迴避經由配 線而遮蔽光的情況,進而可得到高光取出效率者,另外, 將經由導線W2 ( X,1 )〜W2 ( Χ,6 )之連接,未脫落於基 板(安裝面)而實現,經由此,成爲無須於安裝基板3 j 上除去導線的空間,進而可將36個的發光二極體L ( Χ,Υ )’緊密(接近)地安裝於安裝基板3 1上,可加大相當 於單位面積之發光面積。 以下’說明LED光源模組丨丨r之動作例。 -35- 200845423 LED光源模組11R係當投入電源時,電極墊片21 3 ( X) ,223 ( X)則設定爲特定的電位。 經由此,於在連接於電極墊片2 1 3 ( X )之γ方向位 於奇數號之位置,作爲串連連接之3段的發光二極體L ( X,5 ) ,L ( X,3 ) ,L ( X,1 ),施加電壓,此等之p側面 41 ( X,5 ) ’ 41 ( X,3 ) ,41 ( X,1 )則發光,另外,於在 連接於電極墊片223 ( X )之Y方向位於偶數號之位置, 作爲串連連接之3段的發光二極體L ( X,2 ) ,L ( X,4 ) ,L ( X,6 ),施加電壓,此等之p側面41 ( X,2 ) ,41 ( X,4 ) ,41 ( X,6 )則發光。 以下,說明LED光源模組1 1R之製造方法。 首先,於安裝基板31上,形成電極墊片2 1 3 ( X ), 223 ( X )。 接著,於配置安裝基板3 1上之發光二極體L ( X,Y ) 的位置,塗佈黏接材。 接著,如圖1 1所示,於塗佈安裝基板3 i上之上述黏 接材的位置,載置發光二極體L(X,Y),再於安裝基板 3 1上’固定發光二極體L ( X,Y ),接著,使用毛細管而 進行線接合,如圖1 1所示,於電極墊片2 1 3 ( X ),發光 二極體L(X,Y)之n型電極43(X,Y)及p型電極45( X,Y ),以及電極墊片223 ( X )之間,形成導線W2 ( X,Y)。 如上述說明,在LED光源模組1 1R中,因由3段串 連連接發光二極體L( X,Y ),故可將施加於電極墊片 -36- 200845423 213 ( X) ,223 ( X)之電壓,比較於第1實施形態減少 ,即,可減少驅動電壓。 另外,LED光源模組1 1R係成爲12個並聯連接各以 3段串聯連接之電路的構成,因此,即使於發光二極體L (X,Y )或其導線W ( Χ,Υ )產生缺陷之情況,其缺陷處 與未做爲串聯連接之發光二極體L(X,Y)之動作係未受 影響。 另外,在LED光源模組1 1R中,如上述,即使由將 導線W配線之情況,而高密度安裝發光二極體L ( X,Y ) 之情況,亦可於發光二極體間保持安裝上必要的距離,另 外,在LED光源模組1 1R中,可縮小導線W2再發光二 極體L ( X,Y)之發光範圍之中,W2重疊部分之面積,而 可得到高光取出效率。 更加地,如根據LED光源模組1 1 R,施加特定電壓 之電極墊片213(1)〜213(6),和電極墊片223(1) 〜223 ( 6 ),則因2個分開配置於發光二極體M ( X,Y ) 之Υ方向正側與負側,故可迴避高電位範圍集中於安裝 基板3 1上之一方側者。 &lt;第4實施形態的變形例&gt; 在本實施形態之中,針對在上述第4實施形態之情況 ,例示將發光二極體L ( Χ5Υ )之姿勢作爲完全相同而配 置之情況。 圖1 3係爲爲了說明有關第4實施形態的變形例之 -37- 200845423 LED光源f旲組llRa之LED晶片配置的圖。 在上述之第4實施形態中,如圖11所: 數之發光二極體L( X,Y)與Y爲偶數之發 Χ,Υ),將η型電極43(Χ,Υ)及ρ型電極 爲相反位置而配置。 對此,在有關本變形例之LED光源模糸I 如圖13所示,將所有的發光二極體L ( X,Y 43 ( Χ,Υ ),配置於Υ方向正側,將Ρ型電 配置於Υ方向負側。 將發光二極體L(X,1)之η型電極43 接地位準。 將發光二極體L ( X,l)之ρ型電極45 光二極體L(X,3)之η型電極43 (X,3)連 將發光二極體L(X,3)之ρ型電極45 光二極體L(X,5)之η型電極43 (X,5)連 將發光二極體L ( Χ,5)之ρ型電極45 於電極墊片 213a(l) ,213a(3) ,213a( ),213a ( 9) ,213a ( 1 1 ) 〇 將發光二極體L(X,2)之n型電極43 接地位準。 將發光二極體L(X,2)之ρ型電極45 光二極體L(X,4)之η型電極43 (X,4)連 將發光二極體L(X,4)之ρ型電極45 光二極體L(X,6)之η型電極43 (X,6)連 毛,以Υ爲奇 光二極體L ( 45 ( Χ,Υ)作 1 1 IRa之中, )之η型電極 極 45 ( Χ,Υ) (X,1 )保持爲 (X,1 ),與發 接。 (Χ,3 ),與發 接。 (X,5 ),連接 5 ) ,213a ( 7 (X,2 )保持爲 (X,2 ),與發 接。 (X?4 ),與發 接。 -38- 200845423 將發光二極體L (Χ,6)之p型電極45 (χ,6),連接 於電極墊片 213a(2) ,213a(4) ,213a(6) ,213a(8 ),2 1 3 a ( 1 0 ) ,2 1 3 a ( 1 2 )。 即使經由有關本變形例之L E D光源模組i i r a,亦得 到與第4實施形態的LED光源模組1 1 R同樣的效果。 &lt;第5實施形態&gt; 在本實施形態之中,係說明作爲發光二極體,使用沿 著爲其發光面側之2維形狀之矩形的對角線,位置有n型 電極與P型電極之構成。 在上述之第4實施形態之中’如圖1 1所示,例示作 爲發光二極體L ( X,Y),使用沿著爲其p側面41 ( X,Y )側之2維形狀之矩形的一方邊,位置有η型電極43 ( Χ,Υ)與Ρ型電極45 (Χ,Υ)之構成情況。 對此,在本實施形態之中,如圖14所示,說明作爲 發光二極體Μ ( Χ,Υ),使用沿著爲其ρ側面341 ( Χ,Υ) 側之2維形狀之矩形的對角線,位置有η型電極3 43 ( Χ,Υ)與Ρ型電極3 4 5 ( Χ,Υ)之構成情況。 有關本實施形態之投影機係除了 LED光源模組之構 成,與第1實施形態之投影機1相同。 以下,說明在本實施形態之投影機所使用之R發光之 LED光源模組3 1 1R,而G發光及B發光之LED光源模組 i i係各自使用G,B發光之發光二極體之情況以外,係因 與LED光源模組3 1 1 R同一構成,故省略說明。 -39- 200845423 如圖14所示,LED光源模組3 1 1R係於個針 裝基板上之Y方向的不同之6個位置,沿著X方 置有6個的發光二極體M ( X,Y )。 針對在配置發光二極體Μ ( Χ,Υ)之Υ方向之 6個位置之中,位於奇數號位置之發光二極體Μ ,Μ ( Χ,3 ) ,Μ ( Χ,5 )之X方向的位置則爲相同丨 另外,位於偶數號位置之發光二極體Μ ( X,: (Χ,4) ,:Μ ( Χ,6)之X方向的位置則爲相同。 更加地,位於偶數號位置之發光二極體Μ () Μ ( Χ,4) ,Μ ( Χ,6)之X方向的位置,係位於在 數號位置之發光二極體Μ(Χ,1) ,Μ(Χ,3) ,Μ 之X方向,作爲鄰接之2個的發光二極體Μ( Χ,Υ 方向的位置之中間位置。 針對在LED光源模組31 1R,Υ爲奇數之發光 Μ ( X,Y)係呈使其p型電極345 ( Χ,Υ),位置於 正側(圖14中上側),使η型電極3 43 ( Χ,Υ), Υ方向負側(圖14中下側)地配置於安裝基板3 1 爲偶數之發光二極體Μ ( Χ,Υ)係呈使其η型電極 Χ,Υ),位置於Υ方向正側(圖14中上側),使 極3 45 ( Χ,Υ ),位置於Υ方向負側(圖14中下側 置於安裝基板3 1上。 另外,發光二極體Μ(Χ,1)之ρ型電極345 係連接於電極墊片323 ( X)。 發光二極體Μ(Χ,2)之η型電極343 (X,2) 對在安 向而配 不同的 (x,l ) 0 I ) ,Μ 【,2), 位於奇 (Χ,5 ) r)之X 二極體 Y方向 位置於 .上,Y ;343 ( P型電 )地配 (x,l ) 係各自 -40- 200845423 保持爲接地位準。 發光二極體M(X,6)之p型電極345 ( X,6 )係連接 於電極墊片313 (X)。 發光二極體M(X,5)之η型電極343 (X,5)係各自 保持爲接地位準。 以下’說明LED光源模組31 1R之發光二極體Μ ( Χ,Υ)間之連接關係。 針對在圖14,將連接於發光二極體Μ ( Χ,Υ)之Ρ型 電極3 45 ( Χ,Υ )之導線,作爲W3 ( Χ,Υ )而表示。 在本實施形態之中,在 Υ方向位於奇數號之位置的 發光二極體Μ ( Χ,Υ )之間,進行3段的串聯連接的同時 ,在Υ方向位於偶數號之位置的發光二極體Μ ( X,Υ )之 間,進行3段的串聯連接。 具體而言,在LED光源模組31 1R之中,在Υ方向位 於奇數號之位置的發光二極體M ( X,1 ) ,M ( X,3 ) ,Μ (X,5 ),進行3段的串聯連接。 另外,在LED光源模組31 1R之中,在Y方向位於偶 數號之位置的發光二極體M(X,2) ,M(X,4) ,M(X,6 ),進行3段的串聯連接。 發光二極體M(X,1)之η型電極343(X,1),和發 光二極體M ( X,3 )之ρ型電極3 45 ( X,3 )則藉由導線 W3 ( X,3 )所連接。 發光二極體M ( X,3 )之η型電極43 ( X,3 ),和發 光二極體M ( X,5 )之ρ型電極45 ( X,5 )則藉由導線W5 -41- 200845423 (X,5 )所連接。 發光二極體M(X,5)之η型電極43 (X,5)則接地 〇 發光二極體Μ ( χ,2 )之η型電極343(又,2)則接地 〇 另外,發光二極體Μ(Χ,2)之Ρ型電極3 45(Χ,2) ,和發光二極體Μ ( χ,4)之η型電極3 43 ( Χ,4)則藉由 導線W3 ( Χ,2)所連接。 另外,發光二極體Μ(Χ,4)之Ρ型電極345(Χ,4) ,和發光二極體Μ ( χ,6)之η型電極3 43 ( Χ,6)則藉由 導線W3 ( Χ,4 )所連接。 發光二極體Μ ( χ,6)之ρ型電極3 45 ( Χ,6)則連接 於電極墊片3 1 3 ( X )。 如以上說明,如根據LED光源模組3 1 1R,如圖14 所示,即使使用沿著爲2維形狀之矩形的對角線,位置有 η型電極343 (X,Y)與ρ型電極345 (X,Y)之發光二極 體Μ ( Χ,Υ )之情況,亦與第4實施形態同樣地,可實現 高密度安裝。 〈第5實施形態的變形例&gt; 在變形例之中,針對在上述第5實施形態之情況,說 明將發光二極體Μ ( X,Υ ),以相同姿勢而配置之情況。 圖1 5係爲爲了說明有關第5實施形態的變形例之 LED光源模組31 IRa之LED晶片配置的圖。 -42- 200845423 在上述之第5實施形態中,如圖14所示,以Υ 數之發光二極體Μ ( Χ,Υ)與Υ爲偶數之發光二極體 Χ,Υ),將η型電極343(Χ,Υ)及ρ型電極345(Χ 作爲相反位置而配置。 對此,在有關本變形例之LED光源模組31 IRa ,如圖15所示,將所有的發光二極體Μ ( X,Y)之 電極343 ( Χ,Υ),配置於Υ方向正側,將ρ型電極 (Χ,Υ)配置於Υ方向負側。 另外,將發光二極體Μ(Χ,1)之η型電極3 43 )保持爲接地位準。 將發光二極體Μ(Χ,1)之ρ型電極345(Χ,1) 發光二極體Μ ( Χ,3 )之η型電極3 43 ( Χ,3 )連接。 將發光二極體Μ ( Χ,3 )之ρ型電極3 45 (乂,3) 發光二極體Μ(Χ,5)之η型電極343 (X,5)連接。 將發光二極體Μ(Χ,5)之ρ型電極345(Χ,5) 連接於電極墊片 3 1 3 a ( 1 ),3 1 3 a ( 3 ) ,3 1 3 a ( 5 3 i 3 a ( 7 ) ,3 1 3 a ( 9 ) ,3 1 3 a ( 1 1 ) 〇 另外,將發光二極體M(X,2)之n型電極343 )保持爲接地位準。 將發光二極體Μ ( X,2)之ρ型電極3 45 ( X,2) 發光二極體M(X,4)之η型電極343 (X,4)連接。 將發光二極體M(X,4)之ρ型電極345 (X,4) 發光二極體M(X,6)之η型電極3 43 (X,6)連接。 將發光二極體Μ ( Χ,6)之ρ型電極345 ( Χ,6) 爲奇 Μ ( ,Υ) 之中 η型 345 (X,1 &gt; 與 ,與 ,係 ), (X,2 ,與 ,與 ,係 -43-In the LED light source module 11R, the light-emitting diodes L (1, Y), L (3, Υ), and 1^(5, ¥) are such that the 11-type electrode 43 (乂, 丫) is located in FIG. The upper middle side (the positive side in the Υ direction) is such that the p-type electrode 45 (Χ, Υ) is located on the lower side (the negative side in the Υ direction) of FIG. 11 and is disposed on the mounting substrate 3 1 and the illuminating of the even columns The diodes L ( 2, Y ) , L ( 4, Y ) , L ( 6, Y ) are such that the p-type electrode 45 ( X, Y ) is located on the upper side (the positive side in the Υ direction) of Fig. 11 so that The n-type electrode 43 (Χ, Υ) is disposed on the lower side (the negative side in the Y direction) of FIG. 11 and is disposed on the mounting substrate 31. Also, in the diagram of the light-emitting diodes L(l,6), L(2,6), L(3,6), L(4,6), L(5,6), L(6,6) On the negative side of the Y direction in 2, six electrode pads 2 1 3 ( 1 ) to 2 1 3 ( 6 ) are arranged. When the LED light source module 1 1 R is driven, a positive potential is applied to the electrode pads 2 1 3 ( 1 ) to 2 1 3 ( 6 ). Also, in the light-emitting diode L (1,1), L ( 2,1 ) , L ( 3,1 ), -32- 200845423 L(4,l) , L(5,1) , L(6, 1) On the positive side of the Y direction in Fig. 11, six electrode pads 223(1) to 223(6) are arranged. When the LED light source module 11R is driven, a positive potential is applied to the electrode pads 223(1) to 223(6). Hereinafter, the connection relationship of the light-emitting diodes L (X, Y) of the LED light source module 11R will be described. In the present embodiment, three light-emitting diodes L (Χ, Υ) at the odd-numbered positions are connected in series, and three light-emitting diodes are arranged in the Υ direction at the even-numbered positions. In the case of the polar body L (Χ, Υ), a three-stage in-line connection is made. In Fig. 11, the light-emitting diode (X, Υ) is connected. The wire of the type electrode 45 (Χ, Υ) is expressed as W2 (Χ, Υ). In the LED light source module 1 1R, three stages of in-line connection are performed in the Υ direction via the LEDs L(X, 1), L(X, 3), L(X, 5) at the odd-numbered positions. . Further, in the Y direction, three-phase in-line connection is performed via the light-emitting diodes L (X, 2), L (X, 4), and L (X, 6) at the even-numbered positions. Here, the Ρ-type electrode 45 ( Χ, Υ ) in the Y direction in the odd-numbered light-emitting diodes (X, Y) is adjacent to the light-emitting diode in the even-numbered positions of the odd-numbered (Χ) , Υ), between the mutually adjacent light-emitting diodes (Χ, Υ), in the other adjacent odd-numbered positions of the light-emitting diodes (Χ, Υ), and the X direction The n-type electrodes 43 of the other light-emitting diodes (Χ, Υ) of the same position are connected by a wire plus -33-200845423. Here, in the gamma direction, the even-numbered light-emitting diodes (the p-type electrodes 45 (Χ, Υ) are adjacent to the light-emitting diodes (Χ, Υ) at the odd-numbered positions of the even number , through the light-emitting diodes L ( Χ, Υ) between the mutually emitting light-emitting diodes, other light-emitting diodes adjacent to the odd-numbered other even positions, and other light-emitting diodes having the same position The n-type electrodes of (Χ, Υ) are connected by wires. That is, the electrode pads 213 (X) and the light-emitting diodes (Χ, 5), and the electrodes 45 (Χ, 5) are connected by wires W2 (Χ, 5) The p-type electrode 45 (Χ, 3) connected to the n-type electrode 43 (Χ, 5) of the light-emitting diode L (Χ, 5) and the diode Μ (Χ, 3) is guided by the X , 3) force to connect. The n-type electrode 43 (Χ, 3) of the light-emitting diode L (X, 3) and the p-type electrode 45 (X, 1) of the diode L (X, 1) are guided by a thief, 1) connection. η, the n-type electrode 43 of the light-emitting diode L (X, 1 ) (X, 1 is connected to the ground line. Further, the electrode pad 223 (X) and the light-emitting diode (X, 2) electrode 45 (X 2), the p-type electrode of the n-type electrode 43 (X, 2) and the diode L (X, 4) of the light-emitting diode L (X, 2) is connected by a wire W2 (X, 2) 45 (X, 4) is connected by the guide box X, 4). The position of the n-type electrode 43 (X, 4), X, Y) of the light-emitting diode L (X, 4) is adjacent to the position X direction 43, by which the 〇 type 发光 and the illuminating { W2 (and the illuminating ^ W2 ( The p-type electrode 4 5 ( X,6 ) of the 〇-type 〇 and illuminating % W2 (and illuminating -34- 200845423 diode L (X,6) is then applied by wire w 2 ( X,1 ) The n-type electrode 43 (X, 6) of the light-emitting diode L (X, 6) is grounded. In the LED light source module 1 1 R, 36 light-emitting diodes L (X, Y) are connected. The connection between the two in the gamma directional position, that is, between the light-emitting diodes L(X, Y) at the odd-numbered position in the Υ direction, and the light-emitting diode at the position of the even number The body L (X, Y) is realized separately, so even if 36 light-emitting diodes L (X, Υ) are closely arranged, it can be used as two light-emitting diodes connected in series. The n-type electrode 43 (χ, γ) of the body L (X, Y) and the p-type electrode 45 (Χ, Υ) have the necessary distance for mounting (the necessary distance for the wire bonding using the capillary). In the LED light source module 1 1 R, as described above, by w 2 (Χ, Υ) In the case of wiring, the wiring between the light-emitting diodes L ( Χ, Υ ) located at the odd-numbered (even number) position in the γ direction is not overlapped, and the odd number is located in the Υ direction (even number) In the case of the light-emitting diode L (Χ, Υ) at the position of the side surface 41 (light-emitting range) of the light-emitting diode L, the light is blocked by the wiring, and the light extraction efficiency can be obtained, and the wire W2 is passed. The connection of (X,1) to W2 (Χ,6) is realized without falling off the substrate (mounting surface), whereby the space for removing the wires on the mounting substrate 3j is eliminated, and 36 light-emitting lights can be further provided. The polar body L (Χ, Υ)' is mounted tightly (closely) on the mounting substrate 31, and can increase the light-emitting area equivalent to the unit area. The following describes an example of the operation of the LED light source module 丨丨r. 200845423 When the LED light source module 11R is powered on, the electrode pads 21 3 ( X) and 223 ( X) are set to a specific potential. Thus, the γ is connected to the electrode pads 2 1 3 ( X ). The direction is located at the odd-numbered position as a three-phase LED L (X) 5) , L ( X, 3 ) , L ( X, 1 ), applying a voltage, and the p side 41 ( X, 5 ) ' 41 ( X, 3 ) , 41 ( X, 1 ) emits light, and The light-emitting diodes L ( X, 2 ) , L ( X, 4 ), L ( X, in the Y direction connected to the electrode pad 223 ( X ) are located at the even number. 6), voltage is applied, and the p sides 41 (X, 2), 41 (X, 4), 41 (X, 6) emit light. Hereinafter, a method of manufacturing the LED light source module 11R will be described. First, on the mounting substrate 31, electrode pads 2 1 3 ( X ), 223 ( X ) are formed. Next, the adhesive material is applied to the position of the light-emitting diode L (X, Y) on the mounting substrate 31. Next, as shown in FIG. 11, the light-emitting diode L (X, Y) is placed on the position of the bonding material on the mounting substrate 3 i, and the light-emitting diode is fixed on the mounting substrate 31. The body L (X, Y), followed by wire bonding using a capillary, as shown in Fig. 11, on the electrode pad 2 1 3 (X), the n-type electrode 43 of the light-emitting diode L (X, Y) A wire W2 (X, Y) is formed between the (X, Y) and p-type electrodes 45 (X, Y) and the electrode pads 223 (X). As described above, in the LED light source module 1 1R, since the light-emitting diodes L (X, Y) are connected in series in three stages, they can be applied to the electrode pads - 36 - 200845423 213 (X), 223 (X The voltage is reduced in comparison with the first embodiment, that is, the driving voltage can be reduced. In addition, the LED light source module 1 1R is configured by connecting 12 circuits connected in series in three stages in parallel, so that even the light-emitting diode L (X, Y) or its wire W (Χ, Υ) is defective. In the case where the defect is not affected by the operation of the light-emitting diode L (X, Y) which is not connected in series. Further, in the LED light source module 11R, as described above, even when the wiring W is wired, the light-emitting diode L (X, Y) is mounted at a high density, and the light-emitting diode can be mounted between the light-emitting diodes. In addition, in the LED light source module 1 1R, the area of the overlapping portion of the W2 re-emitting diode L (X, Y) and the overlapping portion of the W2 can be reduced, and the high light extraction efficiency can be obtained. Further, if the electrode pads 213(1) to 213(6) for applying a specific voltage and the electrode pads 223(1) to 223(6) are applied according to the LED light source module 1 1 R, the two are separately arranged. Since the positive side and the negative side of the light-emitting diode M (X, Y) are in the opposite direction, it is possible to avoid the high potential range from being concentrated on one side of the mounting substrate 31. &lt;Modification of the fourth embodiment&gt; In the case of the fourth embodiment, the case where the postures of the light-emitting diodes L (Χ5Υ) are identical is exemplified. Fig. 13 is a view for explaining the arrangement of LED chips of the LED light source group 11Ra of the -37-200845423 modification of the fourth embodiment. In the fourth embodiment described above, as shown in Fig. 11, the number of light-emitting diodes L (X, Y) and Y is an even number of turns, Υ), the n-type electrode 43 (Χ, Υ) and the p-type The electrodes are arranged in opposite positions. On the other hand, in the LED light source module I according to the present modification, as shown in FIG. 13, all the light-emitting diodes L (X, Y 43 (Χ, Υ) are arranged on the positive side in the Υ direction, and the Ρ type electric power is used. It is placed on the negative side of the Υ direction. The n-type electrode 43 of the light-emitting diode L (X, 1) is grounded. The p-type electrode 45 of the light-emitting diode L (X, l) is light-diode L (X, 3) The n-type electrode 43 (X, 3) connects the n-type electrode 43 (X, 5) of the p-type electrode 45 photodiode L (X, 5) of the light-emitting diode L (X, 3) The p-type electrode 45 of the light-emitting diode L (Χ, 5) is applied to the electrode pads 213a (1), 213a (3), 213a ( ), 213a (9), 213a (1 1 ), and the light-emitting diode L (X, 2) n-type electrode 43 grounding level. The light-emitting diode L (X, 2) p-type electrode 45 photodiode L (X, 4) n-type electrode 43 (X, 4) The n-type electrode 43 (X, 6) of the p-type electrode 45 photodiode L (X, 6) of the light-emitting diode L (X, 4) is connected to the hair, and the Υ is an odd-light diode L (45 ( Χ , Υ) for 1 1 IRa, the n-type electrode pole 45 ( Χ, Υ) (X, 1 ) is kept at (X, 1 ), and is connected (。, 3), and is connected. X, 5), connection 5), 213a (7 (X, 2) Keep it as (X, 2), and send it to (X?4), and send it. -38- 200845423 Connect the p-type electrode 45 (χ, 6) of the light-emitting diode L (Χ, 6) to Electrode pads 213a(2), 213a(4), 213a(6), 213a(8), 2 1 3 a (1 0 ) , 2 1 3 a ( 1 2 ). Even through the LED light source according to the present modification The module iira also has the same effect as the LED light source module 1 1 R of the fourth embodiment. <Fifth Embodiment> In the present embodiment, a description will be given as a light-emitting diode. The rectangular diagonal line of the two-dimensional shape on the light-emitting surface side has a configuration of an n-type electrode and a P-type electrode. In the fourth embodiment described above, as shown in FIG. 11, an example of a light-emitting diode is illustrated. L (X, Y) uses one side of a rectangle having a two-dimensional shape on the side of the p-side 41 (X, Y) side, and has an n-type electrode 43 (Χ, Υ) and a Ρ-type electrode 45 (Χ, In the present embodiment, as shown in FIG. 14, the light-emitting diode Μ (Χ, Υ) is used along the side of the ρ side surface 341 (Χ, Υ). Diagonal line of a 2-dimensional shape rectangle, position η electrode 3 43 (Χ, Υ) and Ρ type electrodes 3 4 5 (Χ, Υ) of the case. The projector of the present embodiment is the same as the projector 1 of the first embodiment except for the configuration of the LED light source module. Hereinafter, the case of the LED light source module 3 1 1R for R illumination used in the projector of the present embodiment, and the LED light source module ii for G illumination and B illumination will be described. Other than that, since it is configured in the same manner as the LED light source module 3 1 1 R, description thereof will be omitted. -39- 200845423 As shown in Fig. 14, the LED light source module 3 1 1R is placed at six different positions in the Y direction on the pin substrate, and six LEDs M are placed along the X side (X , Y). For the six positions in the direction in which the light-emitting diodes Μ (Χ, Υ) are arranged, the X-direction of the light-emitting diodes Μ, Μ (Χ, 3), Μ (Χ, 5) at the odd-numbered positions The position is the same. In addition, the position of the light-emitting diode Μ (X,: (Χ,4) , :Μ ( Χ,6) in the even-numbered position is the same in the X direction. More, the even number is The position of the light-emitting diode Μ () Μ ( Χ, 4), Μ ( Χ, 6) in the X direction, is located in the number of positions of the light-emitting diode Μ (Χ, 1), Μ (Χ, 3), the X direction of Μ, as the two adjacent light-emitting diodes Μ (Χ, the middle position of the position in the Υ direction. For the LED light source module 31 1R, Υ is an odd-numbered illuminating Μ (X, Y) The p-type electrode 345 (Χ, Υ) is placed on the positive side (upper side in FIG. 14), and the n-type electrode 3 43 (Χ, Υ) is disposed on the negative side (the lower side in FIG. 14). The light-emitting diode Μ (Χ, Υ) having an even number on the mounting substrate 3 1 is such that its n-type electrode Χ, Υ) is located on the positive side in the Υ direction (upper side in FIG. 14), so that the pole 3 45 (Χ, Υ ), position on the negative side of the Υ direction (lower in Figure 14 The side is placed on the mounting substrate 31. Further, the p-type electrode 345 of the light-emitting diode Χ (Χ, 1) is connected to the electrode pad 323 (X). The n-type of the light-emitting diode Μ (Χ, 2) The electrode 343 (X, 2) is located in the Y-direction of the X-dipole in the direction of the (X, l) 0 I ) , Μ [, 2), located in the odd (Χ, 5) r) , Y; 343 (P-type electric) ground (x, l) are each -40- 200845423 to maintain the grounding level. The p-type electrode 345 (X, 6) of the light-emitting diode M (X, 6) is connected to the electrode pad 313 (X). The n-type electrodes 343 (X, 5) of the light-emitting diodes M (X, 5) are each maintained at the ground level. Hereinafter, the connection relationship between the light-emitting diodes Χ (Χ, Υ) of the LED light source module 31 1R will be described. In Fig. 14, the wire of the Ρ-type electrode 3 45 (Χ, Υ) connected to the light-emitting diode Μ (Χ, Υ) is shown as W3 (Χ, Υ). In the present embodiment, three-stage series connection is performed between the light-emitting diodes Μ (Χ, Υ) at the odd-numbered position in the x direction, and the light-emitting diodes are located at the even-numbered positions in the x-direction. Between the body (X, Υ), a three-stage series connection is performed. Specifically, among the LED light source modules 31 1R, the light-emitting diodes M (X, 1 ), M (X, 3), Μ (X, 5) at the odd-numbered position in the x direction are performed 3 The series connection of segments. Further, among the LED light source modules 31 1R, the light-emitting diodes M (X, 2), M (X, 4), M (X, 6) located at the even-numbered positions in the Y direction are subjected to three stages. Connect in series. The n-type electrode 343 (X, 1) of the light-emitting diode M (X, 1), and the p-type electrode 3 45 (X, 3) of the light-emitting diode M (X, 3) are connected by a wire W3 (X) , 3) connected. The n-type electrode 43 (X, 3) of the light-emitting diode M (X, 3), and the p-type electrode 45 (X, 5) of the light-emitting diode M (X, 5) are connected by a wire W5 - 41- 200845423 (X, 5) is connected. The n-type electrode 43 (X, 5) of the light-emitting diode M (X, 5) is grounded, the n-type electrode 343 of the light-emitting diode Μ (χ, 2) (also, 2) is grounded, and the light is emitted. The Ρ-type electrode 3 45 (Χ, 2) of the polar body Χ (Χ, 2), and the n-type electrode 3 43 ( Χ, 4) of the light-emitting diode Μ (χ, 4) are connected by the wire W3 (Χ, 2) Connected. In addition, the Ρ-type electrode 345 (Χ, 4) of the light-emitting diode Μ (Χ, 4) and the n-type electrode 3 43 (Χ, 6) of the light-emitting diode Μ (χ, 6) are connected by the wire W3 ( Χ, 4 ) is connected. The p-type electrode 3 45 ( Χ, 6) of the light-emitting diode Μ (χ, 6) is connected to the electrode pad 3 1 3 ( X ). As described above, according to the LED light source module 3 1 1R, as shown in FIG. 14, even if a diagonal line along a rectangular shape of a two-dimensional shape is used, the n-type electrode 343 (X, Y) and the p-type electrode are disposed at positions. In the case of the light-emitting diode Μ ( Χ, Υ ) of 345 (X, Y), as in the fourth embodiment, high-density mounting can be realized. <Modification of the fifth embodiment> In the case of the fifth embodiment, the case where the light-emitting diodes X (X, Υ) are arranged in the same posture will be described. Fig. 15 is a view for explaining the arrangement of LED chips of the LED light source module 31 IRa according to a modification of the fifth embodiment. -42- 200845423 In the fifth embodiment described above, as shown in Fig. 14, the light-emitting diodes Χ (Χ, Υ) and Υ are even-numbered light-emitting diodes Υ, η) The electrode 343 (Χ, Υ) and the p-type electrode 345 (Χ are arranged as opposite positions. In this regard, in the LED light source module 31 IRa according to the present modification, as shown in FIG. 15, all the light-emitting diodes are arranged. The electrode 343 (Χ, Υ) of (X, Y) is placed on the positive side in the Υ direction, and the ρ-type electrode (Χ, Υ) is placed on the negative side in the Υ direction. In addition, the light-emitting diode Μ (Χ, 1) The n-type electrode 3 43 ) is maintained at the ground level. The n-type electrode 3 43 (Χ, 3 ) of the light-emitting diode 345 (Χ, 1) of the light-emitting diode 345 (Χ, 3) is connected. The n-type electrode 343 (X, 5) of the light-emitting diode Μ (Χ, 3) of the p-type electrode 3 45 (乂, 3) of the light-emitting diode Μ (Χ, 5) is connected. Connecting the p-type electrode 345 (Χ, 5) of the light-emitting diode Μ (Χ, 5) to the electrode pad 3 1 3 a ( 1 ), 3 1 3 a ( 3 ) , 3 1 3 a ( 5 3 i 3 a ( 7 ) , 3 1 3 a ( 9 ) , 3 1 3 a ( 1 1 ) 〇 In addition, the n-type electrode 343 of the light-emitting diode M (X, 2) is maintained at the ground level. The n-type electrode 343 (X, 4) of the light-emitting diode 3 (X, 2) of the p-type electrode 3 45 (X, 2) of the light-emitting diode M (X, 4) is connected. The n-type electrode 3 43 (X, 6) of the p-type electrode 345 (X, 4) of the light-emitting diode M (X, 4) is connected to the n-type electrode 3 43 (X, 6). The p-type electrode 345 ( Χ, 6) of the light-emitting diode Μ ( Χ, 6) is Μ-type 345 (X, 1 &gt; and, and, system), (X, 2) , and, and, Department-43-

200845423 連接於電極墊片3 1 3 a ( 2 ) ,3 1 3 a ( 4 ) ,3 3 13a ( 8 ) &gt; 3 1 3 a ( 1 〇 ) ? 313a ( 12)。 即使經由有關本變形例之LED光源模組 得到與第2實施形態的LED光源模組3 1 1 R同 &lt;第6實施形態&gt; 在上述之第4及第5實施型態之中,係倒 ,G,B進行發光之3個LED光源模組之情況 實施型態中,係例示使用1個的LED光源模 ,G,B發光的情況。 圖1 6係爲有關本發明之第6實施形態白1 之全體構成圖。 圖16所示之投影機501係與第1及第2 樣地,爲1晶片DPL (登錄商標)方式,使、 投影因應畫像資料之畫像於屏幕2 1。 如圖16所示,投影機5 01係例如具有1 源模組511,分批積分器502,DMD17及投影 針對在圖16,DMD17,投影透鏡19及| 與在第1實施形態所說明之構成相同。 LED光源模組5 1 1係以後述之特定配置市 R,G,B之複數LED。 分批積分器502係將從LED光源模組5 設分佈,做爲均一化而射出於DMD17。 以下,說明LED光源模組511之LED晶 13a ( 6), 3 1 IRa,亦 樣的效果。 1示各自將R 4,但,在本 組而進行R J投影機5 0 1 實施形態同 用 DMD17, 個的LED光 透鏡1 9。 季幕21係爲 ί高密度安裝 1 1的光之照 片配置。 -44- 200845423 圖1 7係爲爲了說明圖1 6所示之L E D光源模組5 1 1 之LED晶片配置的圖。 如圖17所示,LED光源模組51 1係於安裝基板上之 X方向,於奇數號且Y方向,配置R發光之發光二極體R (X5Y)於第奇數號的位置。 另外,在安裝基板上之X方向,於偶數號且Υ方向 ,配置Β發光之發光二極體Β(Χ,Υ)於第奇數號的位置 〇 另外,如圖17所示,於安裝基板上之Υ方向,配置 G發光之發光二極體G ( Χ,Υ)於第偶數號的位置。 發光二極體R(X,Y) ,Β(Χ,Υ)係使η型電極43( Χ,Υ ),位置於Υ方向正側,使ρ型電極45 ( Χ,Υ ),位 置於Υ方向負側。 發光二極體G(X,Y)係使ρ型電極45(Χ,Υ),位 置於Υ方向正側,使η型電極43 ( Χ,Υ),位置於Υ方 向負側。 針對在本實施型態,發光二極體R ( X,Y ) ,G ( Χ,Υ ),Β ( X,Y )係從其內部構成等之差異,外形形狀•尺 寸則有多少不同,但,該差異係爲本發明所稱之[外形略 相同]之範圍內。 如圖1 7所示,LED光源模組5 1 1係R發光之發光二 極體R ( X,1 )之η型電極43 ( X,1 )則接地。 發光二極體R(X,1)之ρ型電極45 (X,l)則藉由導 線而連接於發光二極體R ( X,3 )之η型電極43 ( X,3 )。 -45- 200845423 發光二極體R ( Χ,3 )之p型電極45 ( Χ,3 )則藉由導 線而連接於發光二極體R ( X,5 )之η型電極43 ( X,5 )。 發光二極體R ( X,5)之p型電極45 ( X,5)則藉由導 線而連接於施加有特定電位之電極墊片5 1 3 ( 1 ) ,5 1 3 ( 3 ) ,5 1 3 ( 5 ) 〇 另外,如圖17所示,LED光源模組5 1 1係B發光之 發光二極體B ( X,1 )之η型電極43 ( X,1 )則接地。 發光二極體B(X,1)之p型電極45(X,1)則藉由導 線而連接於發光二極體B ( X,3 )之η型電極43 ( χ,3 )。 發光二極體B ( Χ,3 )之ρ型電極45 ( Χ,3 )則藉由導 線而連接於發光二極體B ( Χ,5 )之η型電極43 ( χ,5 )。 發光二極體B ( Χ,5 )之ρ型電極45 ( Χ,5 )則藉由導 線而連接於施加有特定電位之電極墊片5 1 3 ( 2 ),5丨3 ( 4) ,5 1 3 ( 6 ) ° 另外,如圖17所示,LED光源模組5 1 1係G發光之 發光二極體G ( X,2)之ρ型電極45 ( X,2)則藉由導線而 連接於施加有特定電位之電極墊片523 ( 1 )〜523 ( 6 ) 〇 發光二極體G ( X,2 )之η型電極43 ( X,2 ),則藉由 導線而連接於發光二極體G ( X,4)之ρ型電極45 ( χ,4) 〇 發光二極體G ( Χ,4 )之η型電極43 ( Χ,4 ),則藉由 導線而連接於發光二極體G ( Χ,6)之ρ型電極45 ( χ,6) -46- 200845423 發光二極體G(X,6)之η型電極43 (X,6)則接 在LED光源模組5 1 1之中,如圖17所示,由配 光二極體 R ( X,Y) ,G ( Χ,Υ) ,Β ( Χ,Υ)之情況, 發光範圍內,略均等地配置R,G,B之各發光位置。 在LED光源模組51丨之中,由將發光輸出爲小 發光之發光二極體G( X,Y )之數量,作爲發光二極 (X,Y ) ,Β ( Χ,γ )的2倍之情況,可將R,G,Β 發光輸出作爲略相同。 在LED光源模組51 1之中,由串聯連接同一發 發光二極體R ( X,Y) ,G ( Χ,Υ) ,Β ( Χ,Υ)之情況 將適合各色的發光之電壓,施加在發光二極體R(X ,G ( Χ,Υ) ,Β ( Χ,Υ) 〇 另外,在LED光源模組5 1 1之中,如圖1 7所示 配置發光二極體R ( X,Y ) ,G ( X,Y ) ,B ( X5Y )之 ,與第1及第2實施型態同樣地,可於做爲串聯連接 個發光二極體之η型電極43 ( Χ,Υ)與ρ型電極45 ( )之間,保持安裝上必要的距離者,另外5在LED 模組5 1 1中,係如上述,由將導線配線之情況,在 向位於奇數號之位置的發光二極體之間的配線則未重 ,在Y方向位於偶數號之位置的發光二極體之發光 之情況,而迴避經由配線而遮蔽光的情況,進而可得 光取出效率者。 另外,在LED光源模組51 1之中,將經由導線 接,未脫落於基板(安裝面)而實現,經由此,成爲 地。 置發 可於 之G 體R 間的 光之 ,可 ,Y) ,由 情況 之2 ;Χ5Υ 光源 γ方 疊於 範圍 到局 之連 無須 -47- 200845423 於安裝基板上除去導線的空間,進而可將36個的發光二 極體,緊密(接近)地安裝於安裝基板上,可加大相當於 單位面積之發光面積。 然而,作爲本發明之實施型態的變形例,例如如圖 1 8所示,亦可使用電極墊片5 3 9 ( 1 )〜5 3 9 ( 6 ),針對 在連接列之一端部,連接圖1 1所示之發光二極體L ( X,1 )之η型電極43 (X,l)與發光二極體L(X,2)之p型電 極45 ( X,2 ),由此,串聯連接6段之發光二極體L ( X,Y)。 &lt;第7實施形態&gt; 圖19係爲有關本發明之第7實施型態之LED光源模 組601之外觀圖,圖20係爲將圖19所示之LED光源模 組6 0 1,從側面方向而視的圖,圖2 1係爲將圖1 9所示之 LED光源模組601,從平面方向而視的圖。 如圖19所示,在LED光源模組601之中,並非導線 連接發光二極體L ( X,Y )間,而由連接發光二極體L ( Χ,Υ )之電極情況,使亮度提升,此時,發光二極體L ( Χ,Υ )係在最低亦成爲5個串聯連接,但將其5串聯分, 作爲1組之發光二極體群,並聯地複數配置此,另外,由 穿過導電於發光二極體群之間的情況,減少串聯數,降低 必要電壓,且高密度地安裝複數之發光二極體L ( Χ,Υ ) 〇 更加地,如圖2 0所示,經由通過作爲層積之發光二 -48- 200845423 極體L· ( Χ,Υ )間的情況,可做爲導線的高度較發光二極 體L ( X,Y )之最上部爲低之位置者,因此,可更接近配 置透鏡等之次光學系。 LED光源模組6()1係10個的發光二極體群,於行及 列方向’以特定的圖案而配置於安裝基板上所構成。 各發光二極體群係各自串聯地連接5個的發光二極體 L ( 1,Y)〜L ( 5,Y)所構成。 艮Ρ,LED光源模組601係如圖21所示,以5串聯10 並聯,配置及連接發光二極體L( X,Y)。 偶數行之發光二極體群則對於奇數行之發光二極體群 而言,偏移1個之發光二極體群之列方向的長度以上所配 置。 各發光二極體群係奇數列之發光二極體群L(1,Y) ,(3,Y) , ( 5,Υ )與偶數列之發光二極體群L(2,Y) ,(4,Y )則以使表面的一部分對向的姿勢,連接奇數列 之發光二極體L ( Χ,Υ)之η型電極及ρ型電極,和偶數 列之發光二極體L( Χ,Υ)之η型電極及ρ型電極。 第奇數行之發光二極體L ( 1,Υ)〜L ( 5,Υ)之連接 關係係成爲如以下。 對於發光二極體L ( 1,Υ)之η型電極43 ( 1,Υ),係 連接導線W ( 0,Υ),而導線W ( 0,Υ)係做爲接地,發光 二極體L ( 1,Υ)之ρ型電極45 ( 1,Υ)係以與發光二極體 L ( 2,Υ)之ρ型電極45 ( 2,Υ)對向的狀態所連接,發光 二極體L(2,Y)之ρ型電極45(2,Υ)係以與發光二極體 -49-200845423 is connected to the electrode pad 3 1 3 a ( 2 ) , 3 1 3 a ( 4 ) , 3 3 13a ( 8 ) &gt; 3 1 3 a ( 1 〇 ) 313a ( 12). Even in the LED light source module according to the present modification, the LED light source module 3 1 1 R is obtained in the same manner as in the sixth embodiment. In the case of the three LED light source modules in which G and B emit light, the case where one LED light source mode is used and G and B emit light is exemplified. Fig. 16 is a view showing the overall configuration of a white embodiment 1 according to the sixth embodiment of the present invention. The projector 501 shown in Fig. 16 is a wafer DPL (registered trademark) system in the first and second samples, and a projection image corresponding to the image data is projected on the screen 21. As shown in FIG. 16, the projector 511 has, for example, a source module 511, a batch integrator 502, a DMD 17, and a projection for FIG. 16, the DMD 17, the projection lens 19, and | and the configuration described in the first embodiment. the same. The LED light source module 5 1 1 is a plurality of LEDs of a specific configuration city R, G, and B described later. The batch integrator 502 is distributed from the LED light source module 5 and is uniformized to be emitted from the DMD 17. Hereinafter, the effects of the LED crystals 13a (6) and 3 1 IRa of the LED light source module 511 will be described. 1 shows that each of R 4 is used, but in this group, the R J projector 5 0 1 is used in the same manner as the DMD 17, and the LED optical lens 19 is used. The season curtain 21 is a high-density installation of 1 1 light photo configuration. -44- 200845423 Figure 1 is a diagram for explaining the LED wafer configuration of the L E D light source module 5 1 1 shown in Figure 16. As shown in Fig. 17, the LED light source module 51 1 is placed in the X direction on the mounting substrate, and the R-emitting light-emitting diode R (X5Y) is placed at the odd-numbered position in the odd-numbered and Y-directions. Further, in the X direction on the mounting substrate, the light-emitting diodes Χ (Χ, Υ) are disposed at the odd-numbered positions in the even-numbered and Υ directions, and, as shown in FIG. 17, on the mounting substrate. In the direction of the ,, the position of the even-numbered light-emitting diode G (Χ, Υ) is arranged. The light-emitting diodes R(X, Y) and Β(Χ, Υ) are such that the n-type electrode 43 (Χ, Υ) is positioned on the positive side in the Υ direction, so that the p-type electrode 45 (Χ, Υ) is positioned at Υ The negative side of the direction. In the light-emitting diode G (X, Y), the p-type electrode 45 (Χ, Υ) is placed on the positive side in the Υ direction, and the n-type electrode 43 (Χ, Υ) is placed on the negative side in the Υ direction. In the present embodiment, the difference in shape, size, and size of the light-emitting diodes R ( X, Y ), G ( Χ, Υ ), and Β ( X, Y ) are different from each other, but This difference is within the scope of the invention [slightly identical in appearance]. As shown in Fig. 17, the n-type electrode 43 (X, 1) of the light-emitting diode R (X, 1) of the LED light source module 5 1 1 is grounded. The p-type electrode 45 (X, l) of the light-emitting diode R (X, 1) is connected to the n-type electrode 43 (X, 3) of the light-emitting diode R (X, 3) by a wire. -45- 200845423 The p-type electrode 45 ( Χ , 3 ) of the light-emitting diode R ( Χ , 3 ) is connected to the n-type electrode 43 of the light-emitting diode R ( X, 5 ) by a wire ( X, 5 ). The p-type electrode 45 (X, 5) of the light-emitting diode R (X, 5) is connected to the electrode pad 5 1 3 ( 1 ), 5 1 3 ( 3 ), 5 to which a specific potential is applied by a wire. 1 3 ( 5 ) 〇 In addition, as shown in FIG. 17, the n-type electrode 43 (X, 1 ) of the light-emitting diode B (X, 1) in which the LED light source module 5 1 1 is B is grounded. The p-type electrode 45 (X, 1) of the light-emitting diode B (X, 1) is connected to the n-type electrode 43 (?, 3) of the light-emitting diode B (X, 3) by a wire. The p-type electrode 45 (?, 3) of the light-emitting diode B (?, 3) is connected to the n-type electrode 43 (?, 5) of the light-emitting diode B (?, 5) by a wire. The p-type electrode 45 ( Χ , 5 ) of the light-emitting diode B ( Χ , 5 ) is connected to the electrode pad 5 1 3 ( 2 ), 5 丨 3 ( 4 ) , 5 to which a specific potential is applied by a wire. 1 3 ( 6 ) ° In addition, as shown in FIG. 17, the LED light source module 5 1 1 is a G-emitting light-emitting diode G (X, 2), and the p-type electrode 45 (X, 2) is connected by a wire. The n-type electrode 43 (X, 2) connected to the electrode pad 523 (1) to 523 (6) to which the specific potential is applied is connected to the light-emitting diode by a wire The p-type electrode 45 of the polar body G (X, 4) ( (, 4) The n-type electrode 43 (Χ, 4) of the light-emitting diode G (Χ, 4) is connected to the light-emitting diode by a wire The p-type electrode 45 of the body G (Χ, 6) ( (, 6) -46- 200845423 The n-type electrode 43 (X, 6) of the light-emitting diode G (X, 6) is connected to the LED light source module 5 1 In the case of 1, as shown in Fig. 17, in the case of the light distribution diodes R (X, Y), G (Χ, Υ), Β (Χ, Υ), R, G are arranged slightly evenly within the light-emitting range. Each of the luminous positions of B. Among the LED light source modules 51A, the number of the light-emitting diodes G(X, Y) which output the light emission to small light is twice that of the light-emitting diodes (X, Y) and Β (Χ, γ). In the case, the R, G, and 发光 illuminating outputs can be made slightly the same. In the LED light source module 51 1 , when the same light-emitting diodes R ( X, Y), G ( Χ, Υ), Β ( Χ, Υ) are connected in series, a voltage suitable for the light emission of each color is applied. In the light-emitting diode R (X , G ( Χ, Υ), Β ( Χ, Υ) 〇 In addition, among the LED light source module 5 1 1 , the light-emitting diode R (X) is arranged as shown in FIG. , Y ) , G ( X, Y ) , and B ( X5Y ) can be used as the n-type electrode 43 (Χ, Υ) in which a plurality of light-emitting diodes are connected in series as in the first and second embodiments. Between the p-type electrode 45 ( ), the necessary distance is maintained, and the other 5 in the LED module 5 1 1 is as described above, and the wiring is wired to the position at the odd number. The wiring between the polar bodies is not heavy, and the light-emitting diodes located at the even-numbered positions in the Y direction are illuminated, and the light is blocked by the wiring, and the light extraction efficiency can be obtained. Among the light source modules 51 1 , the light source module 51 1 is connected to the substrate (mounting surface) without being detached from the substrate, and is thereby grounded. The light between the G bodies R can be emitted. , can, Y), by the situation 2; Χ 5 Υ the light source γ square in the range to the end of the connection does not need -47- 200845423 remove the space of the wire on the mounting substrate, and thus the 36 light-emitting diodes, close (close It is mounted on the mounting substrate to increase the light-emitting area equivalent to the unit area. However, as a modification of the embodiment of the present invention, for example, as shown in FIG. 18, electrode pads 5 3 9 ( 1 ) to 5 3 9 ( 6 ) may be used for connection at one end of the connection column. An n-type electrode 43 (X, 1) of the light-emitting diode L (X, 1) and a p-type electrode 45 (X, 2) of the light-emitting diode L (X, 2), thereby The six-segment LED L (X, Y) is connected in series. &lt;Fourth Embodiment&gt; Fig. 19 is an external view of an LED light source module 601 according to a seventh embodiment of the present invention, and Fig. 20 is an illustration of the LED light source module 610 shown in Fig. 19. FIG. 21 is a view of the LED light source module 601 shown in FIG. 19 as viewed from the plane direction. As shown in FIG. 19, in the LED light source module 601, not the wires are connected between the light-emitting diodes L (X, Y), and the electrodes connected to the light-emitting diodes L (Χ, Υ) improve the brightness. In this case, the light-emitting diodes L ( Χ, Υ ) are connected in series at a minimum of five, but they are connected in series as a group of light-emitting diode groups, which are arranged in parallel in plural, and Through the conduction between the groups of the light-emitting diodes, the number of series is reduced, the necessary voltage is lowered, and a plurality of light-emitting diodes L (Χ, Υ) 安装 are mounted at a high density, as shown in FIG. By passing through the illuminating two-48-200845423 polar body L·(Χ,Υ) as a layer, it can be used as the position where the height of the wire is lower than the uppermost portion of the light-emitting diode L (X, Y). Therefore, the secondary optical system in which a lens or the like is disposed can be closer. The LED light source module 6()1 is composed of ten light-emitting diode groups arranged in a row and column direction in a specific pattern on a mounting substrate. Each of the light-emitting diode groups is configured by connecting five light-emitting diodes L (1, Y) to L (5, Y) in series. LED, the LED light source module 601 is shown in FIG. 21, and is connected in series with 5 in series and connected to the light-emitting diode L (X, Y). In the even-numbered rows of the light-emitting diode groups, the even-numbered rows of the light-emitting diode groups are arranged such that the length of one of the light-emitting diode groups is shifted. Each of the light-emitting diode groups is an array of light-emitting diode groups L(1, Y), (3, Y), (5, Υ) and even-numbered columns of light-emitting diodes L(2, Y), 4, Y) is an n-type electrode and a p-type electrode of an odd-numbered column of light-emitting diodes L (Χ, Υ), and an even-numbered column of light-emitting diodes L ((, in a posture in which a part of the surface is opposed to each other). η) n-type electrode and p-type electrode. The connection relationship of the light-emitting diodes L (1, Υ) to L (5, Υ) of the odd-numbered rows is as follows. For the n-type electrode 43 (1, Υ) of the light-emitting diode L (1, Υ), the wire W (0, Υ) is connected, and the wire W (0, Υ) is used as the ground, the light-emitting diode L The p-type electrode 45 (1, Υ) of (1, Υ) is connected to the p-type electrode 45 (2, Υ) of the light-emitting diode L (2, Υ), and the light-emitting diode L (2, Y) ρ-type electrode 45 (2, Υ) is used with the light-emitting diode -49-

200845423 L(3,Y)之η型電極43(3,Υ)對向的 二極體L (3, Υ)之Ρ型電極45(3, Υ) L(4,Y)之η型電極43(4,Υ)對向的 二極體L ( 4,Υ)之Ρ型電極45 ( 4,Υ) L(5,Y)之η型電極43(5,Υ)對向的 發光二極體L(5,Y)之ρ型電極45(ί W(5,Y),而導線W(5,Y)係通過第 體群之間,延伸於列方向’連接於正電 第偶數行之發光二極體L ( 1,Y) 關係係成爲如以下° 對於發光二極體L ( 1,γ )之Ρ型獨 連接導線W ( ο,γ) ’而導線W ( 0,Y) 發光二極體群之間’延伸於列方向’連 二極體L(1,Y)之η型電極43 (15Υ) L(2,Y)之ρ型電極45(2,Υ)對向的 二極體L(2,Y)之η型電極43 (2,Υ) L(3,Y)之ρ型電極45(3,Υ)對向的 極體L(3,Y)之η型電極43(3,Υ)領 (4,Υ)之ρ型電極45(4, Υ)對向的 二極體L(4,Y)之η型電極43 (4,Υ) L(5,Y)之ρ型電極45(5,Υ)對向序 發光二極體L(5,Y)之η型電極43 ( W ( 5,Υ)。 如上述,在LED光源模組601二 狀態所連接,發光 係以與發光二極體 狀態所連接,發光 係以與發光二極體 狀態所連接,對於 ,Y),係連接導線 偶數行之發光二極 極。 〜L ( 5,Υ )之連接 ΐ 極 45 ( 1,Υ),係 係通過第奇數行之 接於正電極,發光 係以與發光二極體 狀態所連接,發光 係以與發光二極體 狀態所連接發光二 :以與發光二極體L 狀態所連接,發光 係以與發光二極體 狀態所連接,對於 5,Υ),係連接導線 中,將第奇數行之 -50- 200845423 發光二極體之線W(5,Y)通過第偶數行之發光二極體群 之間,延伸於列方向地配置,將第偶數行之發光二極體之 線W ( 5,Y)通過第偶數行之發光二極體群之間’延伸於 列方向地配置。 另外,在LED光源模組601之中,做爲導線的高度 較發光二極體L ( Χ,Υ)之最上部爲低之位置。 由此,即使高密度地配置發光二極體L ( Χ,Υ )之情 況,亦可防止從發光二極體L ( X,Υ )朝向光取出方向所 射出的光,經由導線所遮光的情況。 另外,可將透鏡等之次光學系,較以往更接近於發光 二極體L ( Χ,Υ )之發光面而配置,另外,成爲可作爲組 裝的低背化。 &lt;第8實施型態&gt; 圖22係爲爲了說明有關本發明之實施型態的LED光 源模組70 1之平面側的構成圖。 如圖22所示,在LED光源模組701之中,具有串聯 連接各3個之發光二極體L(X,Y)所構成之18個的發光 二極體群。 在此,6個的偶數行之發光二極體群則對於6個的奇 數行之發光二極體群而言,於列方向,偏移1個之發光二 極體群之列方向的長度以上所配置。 另外,對於上述6個的偶數行之發光二極體群而言’ 於圖22中右側,以與前述6個的奇數行之發光二極體群 -51 - 200845423 相同配置,配置6個的奇數行之發光二極體群。 各發光二極體群係串聯地連接各3個之發光二極體L (1,Y)〜L(3,Y)或發光二極體L(4,Y)〜L(6,Y)所 構成200845423 L (3, Y) n-type electrode 43 (3, Υ) opposite diode L (3, Υ) Ρ-type electrode 45 (3, Υ) L (4, Y) n-type electrode 43 (4, Υ) the opposite electrode L (4, Υ) of the 电极-type electrode 45 (4, Υ) L (5, Y) n-type electrode 43 (5, Υ) opposite light-emitting diode L (5, Y) p-type electrode 45 (ί W (5, Y), and the wire W (5, Y) is connected between the first body group and the column direction) The diode L (1, Y) relationship is as follows: for the light-emitting diode L (1, γ), the 独-type connection wire W ( ο, γ) ' and the wire W ( 0, Y) light-emitting diode Between the body groups 'extending the column direction' with the n-type electrode 43 (15Υ) L (2, Y) of the diode L (2, Y), the p-type electrode 45 (2, Υ) opposite diode The n-type electrode 43 of the L (2, Y) n-type electrode 43 (2, Υ) L (3, Y) p-type electrode 45 (3, Υ) opposite to the polar body L (3, Y) , Υ) ρ-type electrode 45 (4, Υ) p-type diode L (4, Y) n-type electrode 43 (4, Υ) L (5, Y) p-type The electrode 45 (5, Υ) is opposite to the n-type electrode 43 (W (5, Υ) of the sequential light-emitting diode L (5, Y). As described above, in the LED light source module 601 The state is connected, the light-emitting system is connected to the state of the light-emitting diode, and the light-emitting system is connected to the state of the light-emitting diode, and Y) is connected to the light-emitting diode of the even-numbered rows of wires. ~L (5,Υ) The connection pole 45 45 (1, Υ), the system is connected to the positive electrode through the odd-numbered row, the light-emitting system is connected to the state of the light-emitting diode, and the light-emitting system is connected to the state of the light-emitting diode. Connected to the L state of the light-emitting diode, the light-emitting system is connected to the state of the light-emitting diode, for 5, Υ), in the connecting wire, the line W of the 50-200845423 light-emitting diode of the odd-numbered row ( 5, Y) passing through the even-numbered rows of light-emitting diode groups, extending in the column direction, and passing the even-numbered rows of light-emitting diode lines W ( 5, Y) through the even-numbered rows of light-emitting diodes The group is configured to extend in the direction of the column. Further, in the LED light source module 601, the height of the wire is lower than the uppermost portion of the light-emitting diode L (Χ, Υ). Therefore, even when the light-emitting diodes L (Χ, Υ) are disposed at a high density, it is possible to prevent light emitted from the light-emitting diodes L (X, Υ) toward the light extraction direction from being blocked by the wires. . Further, the secondary optical system such as a lens can be disposed closer to the light-emitting surface of the light-emitting diode L (Χ, Υ) than in the related art, and can be made into a low-profile assembly. &lt;Eighth Embodiment&gt; Fig. 22 is a configuration diagram for explaining the plane side of the LED light source module 70 1 according to the embodiment of the present invention. As shown in Fig. 22, in the LED light source module 701, there are 18 light-emitting diode groups each of which is formed by connecting three light-emitting diodes L (X, Y) in series. Here, in the six even-numbered rows of the light-emitting diode group, the length of the light-emitting diode group of the six odd-numbered rows is shifted by one or more of the lengths of the light-emitting diode group in the column direction. Configured. Further, for the six even-numbered rows of the light-emitting diode groups, the right side of FIG. 22 is arranged in the same manner as the six odd-numbered rows of the light-emitting diode groups -51 - 200845423, and six odd numbers are arranged. A group of light-emitting diodes. Each of the light-emitting diode groups is connected in series to each of the three light-emitting diodes L (1, Y) to L (3, Y) or the light-emitting diodes L (4, Y) to L (6, Y). Composition

各發光二極體群L(1,Y)〜L(3,Y)係奇數列之發 光二極體L(1,Y) ,L(3,Y)與偶數列之發光二極體L (2,Y )則以使表面之一部分對向的姿勢,連接發光二極 體L(1,Y)之p型電極45(1,Y)與發光二極體l(2,Y )之η型電極43(2, Y),再連接發光二極體L(2,Y)之 P型電極45(2,Y)與發光二極體L(3,Y)之η型電極43 (3,Υ)。 另外,各發光二極體群L ( 4,Υ )〜L ( 6,Υ )係奇數 列之發光二極體L ( 3,Y) ,L ( 5,Υ)與偶數列之發光二 極體L ( 4,Υ )則以使表面之一部分對向的姿勢,連接發 光二極體L(4,Y)之ρ型電極45(4,Υ)與發光二極體L (5,Υ)之η型電極43(5,Υ),再連接發光二極體L( 5,Y)之ρ型電極45(5,Y)與發光二極體L(6,Y)之η 型電極43 ( 6,Υ)。 發光二極體L(1,Y)之η型電極43(1,Υ)係藉由導 線W ( 0,Υ)所接地。 另外,發光二極體L ( 3,Υ )之ρ型電極4 5 ( 3,Υ )係 藉由導線W(3,Y)而與發光二極體L(4,Y)之η型電極 43 ( 4,Υ)所連接。 發光二極體L(6,Y)之ρ型電極45(6,Υ)係藉由導 -52- 200845423 線W( 6, Y)而連接於正電極,由此,經由發光二極 (1,Υ )〜L ( 6,Υ )而形成6段之串聯連接。 另一方面,上述6個的偶數行之發光二極體群之 二極體L(1,Y)之η型電極43(1,Υ)係藉由導線 〇,Υ)所接地,發光二極體L ( 3,Υ)之ρ型電極45 )係藉由導線W ( 3,Υ )而連接於正電極,由此,偶 之發光二極體群係經由發光二極體L(1,L)〜L(2 而成爲3段之串聯連接。 在此,偶數行之發光二極體群之導線W ( 0,Y ) 設於由奇數行之發光二極體群L ( 1,Y )〜L ( 3,Y ) 成之奇數行之作爲鄰接之發光二極體群之間。 經由圖22所示之LED光源模組701,亦可得到 4實施型態之LED光源模組相同的效果。 在圖22所示之LED光源模組701之中,例示過 光二極體L ( X,Y )之串聯數’作爲3個或6個之情 但,例如,如圖2 3所示,亦可由使用導電性之連 601,602,603而連接偶數行之發光二極體群與奇數 2個的發光二極體群情況,將發光二極體之串聯數, 3個及6個。 另外,例如,如圖24所示,亦可作爲發光二極 (X,Y)之串聯數所有成爲6個地,藉由導線連接偶 之發光二極體群與奇數行之發光二極體群。 &lt;第9實施型態&gt; 體L 發光 W ( (3,Υ 數行 l,L ) 係配 所構 與第 將發 況, 接板 行之 作爲 體L 數行 -53- 200845423 在本實施型態中,如圖25所示,將正方形之發光二 極體L(X,Y)之間,在長方形之發光二極體C(X,Y)進 行連接,此時,呈在長方形之發光二極體C ( X,Y)跨越 正方形之發光二極體L ( Χ,Υ)地配置。 由此,可減少串聯數,降低必要電壓,且高密度地安 裝複數之發光二極體L(X,Y) ,C(X,Y),另外,因成 爲層積發光二極體的構成,故可使亮度提升,更加地,線 端以外係因爲使用導線而被覆發光區域之導線變少,經由 此亦可謀求亮度提升。 &lt;第1 0實施型態&gt; 在本實施型態中,如圖26所示,使用在第2實施型 態所說明之發光二極體Μ ( X,Y)。 發光二極體Μ ( Χ,Υ)係沿著爲其ρ側面34 1 ( Χ,Υ) 側之2維形狀之矩形的對角線,位置有η型電極3 43 ( Χ,Υ)與 Ρ 型電極 3 45 ( Χ,Υ)。 如圖26所示,串聯地連接屬於同一行之5個的發光 二極體Μ(1,Υ)〜Μ(5,Υ)而形成發光二極體群。 偶數行之發光二極體群係對於奇數行的發光二極體群 而言,於列方向,偏移發光二極體群之列方向的長度分所 配置。 對於位置於奇數行之發光二極體群之端部的發光二極 體Μ ( 5,Υ)之ρ型電極345 ( 5,Υ),係沿著X方向(列 方向)延伸,配置位置於做爲鄰接之偶數行之發光二極體 -54- 200845423 群之間的導線W ( 5,Υ ),而導線w ( 5,Y )係以正連接於 電極。 另外,位置於奇數行之發光二極體群之端部的發光二 極體Μ ( 1,Y )之11型電極3 43 ( 0,¥) ’係做爲接地。 對於位置於偶數行之發光二極體群之端部的發光二極 體Μ ( 1,Υ)之η型電極343 ( Χ,2) ’係沿著X方向(列 ^ 方向)延伸,配置位置於做爲鄰接之奇數行之發光二極體 群之間的導線W ( o,Y),而導線W ( 0,Υ)係做爲接地。 0 另外,位置於偶數行之發光二極體群之端部的發光二 極體Μ ( 5,Υ)之ρ型電極3 45 ( 5,Υ),係連接於正電極 〇 如根據本實施型態,即使沿著前述之矩形的對角線而 使用位置有η型電極343 ( Χ,Υ)與!&gt;型電極345 (\,丫) 之發光二極體Μ ( Χ,Υ )的情況,亦可得到與第4實施型 態同樣的效果。 ^ &lt;第U實施型態&gt;Each of the light-emitting diode groups L(1, Y) to L(3, Y) is an odd-numbered column of light-emitting diodes L(1, Y), L(3, Y) and an even-numbered column of light-emitting diodes L ( 2, Y), the p-type electrode 45 (1, Y) of the light-emitting diode L (1, Y) and the n-type of the light-emitting diode l (2, Y) are connected in such a manner that one part of the surface faces each other. The electrode 43 (2, Y) is connected to the P-type electrode 45 (2, Y) of the light-emitting diode L (2, Y) and the n-type electrode 43 of the light-emitting diode L (3, Y) (3, Υ ). In addition, each of the light-emitting diode groups L ( 4, Υ ) 〜 L ( 6, Υ ) is an odd-numbered column of light-emitting diodes L ( 3, Y), L ( 5, Υ) and even columns of light-emitting diodes L ( 4, Υ ) connects the p-type electrode 45 (4, Υ) of the light-emitting diode L (4, Y) and the light-emitting diode L (5, Υ) in a posture in which one part of the surface faces each other. The n-type electrode 43 (5, Υ) is connected to the p-type electrode 45 (5, Y) of the light-emitting diode L (5, Y) and the n-type electrode 43 of the light-emitting diode L (6, Y) (6) , Υ). The n-type electrode 43 (1, Υ) of the light-emitting diode L (1, Y) is grounded by a wire W (0, Υ). In addition, the p-type electrode 4 5 ( 3, Υ ) of the light-emitting diode L ( 3, Υ ) is connected to the n-type electrode 43 of the light-emitting diode L (4, Y) by the wire W (3, Y). (4, Υ) connected. The p-type electrode 45 (6, Υ) of the light-emitting diode L (6, Y) is connected to the positive electrode by a line -52 - 200845423 line W (6, Y), thereby passing through the light-emitting diode (1) , Υ ) ~ L ( 6, Υ ) to form a series connection of 6 segments. On the other hand, the n-type electrode 43 (1, Υ) of the diode L (1, Y) of the above-mentioned six even-numbered rows of the LED group is grounded by a wire, a light-emitting diode The p-type electrode 45 of the body L (3, Υ) is connected to the positive electrode by the wire W ( 3, Υ ), whereby the light-emitting diode group is via the light-emitting diode L (1, L) ) ~ L (2 becomes a series connection of 3 segments. Here, the wire W ( 0, Y ) of the even-numbered light-emitting diode group is set in the light-emitting diode group L ( 1, Y ) of the odd-numbered rows ~ L ( 3, Y ) is formed as an odd-numbered row between adjacent light-emitting diode groups. The same effect can be obtained by the LED light source module of the fourth embodiment through the LED light source module 701 shown in FIG. In the LED light source module 701 shown in FIG. 22, the series number ' of the light-emitting diodes L (X, Y) is exemplified as three or six. However, for example, as shown in FIG. When the conductive connection 601, 602, 603 is used to connect the even-numbered light-emitting diode group and the odd-numbered two-light-emitting diode group, the number of the light-emitting diodes is three, six, and six. As shown in Figure 24, it can also be used The number of series of the light-emitting diodes (X, Y) is six, and the light-emitting diode group and the odd-numbered light-emitting diode group are connected by wires. <Nineth embodiment> Body L light W ((3, Υ number of lines l, L) is configured with the first condition, and the board is used as the body L number line -53- 200845423 In this embodiment, as shown in Fig. 25, the square is Between the light-emitting diodes L (X, Y), the rectangular light-emitting diodes C (X, Y) are connected, and at this time, the rectangular light-emitting diodes C (X, Y) are crossed in a square shape. The light-emitting diodes L (Χ, Υ) are arranged. Thereby, the number of series connections can be reduced, the necessary voltage can be reduced, and a plurality of light-emitting diodes L(X, Y), C(X, Y) can be mounted at a high density. In addition, since the brightness of the laminated light-emitting diode is increased, the brightness of the light-emitting area can be increased by using a wire, and the brightness can be improved by the use of the wire. 0. Embodiments In the present embodiment, as shown in Fig. 26, the light-emitting diodes Μ (X, Y) described in the second embodiment are used. The polar body Χ (Χ, Υ) is a diagonal line of a rectangular shape of a two-dimensional shape on the side of the ρ side 34 1 (Χ, Υ), and is provided with an n-type electrode 3 43 (Χ, Υ) and a Ρ-type electrode. 3 45 ( Χ, Υ) As shown in Fig. 26, five light-emitting diodes 1(1, Υ)~Μ(5, Υ) belonging to the same row are connected in series to form a light-emitting diode group. The group of the light-emitting diodes arranged in the odd-numbered rows is arranged in the column direction and offset in the direction of the column direction of the light-emitting diode group. The p-type electrode 345 (5, Υ) of the light-emitting diode Μ (5, Υ) located at the end of the illuminating diode group of the odd-numbered row extends in the X direction (column direction), and is disposed at a position As a pair of adjacent rows of light-emitting diodes -54 - 200845423, the wires W (5, Υ) between the groups, and the wires w (5, Y) are connected to the electrodes. Further, the 11-type electrode 3 43 ( 0, ¥) of the light-emitting diode Μ ( 1, Y ) located at the end of the odd-numbered light-emitting diode group is grounded. The n-type electrode 343 ( Χ, 2) ' of the light-emitting diode Μ ( 1, Υ) at the end of the light-emitting diode group at the even-numbered row extends in the X direction (column ^ direction), and is disposed at a position The wire W (o, Y) between the groups of light-emitting diodes adjacent to the odd-numbered rows, and the wire W (0, Υ) is used as the ground. In addition, the p-type electrode 3 45 (5, Υ) of the light-emitting diode Μ (5, Υ) at the end of the light-emitting diode group at the even-numbered row is connected to the positive electrode, for example, according to this embodiment State, even if the position along the diagonal of the aforementioned rectangle is used, the n-type electrode 343 (Χ, Υ) and ! In the case of the light-emitting diode Μ (Χ, Υ) of the type electrode 345 (\, 丫), the same effects as those of the fourth embodiment can be obtained. ^ &lt;Uth implementation mode&gt;

• 針對在本實施型態,圖1所示之L E D光源模組1 1R - ,1 1 〇 ’ 1 1 Β則成爲在圖2 7以後所示之排列。 圖27所示之發光二極體L ( χ,γ)則爲使用於本發明 之發光元件之一例,X方向則爲針對在本發明之列方向的 一例,Υ方向則爲針對在本發明之行方向的一例。 另外’圖3 1所示之ρ型電極43 ( χ,γ )則爲使用於 本發明之第2電極之一例,η型電極45 (χ,γ)則爲使用 -55- 200845423 於本發明之第1電極之一例。 另外’圖28所示之p用電極墊片61 ( Χ,Υ)則爲使 用於本發明之電極墊片的一例,第1矩形範圍61a ( Χ,Υ )則爲針對在本發明之第2範圍之一例,第1矩形範圍 61b ( X,Y )則爲針對在本發明之第1範圍之一例。 LED光源模組1 ir,1 ig,1 1Β係由將發光二極體L (Χ,Υ )配置爲矩陣狀所構成。 發光二極體L ( Χ,Υ )係如後述,例如將矩形之η側 面41 ( Χ,Υ)之一邊,對於X方向而言,以逆時鐘旋轉略 25度傾斜之姿勢,配置於安裝基板3丨上,由如此作爲, 於做爲鄰接之4個的發光二極體L ( Χ,Υ )之間,產生在 較發光二極體L(X,Y)之一邊爲短的邊而形成各邊之接 合範圍(接近於正方形之範圍),並且,於該接合範圍, 位置作爲鄰接之發光二極體L(X,Y)之η型電極45 ( Χ,Υ )和經由導線所連接之ρ用電極墊片61 ( Χ,Υ ),因 此’比較於以未傾斜配置發光二極體L ( Χ,Υ )之情況, 可將上述接合範圍縮小至可連接導線之界限,可更高密度 地安裝發光二極體L(X,Y),進而可提升相當於單位面 積之發光量。 以下,關於本實施型態之LED光源模組1 1 R,詳細 進行說明。 然而,LED光源模組1 1G,1 1B係使用發光呈G,B 光之發光二極體之情況以外,係因與LED光源模組1 1 R 相同之構成,故省略說明。 -56- 200845423 圖27係爲爲了說明圖1所示之LED光源模組1 1R之 LED晶片配置的圖,圖28係爲爲了說明與發光二極體L (X,Y)之P型電極連接之電極墊片的圖案之圖,圖29 係爲將LED光源模組1 1R,從圖27所示之箭頭Α之方向 而視的圖,圖3 0係LED光源模組1 1 R的外觀斜視圖。• For the present embodiment, the L E D light source module 1 1R - , 1 1 〇 ' 1 1 Β shown in Fig. 1 is arranged as shown in Fig. 27 and later. The light-emitting diode L (?, γ) shown in Fig. 27 is an example of the light-emitting element used in the present invention, and the X direction is an example for the direction of the column of the present invention, and the Υ direction is for the present invention. An example of the row direction. Further, the p-type electrode 43 (χ, γ) shown in Fig. 31 is an example of a second electrode used in the present invention, and the n-type electrode 45 (χ, γ) is used in the present invention. -55-200845423 An example of the first electrode. Further, the electrode pad 61 for p shown in Fig. 28 is an example of the electrode pad used in the present invention, and the first rectangular range 61a (Χ, Υ) is for the second aspect of the present invention. As an example of the range, the first rectangular range 61b (X, Y) is an example of the first range of the present invention. The LED light source module 1 ir, 1 ig, and 1 Β are formed by arranging the light-emitting diodes L (Χ, Υ) in a matrix. The light-emitting diode L (Χ, Υ) is disposed on the mounting substrate in a posture in which one side of the η side surface 41 (Χ, Υ) of the rectangle is inclined by 25 degrees in the counterclockwise direction, for example, as will be described later. In this case, the light-emitting diodes L ( Χ, Υ ) which are adjacent to each other are formed as short sides on one side of the light-emitting diode L (X, Y). The bonding range of each side (close to the range of the square), and in the bonding range, the position is connected to the n-type electrode 45 (Χ, Υ) of the adjacent light-emitting diode L (X, Y) and via a wire ρ is used for the electrode pad 61 (Χ, Υ), so that the above-mentioned bonding range can be narrowed to the limit of the connectable wire, which is higher than the case where the light-emitting diode L (Χ, Υ) is disposed in an untilted manner. The light-emitting diode L (X, Y) is mounted on the ground to increase the amount of light equivalent to a unit area. Hereinafter, the LED light source module 1 1 R of the present embodiment will be described in detail. However, the LED light source module 1 1G, 1 1B is the same as the LED light source module 1 1 R except that the light-emitting diodes of G and B light are used, and thus the description thereof is omitted. -56- 200845423 Figure 27 is a diagram for explaining the LED wafer arrangement of the LED light source module 11R shown in Figure 1, and Figure 28 is for explaining the connection with the P-type electrode of the LED L (X, Y) Figure 29 is a diagram of the pattern of the electrode pad, Fig. 29 is a view of the LED light source module 1 1R from the direction of the arrow 图 shown in Fig. 27, and the squint of the appearance of the LED light source module 1 1 R Figure.

在此,如圖27所示,規定X方向及Y方向,另外, Y方向的位置則作爲相同之5個的發光二極體L之「X」 而分配從圖2 7中左端的順號,作爲發光二極體L之「Y 」而分配該發光二極體L所屬之行的圖27中上端的順號 〇 並且,於發光二極體L ’分配使用分配於該發光二極 體L之「X」,「Y」之指標(X,Y)。 在本實施型態之中,例示串聯連接圖2 7所示之Υ方 向的位置爲同一之5個發光二極體L ( Χ,Υ)之情況。 如圖27〜圖30所示,LED光源模組11R係將R發光 之25個的發光二極體L(X,Y)配置於安裝基板31上。 圖3 1係爲發光二極體L ( X,Y )之外觀斜視圖。 如圖3 1所示,發光二極體L ( Χ,Υ )係爲單導線方式 之二極體。 如圖3 1所示,於爲發光二極體L ( Χ,Υ )之表面側的 η型半導體層側,2維形狀則具有略矩形之η側面41 ( Χ,Υ ) ,η側面41 (Χ,Υ)則成爲發光面,複數之發光二 極體L ( Χ,Υ)係相互具有同一外形。 η側面41 ( Χ,Υ)之略中央,形成有η型電極45 ( -57- 200845423 Χ,Υ),而η側面41之一邊的長度係例如爲320μιη,另外 ,發光二極體L ( Χ,Υ)的厚度係爲180μιη程度,η側面 41(Χ,Υ)之範圍之中,未形成有η型電極45(Χ,Υ)之 範圍則成爲發光範圍,對於與η側面4 1 ( Χ,Υ )相反側之 背面,於其全面,形成有ρ型電極43 ( Χ,Υ)。 以下,關於LED光源模組1 1R之發光二極體L ( Χ,Υ )的配置,進行說明。 如圖27所示,針對在LED光源模組11R,係於針對 在安裝基板31上之Y方向的不同之5個各位置,沿著X 方向而配置有5個的發光二極體L( X,Y )。 發光二極體L ( X,Y )係例如將矩形之n側面4 1 ( Χ,Υ )之一邊,對於X方向而言,以逆時鐘旋轉略25度 傾斜之姿勢,配置於安裝基板3 1上。 在L E D光源模組1 1 r之中,例如,於2 m m2程度之 範圍,配置約2 5個的發光二極體l ( X,Y )。 針對在本實施型態,發光二極體L ( X,1 )〜(X,5 ) 之X方向的位置係爲相同。 另外’發光二極體L(1,Y)〜(5,Y)之Y方向的位 置係爲相同。 對於安裝基板3 1,係對應於載置有發光二極體l ( Χ,Υ)之位置’形成ρ用電極墊片6ΐ(Χ,Υ)及η用電極 墊片63 ( Υ)。 對於Ρ用電極墊片61 ( Χ,Υ),係經由接合而黏接發 光二極體L (Χ,Υ)之ρ型電極43 (Χ,Υ)。 -58- 200845423 如圖28所示,p用電極墊片61(2,Υ) ,61(3,Υ) ’ 61 ( 4,Υ) ,61 ( 5,Υ)係具有第1矩形範圍61a ( 2, Υ ),61a ( 3,Υ) ,61a ( 4,Υ) ,61a ( 5,Υ)與第 2 矩形範 圍 61b(2,Y) ,61b(3,Y) ,61b(4,Y) ,61b(5,Y) o 對於第 1 矩形範圍 61a(2,Y) ,61a(3,Y) ,61a( 4,Y) ,61a(5,Y),係接合發光二極體 L ( 2 5 Y ) ,L(Here, as shown in FIG. 27, the X direction and the Y direction are defined, and the position in the Y direction is assigned the "X" of the same five LEDs L from the left end of FIG. As the "Y" of the light-emitting diode L, the upper end of FIG. 27 to which the light-emitting diode L belongs is allocated, and the light-emitting diode L' is distributed and distributed to the light-emitting diode L. "X", the indicator of "Y" (X, Y). In the present embodiment, a case where the positions of the 所示 directions shown in Fig. 27 are connected in series to the same five light-emitting diodes L (Χ, Υ) are exemplified. As shown in Figs. 27 to 30, the LED light source module 11R is provided with 25 light-emitting diodes L (X, Y) for R light emission on the mounting substrate 31. Fig. 3 is a perspective view showing the appearance of the light-emitting diode L (X, Y). As shown in Fig. 31, the light-emitting diode L (Χ, Υ) is a single-wire type diode. As shown in FIG. 31, on the side of the n-type semiconductor layer on the surface side of the light-emitting diode L (Χ, Υ), the two-dimensional shape has a slightly rectangular η side surface 41 (Χ, Υ), and an η side surface 41 ( Χ, Υ) becomes a light-emitting surface, and a plurality of light-emitting diodes L (Χ, Υ) have the same shape. The n-side of the η side surface 41 (Χ, Υ) is formed with an n-type electrode 45 (-57-200845423 Χ, Υ), and the length of one side of the η side surface 41 is, for example, 320 μm, and the light-emitting diode L (Χ) The thickness of Υ) is about 180 μm, and the range of the η side surface 41 (Χ, Υ) is in the range where the n-type electrode 45 is not formed, and the illuminating range is the same as the η side 4 1 ( Χ , Υ ) The back side of the opposite side, in its entirety, is formed with a p-type electrode 43 (Χ, Υ). Hereinafter, the arrangement of the light-emitting diodes L ( Χ, Υ ) of the LED light source module 1 1R will be described. As shown in FIG. 27, in the LED light source module 11R, five light-emitting diodes L (X) are arranged along the X direction at five different positions in the Y direction on the mounting substrate 31. , Y). The light-emitting diode L (X, Y) is disposed on the mounting substrate 3 1 in a posture in which one side of the n-side of the rectangle 4 1 (Χ, Υ) is inclined by 25 degrees in the counterclockwise direction in the X direction. on. Among the L E D light source modules 1 1 r , for example, about 25 light-emitting diodes 1 ( X, Y ) are arranged in a range of about 2 m 2 . In the present embodiment, the positions of the light-emitting diodes L (X, 1) to (X, 5) in the X direction are the same. Further, the positions of the light-emitting diodes L (1, Y) to (5, Y) in the Y direction are the same. The mounting substrate 31 is formed with electrode pads 6A (Χ, Υ) and η electrode pads 63 (Υ) corresponding to the position where the light-emitting diodes 1 (Χ, Υ) are placed. The electrode pad 61 (Χ, Υ) for bonding is bonded to the p-type electrode 43 (Χ, Υ) of the light-emitting diode L (Χ, Υ). -58- 200845423 As shown in Fig. 28, the electrode pads 61 (2, Υ), 61 (3, Υ) ' 61 (4, Υ), 61 (5, Υ) of p have a first rectangular range 61a ( 2, Υ), 61a (3, Υ), 61a (4, Υ), 61a (5, Υ) and 2nd rectangular range 61b (2, Y), 61b (3, Y), 61b (4, Y) , 61b (5, Y) o For the first rectangular range 61a (2, Y), 61a (3, Y), 61a (4, Y), 61a (5, Y), the junction light-emitting diode L ( 2 5 Y ) , L (

3,Y) ,L(4,Y) ,:L(5,Y)之背面的 p 型電極 43(2,Y ),43(3,Y) ,43(4,Y) ,43(5,Y),第 1 矩形範圍 61a ( 2,Y) ,61a ( 3,Y) ,61a ( 4,Y) ,61a ( 5,Y)係較 發光二極體 L ( 2,Υ) ,L ( 3,Υ) ,L ( 4,Υ) ,L ( 5,Υ)3, Y), L (4, Y), : L (5, Y) on the back of the p-type electrode 43 (2, Y), 43 (3, Y), 43 (4, Y), 43 (5, Y), the first rectangular range 61a (2, Y), 61a (3, Y), 61a (4, Y), 61a (5, Y) is more than the light-emitting diode L (2, Υ), L (3) ,Υ), L (4,Υ), L (5,Υ)

之背面小,而在載置發光二極體L(2,Y) ,L(3,Y) ,L (4,Y) ,L ( 5,Υ)之狀態,從正面側係看不到。The back side is small, and the state in which the light-emitting diodes L (2, Y), L (3, Y), L (4, Y), and L (5, Υ) are placed is not visible from the front side.

如此,由形成第1矩形範圍61a ( 2,Υ ) ,61 a ( 3,Y ),61a ( 4,Y) ,61a ( 5,Y )之情況,即時高密度安裝發 光二極體L ( X,Y)之情況,亦可於做爲鄰接之p用電極 墊片6 1 ( Χ,Υ )之間具有所期望的距離,可縮小電性的干 擾。 ρ 用電極墊片 61(2,Υ) ,61(3,Υ) ,61(4,Υ), 61(5,丫)之第2矩形範圍6113(2,丫),611)(3,丫), 61b ( 4,Υ) ,61b ( 5,Υ)係即使在接合發光二極體l ( X,Y )於安裝基板3 1上之狀態,亦未經由發光二極體L ( X,Y)所佔有(露出於表面側)。 在本實施型態之中’如圖27所示,將發光二極體l -59- 200845423 (χ,γ),將其η側面41 ( Χ,Υ)之矩形的一邊,對於x 方向而言,以逆時鐘旋轉略25度傾斜之姿勢,配置於安 裝基板31上,如此,於做爲鄰接之4個的發光二極體L (Χ,Υ)之間,產生在較發光二極體L(X,Y)之一邊爲短 的邊而形成各邊之範圍(接近於正方形之範圍),在本實 施型態之中,於該範圍,配置上述之P用電極墊片61 ( 2,Y) ,61 ( 3,Υ) ,61 ( 4,Υ) ,61 ( 5,Υ )之第 2 矩形範 圍 61b(2,Y) ,61b(3,Y) ,61b(4,Y) ,61b(5,Y) 其結果,比較於以未傾斜配置發光二極體L ( X,Y )之情 況,可將該範圍縮小,進而可提升相當於單位面積之發光 量。 如圖27所示,對於發光二極體L ( 5,Y)之圖中右側 ,配置有η用電極墊片63 ( Υ )。 η用電極墊片63 ( Υ)係藉由導線W ( 5,Υ)而與發 光二極體L(5,Y)之η型電極45(5,Υ)連接。 對於η型電極45 ( Υ )係在LED光源模組1 1R之驅 動時,施加特定的電壓。 以下,說明針對在LED光源模組1 1 R之p用電極墊 片61(χ,Υ) ,η用電極墊片63(Υ)及發光二極體L( X,Y)之間的連接關係。 針對在圖27,將連接於發光二極體L ( Χ,Υ )之η型 電極45(χ,γ)之導線,表示爲W(X,Y)。 在LED光源模組1 1R之中,依序串聯連接沿著X方 向所位置之5個的發光二極體L(1,Y)〜L(5,Y)。 -60- 200845423 即,P用電極墊片6 1 ( 1,Υ )則接地。 p用電極墊片61(1,Y)係與發光二極體L(1,Y)之 p型電極43 ( 1,Y)串聯連接。 發光二極體L ( 1,Υ)之η型電極45 ( 1,Υ)係藉由導 線W ( 1,Υ)而連接於ρ用電極墊片61 ( 2,Υ)之第2矩 形範圍61b ( 2,Υ)。 Ρ用電極墊片61(2,Υ)之第1矩形範圍61a(2,Y) 係與發光二極體L ( 2,Y)之ρ型電極43 ( 2,Y)串聯連接 〇 發光二極體L(2,Y)之η型電極45(2, Υ)係藉由導 線W ( 2,Υ)而連接於ρ用電極墊片61 ( 3,Υ)之第2矩 形範圍61b ( 3,Υ)。 Ρ用電極墊片61(3,Υ)之第1矩形範圍61a(3,Y) 係與發光二極體L(3,Y)之ρ型電極43(3,Y)串聯連接 〇 發光二極體L(3,Y)之η型電極45(3, Υ)係藉由導 線W ( 3,Υ)而連接於ρ用電極墊片61 ( 4,Υ)之第2矩 形範圍61b ( 4,Υ)。 ρ用電極墊片61 ( 4,Υ)之第1矩形範圍61a ( 4,Υ) 係與發光二極體L(4,Y)之ρ型電極43(4,Υ)串聯連接 〇 發光二極體L(4,Y)之η型電極45(4,Υ)係藉由導 線W ( 4,Υ)而連接於ρ用電極墊片61 ( 5,Υ)之第2矩 形範圍6 1 b ( 5,Υ )。 -61 - 200845423 P用電極墊片61(5,γ)之第1矩形範圍61a(5,Y) 係與發光二極體L ( 5,Y)之p型電極43 ( 5,Y)串聯連接 〇 發光二極體L(5,Y)之η型電極4 5(5, Υ)係藉由導 線W ( 5,Υ)而連接於η用電極墊片63 ( Υ)。 如上述,在LED光源模組11R之中,如圖27所示, 將25個的發光二極體L(X,Y),對於X方向而言,以逆 時鐘旋轉略25度傾斜之姿勢,配置於安裝基板3 1上。 由此,於做爲鄰接之4個的發光二極體L ( X,Y )之 間’產生在較發光二極體L ( X,Y )之一邊爲短的邊而形 成各邊之範圍(接近於正方形之範圍),即,ρ用電極墊 片61 ( Χ,Υ)之第2矩形範圍61b ( Χ,Υ),其結果,比 較於以未傾斜配置發光二極體L ( Χ,Υ )之情況,可將該 範圍縮小,進而可提升相當於單位面積之發光量。 即,不會將LED光源模組1 1 R,將其製造工程做爲 困難,而可小規模。 以下,說明LED光源模組1 1R的動作。 針對在LED光源模組11R,係當投入電源時,n用電 極墊片63 ( Υ )則設定爲特定的電位。 由此,於連接爲串聯之發光二極體L(5,Y)之η型 電極45(5,Υ),與發光二極體L(X,l)之ρ型電極43 (X,1 )之間’產生因應上述特定之電位之電位差。 其結果’從發光—^極體L(5,Y)之η型電極45 (5, Υ )’朝向發光二極體L ( X,1 )之ρ型電極4 3 ( X,1 )流動 -62-Thus, by forming the first rectangular range 61a (2, Υ), 61 a (3, Y), 61a (4, Y), 61a (5, Y), the light-emitting diode L (X) is mounted at a high density. In the case of Y), it is also possible to have a desired distance between the adjacent electrode pads 6 1 ( Χ, Υ ) for p, and it is possible to reduce electrical interference. ρ with electrode pads 61 (2, Υ), 61 (3, Υ), 61 (4, Υ), 61 (5, 丫) of the second rectangular range 6113 (2, 丫), 611) (3, 丫), 61b (4, Υ), 61b (5, Υ) is not in the state of bonding the light-emitting diodes l (X, Y) on the mounting substrate 31, and does not pass through the light-emitting diode L (X, Y) Occupied (exposed on the surface side). In the present embodiment, as shown in FIG. 27, the light-emitting diodes 1-59-200845423 (χ, γ), the sides of the rectangle of the η side 41 (Χ, Υ), for the x direction It is disposed on the mounting substrate 31 in a posture of a slight tilt of 25 degrees against the clock, and thus is formed between the adjacent two light-emitting diodes L (Χ, Υ), and is formed in the light-emitting diode L. One side of (X, Y) is a short side and a range of each side is formed (close to a range of a square). In the present embodiment, the above-mentioned electrode pad 61 for P is disposed in this range (2, Y). ), 61 (3, Υ), 61 (4, Υ), 61 (5, Υ) 2nd rectangular range 61b (2, Y), 61b (3, Y), 61b (4, Y), 61b ( 5, Y) As a result, in comparison with the case where the light-emitting diode L (X, Y) is disposed without being inclined, the range can be reduced, and the amount of light equivalent to the unit area can be increased. As shown in Fig. 27, for the right side of the diagram of the light-emitting diode L (5, Y), an electrode pad 63 (?) for n is disposed. The η electrode pad 63 (Υ) is connected to the n-type electrode 45 (5, Υ) of the light-emitting diode L (5, Y) by a wire W (5, Υ). When the n-type electrode 45 (?) is driven by the LED light source module 11R, a specific voltage is applied. Hereinafter, the connection relationship between the electrode pads 61 (χ, Υ), the η electrode pads 63 (Υ), and the light-emitting diodes L (X, Y) for the LED light source module 1 1 R will be described. . With respect to Fig. 27, a wire connected to the n-type electrode 45 (χ, γ) of the light-emitting diode L (Χ, Υ) is represented as W (X, Y). In the LED light source module 11R, five light-emitting diodes L(1, Y) to L(5, Y) along the X-direction are sequentially connected in series. -60- 200845423 That is, the electrode pad 6 1 (1, Υ) for P is grounded. The electrode pad 61 (1, Y) for p is connected in series to the p-type electrode 43 (1, Y) of the light-emitting diode L (1, Y). The n-type electrode 45 (1, Υ) of the light-emitting diode L (1, Υ) is connected to the second rectangular range 61b of the ρ electrode pad 61 (2, Υ) by the wire W (1, Υ). (2, Υ). The first rectangular range 61a (2, Y) of the electrode pad 61 (2, Υ) is connected in series with the p-type electrode 43 ( 2, Y) of the light-emitting diode L ( 2, Y). The n-type electrode 45 (2, Υ) of the body L (2, Y) is connected to the second rectangular range 61b of the ρ electrode pad 61 (3, Υ) by a wire W (2, Υ) (3, Υ). The first rectangular range 61a (3, Y) of the electrode pad 61 (3, )) is connected in series with the p-type electrode 43 (3, Y) of the light-emitting diode L (3, Y). The n-type electrode 45 (3, Υ) of the body L (3, Y) is connected to the second rectangular range 61b of the electrode pad 61 (4, Υ) of ρ by a wire W (3, Υ) (4, Υ). The first rectangular range 61a (4, Υ) of the electrode pad 61 (4, Υ) is connected in series with the p-type electrode 43 (4, Υ) of the light-emitting diode L (4, Y). The n-type electrode 45 (4, Υ) of the body L (4, Y) is connected to the second rectangular range 6 1 b of the ρ electrode pad 61 (5, Υ) by a wire W (4, Υ) ( 5, Υ). -61 - 200845423 The first rectangular range 61a (5, Y) of the electrode pad 61 (5, γ) for P is connected in series with the p-type electrode 43 (5, Y) of the light-emitting diode L (5, Y) The n-type electrode 4 5 (5, Υ) of the 〇 light-emitting diode L (5, Y) is connected to the η electrode pad 63 (Υ) by a wire W (5, Υ). As described above, in the LED light source module 11R, as shown in FIG. 27, the 25 light-emitting diodes L (X, Y) are tilted by 25 degrees against the clock in the X direction. It is disposed on the mounting substrate 31. Therefore, a range in which each side of the light-emitting diode L (X, Y) adjacent to each other is shorter than one side of the light-emitting diode L (X, Y) is formed ( Close to the range of the square), that is, the second rectangular range 61b (Χ, Υ) of the electrode pad 61 (Χ, Υ), and as a result, the light-emitting diode L is arranged in a non-tilted configuration (Χ, Υ In the case of the case, the range can be reduced, and the amount of luminescence equivalent to the unit area can be increased. That is, the LED light source module 1 1 R is not difficult to manufacture, and it can be small. Hereinafter, the operation of the LED light source module 11R will be described. For the LED light source module 11R, when the power is turned on, the n-electrode pad 63 (?) is set to a specific potential. Thereby, the n-type electrode 45 (5, Υ) connected to the series-connected light-emitting diode L (5, Y), and the p-type electrode 43 (X, 1) of the light-emitting diode L (X, l) The potential difference between the above specific potentials is generated. As a result, 'the n-type electrode 45 (5, Υ )' of the light-emitting body L (5, Y) flows toward the p-type electrode 4 3 (X, 1 ) of the light-emitting diode L (X, 1 ) - 62-

200845423 有電流,發光二極體L ( 1,Υ)〜L ( 5,Υ)之η側 1,Υ)〜(5,Υ)則產生發光。 在LED光源模組11R中,發光二極體L ( X, ,分配相同Y之發光二極體L( X,Y)係被做爲# ,但在與分配不同Υ之發光二極體L ( Χ,Υ)之間 並聯連接。 因此,即使於發光二極體L ( X,Υ )或其導 Χ,Υ)產生缺陷之情況,亦對於分配不同Υ之發汾 L ( Χ,Υ)之發光係未有影響。 以下,說明LED光源模組1 1R之製造方法。200845423 There is current, the η side of the light-emitting diode L (1, Υ) ~ L (5, Υ) 1, Υ) ~ (5, Υ) produces luminescence. In the LED light source module 11R, the light-emitting diode L (X, , the light-emitting diode L (X, Y) assigned the same Y is made as #, but the light-emitting diode L (which is different from the distribution) Χ, Υ) are connected in parallel. Therefore, even in the case where the light-emitting diode L (X, Υ) or its guide Χ, 产生) is defective, it is also assigned to the hair 汾 L (Χ, Υ) of different Υ The luminescence system has no effect. Hereinafter, a method of manufacturing the LED light source module 11R will be described.

首先,於安裝基板31上,以圖28所示之圖_ p用電極墊片61 (X,Y)及η用電極墊片63 (X,Y 接著,於形成在安裝基板31上之ρ用電極墊 1,Υ )之端部,以及ρ用電極墊片61 ( 2,Υ)〜( 第1矩形範圍61a ( Χ,Υ)上,塗佈黏接劑,並识 ,各自載置發光二極體L(X,Y)而固定。 接著,經由使用圖32所示之毛細管之線接名 27所示,於發光二極體L(1,Y)之η型電極45 ,和Ρ用電極墊片61 ( 2,Υ)之第2矩形範圍61b 之間,形成導線W ( 1,γ)。 另外,經由使用毛細管之線接合,如圖27戶j 發光二極體L(2,Y)之n型電極45(2,Y),和! 墊片61(3,Υ)之第2矩形範圍61b(3,Y)之間’ 線 W ( 2,Y)。 面41 ( 之中 i聯連接 Ϊ係成爲 線W ( i二極體 【,形成 )° 片61 ( 5,Y)之 &gt;其上方 f,如圖 (1?Y) (2,γ) 千示,於 3用電極 1形成導 -63- 200845423 另外’經由使用毛細管之線接合,如圖2 7所示,於 發光二極體L(3,Y)2n型電極4 5(3,Y),和p用電極 墊片61 ( 4,Y)之第2矩形範圍61b ( 4,Y)之間,形成導 線 W ( 3,Υ )。 另外,經由使用毛細管之線接合,如圖2 7所示,於 發光二極體L(4,Y)之η型電極45(4,Υ),和ρ用電極 墊片61 ( 5,Υ)之第2矩形範圍61b ( 5,Υ)之間,形成導 線 W ( 4,Υ )。 另外,經由使用毛細管之線接合,如圖27所示,於 發光二極體L(5,Y)之η型電極45(5,Υ),和η用電極 墊片63 ( Υ)之間,形成導線W ( 5,Υ)。 如以上說明,在投影機1之LED光源模組11R,11G ,11B之中,於安裝具備有P型電極43(4, Y)與n型電 極45 ( 5,Υ )於相反側的面之發光二極體L ( Χ,γ )之情 況,將發光二極體L ( Χ,Υ ),對於X方向而言,以逆時 鐘旋轉略2 5度傾斜之姿勢’配置於安裝基板3 1上。 由此,於做爲鄰接之4個的發光二極體L ( Χ,Υ )之 間,產生在較發光二極體L ( Χ,Υ )之一邊爲短的邊而形 成各邊之範圍(接近於正方形之範圍),並且,於該接合 範圍,位置作爲鄰接之發光二極體L( Χ,Υ )之η型電極 45 ( Χ,Υ )和經由導線所連接之Ρ用電極墊片61 ( Χ,Υ ) 〇 因此,比較於以未傾斜配置發光二極體L ( X,Y )之 情況,可將上述接合範圍縮小至可連接導線之界限,可更 -64 - 200845423 於 爲 量 組 面 ) Μ 極 極 將 轉 之 形 合 高密度地安裝發光二極體L( Χ,Υ ),進而可提升相當 單位面積之發光量。 即,不會將LED光源模組1 1 R,將其製造工程做 困難(使用以往之線接合之精確度),而不會減少發光 ,進而可小規模構成。 &lt;第Π實施形態的變形例&gt; 圖 33係爲爲了說明本實施型態之 LED光源模 1 1 1R的圖。 在上述之實施型態之中,如圖31所示,例示η側 41 ( Χ,Υ)與背面則使用略正方形之發光二極體L ( Χ,Υ 之情況。 本變形例之LED光源模組1 1 1R係如圖33所示, 側面1 4 1 ( X,Y )與背面則使用略長方形之發光二極體 (Χ,Υ)。 然而,在圖3 3所示的例中,例示將9個的發光二 體Μ ( Χ,Υ),配置呈3x3之矩陣狀的情況,但發光二 體Μ ( Χ,Υ)之數量等並無特別限定。 即使針對在圖33所示之LED光源模組1 1 1R,亦 發光二極體M ( X,Y),對於X方向而言,以逆時鐘旋 略25度傾斜之姿勢,配置於安裝基板3 1上。 由此,於做爲鄰接之4個的發光二極體Μ ( Χ,Υ ) 間,產生在較發光二極體Μ( Χ,Υ )之一邊爲短的邊而 成各邊之範圍(接近於正方形之範圍),並且,於該接 -65- 200845423 範圍,對於作爲鄰接之發光二極體Μ(Χ,Υ)之η型電極 145 ( Χ,Υ )而言,位置經由導線所連接之Ρ用電極墊片 161(Χ,Υ)之第 2 矩形範圍 161b(X,Y)。 因此,比較於以未傾斜配置發光二極體M ( X,Y )之 情況,可將上述接合範圍縮小至可連接導線之界限,可更 高密度地安裝發光二極體Μ (Χ,Υ)進而可提升相當於單 位面積之發光量。 即,不會將LED光源模組11 1R,將其製造工程做爲 困難,且不會減少發光量,進而可小規模構成。 在上述之第1 1實施型態中,例示過使用各自發光呈 R,G,B之3個的LED光源模組之情況,但在本實施型 態中,例示使用1個的LED光源模組而進行R,G,B發 光的情況。 有關本實施型態之投影機之全體構想圖係與圖1 6相 同。 以下,針對在圖1 6,說明本發明之LED光源模組 511之LED晶片配置。 圖3 4係爲爲了說明圖1 6所示之LED光源模組5 1 1 之LED晶片配置的圖,如圖34所示,LED光源模組51 1 係將做爲紅色發光之4個的發光二極體R ( X,γ ),做爲 綠色發光之8個的發光二極體G( X,Y),做爲藍色發光 之4個的發光二極體Β(χ,γ)之合計16個的發光二極體 ,配置呈4x4之矩陣狀。 如圖34所示,於針對在led光源模組5〗〗之安裝基 -66- 200845423 板上之Y方向的各不同4個位置,沿著X方向,配置4 個的發光二極體R(X,Y),發光二極體G(X,Y),發光 二極體 B ( X,Y )。 發光二極體R(X,Y) ,G(X,Y) ,B(X,Y)係與圖 31所示之發光二極體L ( X,Y)同樣地,爲單導線型,於 η側面41 ( Χ,Υ)具備η型電極45 ( Χ,Υ),其背面則成 爲ρ型電極43 ( X,Υ )。 發光二極體R ( X,Y) ,G ( Χ,Υ) ,Β ( Χ,Υ)係例如 ,將η側面14 ( Χ,Υ )之一邊,對於X方向而言,以逆時 鐘旋轉略25度傾斜之姿勢,配置於安裝基板3 1上。 在LED光源模組5 1 1中,例如,於2mm2程度之範圍 ,配置16個的發光二極體R ( X,Y ) ,G ( X,Y ) ,B ( Χ,Υ)。 以下,說明LED光源模組511之ρ用電極墊片261 ( X,Y)及η用電極墊片263 (X,Y)之配置圖案。 圖3 5係爲爲了說明針對在有關本發明之第1 2實施型 態之LED光源模組51 1之LED光源模組51 1之ρ用電極 墊片261 (X,Y)及η用電極墊片263 (X,Y)的配置圖案 的圖。 對於LED光源模組5 1 1之安裝基板上,係如圖3 5所 示,形成有P用電極墊片261(X,Y)與η用電極墊片 263 ( Χ?Υ )。 ρ 用電極墊片 261 (2,1),261 (3,1),261 (4,1) ,261 ( 1,2) ,261 ( 2,2) ,261 ( 3,2) ,261 ( 4,2), -67- 200845423 261 ( 2,3 ) ,261 (3,3) ,261(1,Ο ’261 (2,4) (3,4)之形狀係爲與圖28所示之Ρ用電極墊片6 )略相同。 Ρ 用電極墊片 261(2,1) ,261(3,1) ,261 ,261(1,2) ,2 61(2,2) ,261(3,2) ,261(4 261 ( 2,3 ) ,261 (3,3) ,261(1,4) ,261(2,4) (3,4)係與ρ用電極墊片61(Χ,Υ)同樣地,具 矩形範圍261a(X,Y)與第2矩形範圍261b(X,Y〕 對於第1矩形範圍261a ( Χ,Υ )係接合發光二 背面的Ρ型電極43 (Χ,Υ),第1矩形範圍261a( 係較發光二極體之背面爲小,而在載置發光二極體 ,從正面無法看到。 如此,即使由形成第1矩形範圍26la ( χ,γ) ,而高密度安裝發光二極體之情況,亦可於與做爲 Ρ用電極墊片261 ( Χ,Υ)之間具有所期望之距離 減少電性的干擾。 第2矩形範圍261b ( Χ,Υ)係即使在接合發光 於安裝基板上之情況,亦未經由發光二極體所佔有 於表面側)。 在本實施型態之中,如圖3 4所示,將發光二 (X,Y ) ,G ( X,Y ) ’ Β ( Χ,Υ ),將其 η 側面 41 &lt; 對於X方向而言,以逆時鐘旋轉略2 5度傾斜之姿 置於安裝基板上。 由此’於做爲鄰接之4個的發光二極體r ( 2 ,261 1 ( Χ,γ (4,1 ) ,2), ,261 有第1 )° 極體之 :Χ,Υ) 之狀態 之情況 鄰接之 ,而可 二極體 (露出 極體R 〔Χ,Υ) 勢,配 :,γ), -68- 200845423 G(X,Y) ,B(X,Y)之間,產生在較發光二極體R(X,Y ),G ( X,Y) ,Β ( Χ,Υ)之 η 側面 41 ( Χ,Υ)之一邊爲 短的邊而形成各邊之接合範圍(接近於正方形之範圍)’ 並且,於該接合範圍,位置作爲鄰接之發光二極體R ( X,Y) ,G(X,Y) ,:B(X,Y))之 η 型電極 145 (Χ,Υ) 和經由導線所連接之Ρ用電極墊片261 ( Χ,Υ)。 因此,比較於以未傾斜配置發光二極體R ( X,Υ ), G ( X,Y ) ,B ( Χ,Υ )之情況,可將上述接合範圍縮小至 可接合之最小限度尺寸,可更高密度地安裝發光二極體R (X,Y ) ,G ( X,Y ) ,B ( Χ,Υ ),進而可提升相當於單 位面積之發光量。 即,不會將LED光源模組5 1 1,將其製造工程做爲困 難,而不會減少發光量,進而可小規模構成。First, on the mounting substrate 31, the electrode pads 61 (X, Y) and the electrode pads 63 (X, Y) shown in Fig. 28 are used for the ρ formed on the mounting substrate 31. The electrode pad 1, the end of the electrode pad, and the electrode pad 61 for ρ (2, Υ)~ (the first rectangular range 61a (Χ, Υ), the adhesive is applied, and each of the light-emitting two is placed The polar body L (X, Y) is fixed. Next, the n-type electrode 45 of the light-emitting diode L (1, Y), and the electrode for germanium are shown by using the line name 27 of the capillary shown in Fig. 32. A wire W (1, γ) is formed between the second rectangular ranges 61b of the spacer 61 (2, Υ). Further, by wire bonding using a capillary, as shown in Fig. 27, the light-emitting diode L (2, Y) The n-type electrode 45 (2, Y), and the spacer 6 (3, Υ) between the second rectangular range 61b (3, Y) 'line W ( 2, Y). Face 41 (i The connecting lanthanum becomes the line W (i diode [formed]) piece 61 (5, Y)&gt; above it f, as shown in (1? Y) (2, γ) thousand, the electrode 1 is used Form guide -63- 200845423 In addition, 'through the use of capillary wire bonding, as shown in Figure 27, in the light-emitting diode L (3, Y) A wire W (3, Υ) is formed between the 2n-type electrode 4 5 (3, Y) and the second rectangular range 61b ( 4, Y) of the electrode pad 61 ( 4, Y) for p. The wire bonding of the capillary, as shown in Fig. 27, the second rectangle of the n-type electrode 45 (4, Υ) of the light-emitting diode L (4, Y), and the electrode pad 61 (5, Υ) of ρ Between the range 61b (5, Υ), the wire W (4, Υ) is formed. Further, by the wire bonding using the capillary, as shown in Fig. 27, the n-type electrode 45 of the light-emitting diode L (5, Y) Between (5, Υ) and η electrode pad 63 (Υ), a wire W (5, Υ) is formed. As explained above, among the LED light source modules 11R, 11G, 11B of the projector 1, When a light-emitting diode L (?, γ) having a surface on the opposite side of the P-type electrode 43 (4, Y) and the n-type electrode 45 (5, Υ) is mounted, the light-emitting diode L ( (, Υ), in the X direction, is placed on the mounting substrate 3 1 in a posture of a slight tilt of 25 degrees in a counterclockwise rotation. Thus, as four adjacent light emitting diodes L (Χ, Υ) Between the shorter side of the light-emitting diode L (Χ, Υ), a short side is formed The range of each side (close to the range of the square), and in the joint range, the position is the n-type electrode 45 (Χ, Υ) of the adjacent light-emitting diode L (Χ, Υ) and the 连接 connected via the wire With the electrode pad 61 (Χ, Υ) 〇 Therefore, compared with the case where the light-emitting diode L (X, Y) is disposed in an untilted manner, the above-mentioned bonding range can be narrowed to the limit of the connectable wire, and can be more -64 - 200845423 为 量 ) ) ) 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极In other words, the LED light source module 1 1 R is not difficult to manufacture (using the accuracy of the conventional wire bonding) without reducing the light emission, and can be constructed on a small scale. &lt;Modification of the third embodiment&gt; Fig. 33 is a view for explaining the LED light source module 11 1 R of the present embodiment. In the above-described embodiment, as shown in Fig. 31, the case where the η side 41 (Χ, Υ) and the back surface are used is a slightly square light-emitting diode L (Χ, Υ. The LED light source mode of the present modification) The group 1 1 1R is shown in Fig. 33, and the side surface 1 4 1 (X, Y) and the back surface are slightly rectangular light-emitting diodes (Χ, Υ). However, in the example shown in Fig. 33, the illustration is shown. The nine light-emitting diodes (Χ, Υ) are arranged in a matrix of 3×3, but the number of light-emitting diodes (Χ, Υ) is not particularly limited. Even for the LED shown in FIG. The light source module 1 1 1R and the light-emitting diode M (X, Y) are disposed on the mounting substrate 31 in a posture in which the X direction is inclined by 25 degrees against the clock. Between the four adjacent light-emitting diodes Χ (Χ, Υ), a short side of one of the light-emitting diodes Χ (Χ, Υ) is formed to be a range of sides (close to a square). Further, in the range of -65-200845423, for the n-type electrode 145 (Χ, Υ) which is an adjacent light-emitting diode Μ (,, Υ), the position is connected via a wire. The second rectangular range 161b (X, Y) of the pole spacer 161 (Χ, Υ). Therefore, the above-described bonding range can be reduced to the case where the light-emitting diode M (X, Y) is disposed without tilting. By connecting the wires, the LEDs can be mounted at a higher density (Χ, Υ), which can increase the amount of illumination equivalent to the unit area. That is, the LED light source module 11 1R will not be used as a manufacturing project. It is difficult to reduce the amount of luminescence, and it can be configured on a small scale. In the above-described first embodiment, the LED light source module in which each of the R, G, and B lights is emitted is exemplified, but In the present embodiment, the case where R, G, and B light are emitted by using one LED light source module is exemplified. The overall concept view of the projector of the present embodiment is the same as that of Fig. 16. Figure 6 is a diagram showing the LED chip configuration of the LED light source module 511 of the present invention. Figure 3 is a diagram for explaining the LED chip configuration of the LED light source module 51 1 shown in Figure 16, as shown in Figure 34. The LED light source module 51 1 is a green light-emitting diode R (X, γ) which is red light-emitting, and is green. The light-emitting diodes of the light-emitting diodes (X, Y), which are the four light-emitting diodes (χ, γ) of the four blue light-emitting diodes, are arranged in a matrix of 4×4. As shown in FIG. 34, four LEDs are arranged along the X direction for different four positions in the Y direction on the mounting base-66-200845423 of the LED light source module 5 R (X, Y), light-emitting diode G (X, Y), light-emitting diode B (X, Y). The light-emitting diodes R(X, Y), G(X, Y), and B(X, Y) are of the single-conductor type, similarly to the light-emitting diode L (X, Y) shown in FIG. The η side surface 41 (Χ, Υ) includes an n-type electrode 45 (Χ, Υ), and the back surface thereof is a p-type electrode 43 (X, Υ). The light-emitting diodes R ( X, Y) , G ( Χ , Υ ) , Β ( Χ , Υ ) are, for example, one side of the η side 14 ( Χ, Υ ), which is rotated counterclockwise for the X direction. The posture of tilting at 25 degrees is disposed on the mounting substrate 31. In the LED light source module 511, for example, 16 light-emitting diodes R (X, Y), G (X, Y), B (Χ, Υ) are arranged in a range of about 2 mm 2 . Hereinafter, an arrangement pattern of the electrode pads 261 (X, Y) for ρ and the electrode pads 263 (X, Y) for η of the LED light source module 511 will be described. FIG. 3 is a diagram showing an electrode pad 261 (X, Y) for ρ and an electrode pad for η for the LED light source module 51 1 of the LED light source module 51 1 according to the first embodiment of the present invention. A diagram of the configuration pattern of the slice 263 (X, Y). On the mounting substrate of the LED light source module 511, as shown in Fig. 35, an electrode pad 261 for P (X, Y) and a pad η for η (??) are formed. ρ With electrode pads 261 (2,1), 261 (3,1), 261 (4,1) , 261 ( 1,2) , 261 ( 2,2) , 261 ( 3,2) , 261 ( 4 , 2), -67- 200845423 261 ( 2,3 ) , 261 (3,3) , 261 (1, Ο '261 (2,4) (3,4) is the shape shown in Figure 28 The electrode pads 6) are slightly the same.电极 Use electrode pads 261 (2, 1), 261 (3, 1), 261, 261 (1, 2), 2 61 (2, 2), 261 (3, 2), 261 (4 261 (2, 2, 3), 261 (3, 3), 261 (1, 4), 261 (2, 4) (3, 4) is the same as ρ electrode pad 61 (Χ, Υ), with a rectangular range 261a (X Y) and the second rectangular range 261b (X, Y). For the first rectangular range 261a (Χ, Υ), the Ρ-type electrode 43 (Χ, Υ) of the back surface of the light-emitting diode is joined, and the first rectangular range 261a (light-emitting) The back surface of the diode is small, and the light-emitting diode is placed on the front side, so that it cannot be seen from the front side. Thus, even if the light-emitting diode is mounted at a high density by forming the first rectangular range 26la (χ, γ), It is also possible to reduce the electrical interference with a desired distance between the electrode pads 261 (Χ, Υ) as the electrode. The second rectangular range 261b (Χ, Υ) is evenly bonded to the mounting substrate. In this case, it is not occupied by the light-emitting diode on the surface side. In this embodiment, as shown in FIG. 34, the light illuminates two (X, Y), G (X, Y) ' Β ( Χ , Υ ), its η side 41 &lt; for the X direction, tilted by 25 degrees against the clock The posture is placed on the mounting substrate. Thus, as the adjacent four light-emitting diodes r ( 2 , 261 1 ( Χ, γ (4, 1 ) , 2), 261 has the first 1 ° ° polar body The condition of the state: Χ, Υ) is adjacent, but the diode (exposed pole R Χ [Χ, Υ) potential, with: γ), -68- 200845423 G (X, Y), B (X Between Y and Y, a short side is formed on one side of the η side 41 (Χ, Υ) of the light-emitting diode R(X, Y), G (X, Y), Β (Χ, Υ) The joint range of each side (close to the range of the square)' and, in the joint range, the position as the adjacent light-emitting diode R (X, Y), G(X, Y), : B(X, Y)) The n-type electrode 145 (Χ, Υ) and the electrode pad 261 (Χ, Υ) connected via a wire. Therefore, compared with the case where the light-emitting diodes R ( X, Υ ), G ( X, Y ), B ( Χ, Υ ) are disposed in an untilted manner, the above-described bonding range can be reduced to the minimum size that can be joined. The light-emitting diodes R (X, Y), G (X, Y), B ((, Υ) are mounted at a higher density, and the amount of luminescence equivalent to a unit area can be increased. That is, the LED light source module 51 is not difficult to manufacture, and the amount of light emission is not reduced, and it can be constructed on a small scale.

以下,說明針對在LED光源模組511之ρ用電極墊 片261 (X,Y) ,n用電極墊片263 (Y)及發光二極體R (X,Y) ,G ( Χ,Υ) ,Β ( Χ,Υ)之間的連接關係。 針對在圖3 4,將連接於發光二極體R ( X,Υ ) ,G ( Χ,Υ) ,:6(乂八)之11型電極45(\,丫)之導線,表示爲 W ( X, Υ ) 〇 在LED光源模組5 1 1中,如圖3 4所示,串聯連接圖 3 4中左上之作爲R發光之4個的發光二極體R ( 1,1 ), R ( 2,1 ) ,R ( 2,2 ) ,R ( 1,2 )。 另外,串聯連接圖3 4中右下之作爲β發光之4個的 發光二極體 B(4,4) ,B(3,4) ,B(3,3) ,B(4,3)。 -69- 200845423 另外,串聯連接圖3 4中右上之作爲G發光 發光二極體 G(4,l) ,G(3,1) ,G(3,2), ο 另外,串聯連接圖34中左下之作爲G發光 發光二極體 R(l,3) ,G(2,3) ,G(2,4), ο 關於R發光之連接關係係如以下所述。 P用電極墊片26 1 ( 1,1 )則做爲接地。 p用電極墊片26 1 (1,1)係與發光二極體R p型電極43 ( 1,1 )直接連接。 發光二極體R ( 1,1 )之η型電極45 ( 1,1 ) 線W2 ( 1,1 )而連接於ρ用電極墊片261 ( 2,1 ) 形範圍 261b ( 2,1 )。 P用電極墊片261 ( 2,1 )之第1矩形範圍 )係直接連接於發光二極體R ( 2,1)之ρ型電才 )° 發光二極體R(2,l)之η型電極45(2,1) 線W2 ( 2,1 )而連接於ρ用電極墊片261 ( 2,2 ) 形範圍 261b ( 2,2)。 ρ用電極墊片261(2,2)之第1矩形範圍 )係直接連接於發光二極體R ( 2,2 )之ρ型電〗 )° 發光二極體R(2,2)之η型電極45(2,2) 線W2 ( 2,2 )而連接於ρ用電極墊片261 ( 1,2 ) 之4個的 G ( 4,2 ) 之4個的 G ( 1,4 ) (1,1 )之 係藉由導 之第2矩 26 1a ( 2,1 藍 43 ( 2,1 係藉由導 之第2矩 261a ( 2,2 1 43 ( 2,2 係藉由導 之第2矩 -70- 200845423 形範圍 261b ( 1,2)。 P用電極墊片261 ( 1,2)之第1矩形範圍261a ( 1,2 )係直接連接於發光二極體R ( 1,2)之p型電極43 ( 1,2 )° * 發光二極體R(l,2)之η型電極45(1,2)係藉由導 線W2 ( 1,2 )而連接於η用電極墊片263 ( 2 )。 關於Β發光之連接關係係如以下所述,串聯地連接具 備做爲接地之Ρ用電極墊片261 ( 4,4 )之發光二極體Β ( 4,4),和發光二極體Β(3,4),和發光二極體Β(3,3) ,和發光二極體Β ( 4,3 ),並發光二極體Β ( 4,3 )之η 型電極45 ( 4,3 )則連接於η用電極墊片263 ( 3 )。 有關圖34中右上之G發光之連接關係係如以下所述 〇 串聯地連接具備做爲接地之Ρ用電極墊片26 1 ( 4,2) 之發光二極體G(4,2),和發光二極體Β(3,3),和發 光二極體B(3,l),和發光二極體B(4,l),並發光二 極體Β ( 4,1 )之η型電極45 ( 4,1 )則連接於η用電極墊 片 263 ( 1 ) 〇 有關圖34中左下之G發光之連接關係係如以下所述 〇 · 串聯地連接具備做爲接地之Ρ用電極墊片261 ( 1,3 ) 之發光二極體G(l,3),和發光二極體Β(2,3),和發 光二極體Β(2,4),和發光二極體B(l,4),並發光二 極體Β ( 1,4)之η型電極45 ( 1,4)則連接於η用電極墊 -71 - 200845423 片 263 ( 4 ) 〇 以下,說明本實施型態之LED光源模組5 1 1的動作 例。 針對在LED光源模組5 1 1 ’係當投入電源時,對於η 用電極墊片263(1) ,263(4)係施加G發光用之電壓 ,對於η用電極墊片263(2)係施加R發光用之電壓’ 對於η用電極墊片263 (3)係施加Β發光用之電壓則。 由此,於連接爲串聯之發光二極體R ( 1,1 ) ,R ( 2.1 ) ,R(2,2),尺(1,2)之0型電極43(又,丫),與 η 型電極4 5 ( X,Υ )之間,施加R發光用之特定電壓,而此 等則做爲R發光。 另外,於連接爲串聯之發光二極體B ( 4,4 ) ,B( 3,4) ,B(3,3) ,8(4,3)之?型電極43(乂,丫),與 η 型電極45 ( χ,γ)之間,施加Β發光用之特定電壓,而此 等則做爲Β發光。 另外,於連接爲串聯之發光二極體〇 ( 4,2 ) ,G ( 3.2 ) ,G ( 3,1 ) ,G ( 4,1 )之 p 型電極 43 ( X,Y),與 η 型電極4 5 ( X,Υ )之間,施加G發光用之特定電壓,而此 等則做爲G發光。 另外,於連接爲串聯之發光二極體G ( I3 ) ’ G ( 2,3) ,G ( 2,4) ,G ( 1,4)之 p 型電極 43 ( X,Y) ’與 η 型電極4 5 ( X,Υ )之間,施加G發光用之特定電壓,而此 等則做爲G發光。 針對在本實施型態,發光二極體R ( X5Y) ,G ( Χ,Υ -72- 200845423 ),B ( X,Υ )係從其內部構成等之差異,外形形狀•尺 寸則有多少不同,但,該差異係爲本發明所稱之[外形略 相同]之範圍內。 如以上說明,在投影機501之中,由使用LED光源 模組5 1 1之情況,可以單數之光源模組進行R,G,B發 光。 LED光源模組2 1 1係與第1實施型態同樣地,將發光 二極體 R ( X,Y) ,G ( Χ,Υ) ,Β ( Χ,Υ),對於 X 方向 而言,以逆時鐘旋轉略25度傾斜之姿勢,配置於安裝基 板上,因此可高密度安裝。 另外,LED光源模組5 1 1係比較於發光二極體R ( X,Y) ,Β (Χ,Υ),由將發光亮度或略一半之發光二極體 G(X,Y),做爲發光二極體R(X,Y) ,B(X,Y)之2倍 的數量配置情況,可將R,G,B發光做爲略相同。 更加地,在LED光源模組51 1之中,由串聯連接發 光二極體R ( X,Y) ,G ( Χ,Υ) ,Β ( Χ,Υ)之情況,可將 適合各色之發光的驅動電壓,施加在發光二極體R(X&gt;Y ),G ( X,Y ) ,B ( X,Y )。 本發明並不限定於上述之實施型態。 即,當業者係針對在本發明之技術範圍或其均等;^ _ 圍內,關於上述之實施型態之構成要素,亦可做各種變更 ,組合,副組合,以及替代。 在上述之實施型態中,係如圖27等所示,例示過將 複數之發光二極體,於列方向,做爲串聯地連接情況,例 -73- 200845423 如,亦可做爲於行方向,串聯地連接,或於傾斜方向,串 聯地連接。 另外,在上述之實施型態之中,例示過串聯連接發光 二極體之情況,但亦可並聯連接一部分之發光二極體。 在上述之實施型態之中,例示過將發光二極體,配置 爲5x5,3x3,4x4之矩陣狀之情況,但如爲將複數之發光 二極體配置爲矩陣狀之構成,其數量並無特別特定。 另外,在上述之實施型態之中,例示過做爲發光二極 體 L ( X5Y) ,M ( X,Y) ,R ( Χ,Υ) ,G ( X,Y) ,B ( X,Y ),於發光面(n側面)之略中央,位置有n型電極 45 ( Χ5Υ )之構成,但亦可使用於發光面之端部,位置有 η型電極之發光二極體。 另外,亦可於發光面位置ρ型電極,於背面位置η型 電極,更加地,ρ型電極及η型電極之形狀並無特別限定 〇 另外,在上述之實施型態之中,發光二極體L( Χ,Υ ),M(X,Y) ,R(X,Y) ,G(X,Y) ,B(X,Y)之外 形係如爲直方體,並無特別限定。Hereinafter, an electrode pad 261 (X, Y) for ρ in the LED light source module 511, an electrode pad 263 (Y) for n, and a light-emitting diode R (X, Y), G (Χ, Υ) will be described. , Β (Χ, Υ) the connection relationship. For the wire of the type 11 electrode 45 (\, 丫) connected to the light-emitting diode R (X, Υ), G (Χ, Υ), : 6 (乂8), as shown in Fig. 34, W ( X, Υ ) 〇 In the LED light source module 5 1 1 , as shown in FIG. 34 , the light-emitting diodes R ( 1,1 ), R (the four upper electrodes of R light) in the upper left of FIG. 34 are connected in series. 2,1 ) , R ( 2,2 ) , R ( 1,2 ). Further, four light-emitting diodes B (4, 4), B (3, 4), B (3, 3), and B (4, 3) which are four light-emitting lights in the lower right of Fig. 34 are connected in series. -69- 200845423 In addition, the upper right side of FIG. 34 is connected in series as G light-emitting diode G(4, l), G(3, 1), G(3, 2), ο in addition, connected in series in FIG. The lower left side is a G light-emitting diode R(l, 3), G(2, 3), G(2, 4), and the connection relationship with respect to R light is as follows. The electrode pad 26 1 (1, 1) for P is used as a ground. The p-electrode spacer 26 1 (1, 1) is directly connected to the light-emitting diode R p-type electrode 43 ( 1,1 ). The n-type electrode 45 (1,1) of the light-emitting diode R (1,1) is connected to the electrode pad 261 (2,1) of the range 261b (2,1) by the line W2 (1,1). The first rectangular range of the electrode pad 261 for P (2,1) is directly connected to the p-type electrode of the light-emitting diode R (2,1). η The light-emitting diode R(2,l) The type electrode 45 (2, 1) is connected to the ρ electrode pad 261 (2, 2) by the line W2 (2, 1) in the range 261b (2, 2). The first rectangular range of the electrode pad 261 (2, 2) for ρ is directly connected to the p-type electrode of the light-emitting diode R ( 2, 2 ) ° ° η of the light-emitting diode R (2, 2) The electrode 45 (2, 2) is connected to the G (1, 4) of four G ( 4, 2 ) of the four electrode pads 261 ( 1, 2 ) by the line W2 ( 2, 2 ) ( 1,1) is guided by the second moment 26 1a ( 2,1 blue 43 ( 2,1 is guided by the second moment 261a ( 2,2 1 43 ( 2,2 by the guide 2 moment -70- 200845423 Shape range 261b (1, 2). The first rectangular range 261a (1, 2) of the electrode pad 261 (1, 2) for P is directly connected to the light-emitting diode R (1, 2) The p-type electrode 43 (1, 2) ° * The n-type electrode 45 (1, 2) of the light-emitting diode R (1, 2) is connected to the electrode pad for n by the wire W2 (1, 2) The sheet 263 ( 2 ). The connection relationship of the Β illuminating light is connected to the illuminating diode Β ( 4, 4) having the electrode pad 261 ( 4, 4 ) for grounding as a ground, as described below, and Light-emitting diode Β (3, 4), and light-emitting diode Β (3, 3), and light-emitting diode Β (4, 3), and light-emitting diode Β (4, 3) n-type electrode 45 ( 4,3 ) is connected to the η electrode pad 263 ( 3 ) The connection relationship of the G light emission in the upper right of FIG. 34 is such that the light-emitting diodes G (4, 2) having the electrode pads 26 1 ( 4, 2) for grounding are connected in series as described below, and Light-emitting diode Β (3, 3), and light-emitting diode B (3, l), and light-emitting diode B (4, l), and light-emitting diode Β (4, 1) n-type electrode 45 (4,1) is connected to the η electrode pad 263 ( 1 ) 〇 The connection relationship of the G illuminating in the lower left side in Fig. 34 is as follows. 串联 · Connected in series with an electrode pad for grounding 261 (1, 3) light-emitting diode G (l, 3), and light-emitting diode Β (2, 3), and light-emitting diode Β (2, 4), and light-emitting diode B (l , 4), and the n-type electrode 45 (1, 4) of the light-emitting diode Β (1, 4) is connected to the η electrode pad - 71 - 200845423 piece 263 ( 4 ) 〇 hereinafter, the embodiment is described An example of the operation of the LED light source module 5 1 1 . When the power is applied to the LED light source module 5 1 1 ', the voltage for the G light is applied to the η electrode pads 263(1) and 263(4). For the η electrode pad 263 (2), the voltage for R illuminating is applied. 263 (3) lines with the voltage applied to the light emitting Β. Thus, the junction-connected light-emitting diodes R (1,1), R (2.1), R(2,2), the ruler (1,2) of the 0-type electrode 43 (again, 丫), and η Between the type electrodes 4 5 (X, Υ), a specific voltage for R light emission is applied, and these are used as R light. In addition, in the connection of the series of LEDs B (4,4), B (3,4), B (3,3), 8 (4,3)? A specific voltage for the luminescence is applied between the type electrode 43 (乂, 丫) and the η-type electrode 45 (χ, γ), and these are used as Β luminescence. In addition, the p-type electrode 43 (X, Y) and the n-type are connected to the series of light-emitting diodes 〇(4,2), G(3.2), G(3,1), G(4,1) Between the electrodes 4 5 (X, Υ), a specific voltage for G luminescence is applied, and these are used as G luminescence. In addition, the p-type electrode 43 (X, Y) ' and the n-type are connected to the LEDs G ( I3 ) ' G ( 2,3) , G ( 2,4) , G ( 1,4) connected in series. Between the electrodes 4 5 (X, Υ), a specific voltage for G luminescence is applied, and these are used as G luminescence. In the present embodiment, the difference in shape, size, and size of the light-emitting diodes R (X5Y), G (Χ, Υ -72- 200845423), and B (X, Υ) are different from the inside. However, the difference is within the scope of the invention [slightly the same shape]. As described above, in the case of using the LED light source module 51 1 in the projector 501, R, G, and B light emission can be performed by a single light source module. In the same manner as in the first embodiment, the LED light source module 2 1 1 has the light-emitting diodes R (X, Y), G (Χ, Υ), Β (Χ, Υ), for the X direction, The counterclockwise rotation is slightly inclined at 25 degrees and is placed on the mounting substrate, so it can be mounted at a high density. In addition, the LED light source module 5 1 1 is compared with the light-emitting diode R (X, Y), Β (Χ, Υ), and is made of a light-emitting diode or a light-emitting diode G (X, Y). For the arrangement of the number of the light-emitting diodes R(X, Y) and B(X, Y) twice, the R, G, and B light rays can be made slightly the same. Further, in the case of the LED light source module 51 1 , the light-emitting diodes R ( X, Y), G ( Χ, Υ), Β ( Χ, Υ) are connected in series, and the light suitable for each color can be used. The driving voltage is applied to the light-emitting diodes R (X &gt; Y ), G (X, Y), B (X, Y). The present invention is not limited to the above-described embodiments. That is, the manufacturer may make various changes, combinations, sub-combinations, and substitutions with respect to the constituent elements of the above-described embodiments, within the technical scope of the present invention or the equivalent thereof. In the above-described embodiment, as shown in FIG. 27 and the like, it is exemplified that a plurality of light-emitting diodes are connected in series in the column direction, and, for example, -73-200845423 can also be used as a line. The directions are connected in series or in series in an oblique direction. Further, in the above-described embodiment, the case where the light-emitting diodes are connected in series is exemplified, but a part of the light-emitting diodes may be connected in parallel. In the above-described embodiment, the case where the light-emitting diodes are arranged in a matrix of 5×5, 3×3, and 4×4 is exemplified, but the number of the light-emitting diodes is arranged in a matrix, and the number thereof is Not specifically specific. Further, among the above-described embodiments, exemplified as the light-emitting diodes L (X5Y), M (X, Y), R (Χ, Υ), G (X, Y), B (X, Y) The n-type electrode 45 (Χ5Υ) is located at the center of the light-emitting surface (n-side), but it can also be used at the end of the light-emitting surface, and the light-emitting diode of the n-type electrode is positioned. In addition, the shape of the p-type electrode on the light-emitting surface and the n-type electrode on the back surface may further include the shape of the p-type electrode and the n-type electrode. Further, in the above-described embodiment, the light-emitting diode is The form of the body L ( Χ, Υ ), M (X, Y), R (X, Y), G (X, Y), and B (X, Y) is a rectangular parallelepiped, and is not particularly limited.

另外,在上述之實施型態之中,例示過將發光二極體 L ( X,Y) ,R ( X,Y ) ,G ( Χ,Υ) ,Β ( Χ,Υ),對於 X 方向而言’以逆時鐘旋轉略25度傾斜之姿勢,配置於安 裝基板之情況,但該角度係如爲〇。,9 0。,1 8 0。以外,並 無特別限定’而該角度係與做爲鄰接之發光二極體之間的 距離’以及做爲接合範圍,將必要的尺寸,由基礎所決定 -74- 200845423 另外,在上述之實施型態之中,做爲投影機1,501 之方式,例示過DLP (登錄商標)方式’但亦可使用 3LCD 方式或 LCOS( Liquid Crystal On Silicon)方式, 在此,使用3LCD方式或LC OS方式係從LED光源模組的 光,使用液晶面板,控制因應晝像資料’以畫素單位反射 或透過。 另外,在上述之實施型態之中,做爲本發明之發光元 件,例示過LED,但亦可使用半導體雷射。 另外,在上述之實施型態之中’例不過將本發明之發 光裝置,使用於投影機情況,但亦可將本發明之發光裝置 ,使用於投影機以外之車輛的車頭燈,照明裝置,顯示裝 置之背照光等。 【圖式簡單說明】 [圖1 ]係爲有關本發明之第1實施型態之投影機的全 體構成圖。 [圖2]係爲爲了說明圖1所示之LED光源模組之LED 晶片配置的圖。 [圖3]係爲將圖2所示之LED光源模組,從箭頭A的 方向而視的圖。 [圖4]係爲圖2所示之發光二極體L(X,Y)之外觀斜 視圖。 [圖5]係爲爲了說明有關第1實施型態之變形例之 -75- 200845423 LED光源模組之LED晶片配置的圖。 [圖6]係爲爲了說明有關本發明之第2實施型態之 LED光源模組之LED晶片配置的圖。 [圖7]係爲爲了說明有關本發明之第2實施型態之變 形例之LED光源模組之LED晶片配置的圖。 [圖8]係爲爲了說明有關第3實施型態之變形例之 LED光源模組之LED晶片配置的圖。 [圖9]係爲爲了說明有關本發明之第3實施型態之變 形例之LED光源模組之LED晶片配置的圖。 [圖1 0 ]係爲爲了說明本發明之寳施型態之變形例的圖 〇 [圖11]係爲爲了說明LED光源模組之LED晶片配置 的圖。Further, among the above-described embodiments, the light-emitting diodes L (X, Y), R (X, Y), G (Χ, Υ), Β (Χ, Υ) are exemplified for the X direction. In the case where the image is tilted by a slight angle of 25 degrees against the clock, it is placed on the mounting substrate, but the angle is 〇. , 9 0. , 1 800. In addition, it is not particularly limited to 'the angle between the angle and the light-emitting diode that is adjacent to each other' and the size of the joint is determined by the basics. -74-200845423 In the mode, as the projector 1,501, the DLP (registered trademark) method is exemplified, but the 3LCD method or the LCOS (Liquid Crystal On Silicon) method can also be used. Here, the 3LCD method or the LC OS method is used. The light from the LED light source module is controlled by the liquid crystal panel to control the image data in the pixel unit to reflect or transmit. Further, among the above-described embodiments, the LED is exemplified as the light-emitting element of the present invention, but a semiconductor laser can also be used. Further, in the above-described embodiment, the light-emitting device of the present invention may be used in a projector, but the light-emitting device of the present invention may be used in a headlight or a lighting device of a vehicle other than the projector. Backlighting of the display device, etc. [Brief Description of the Drawings] Fig. 1 is a view showing the overall configuration of a projector according to a first embodiment of the present invention. FIG. 2 is a view for explaining an LED wafer configuration of the LED light source module shown in FIG. 1. FIG. Fig. 3 is a view in which the LED light source module shown in Fig. 2 is viewed from the direction of arrow A. Fig. 4 is a perspective view showing the appearance of the light-emitting diode L (X, Y) shown in Fig. 2. Fig. 5 is a view for explaining an arrangement of LED chips of the LED light source module of the -75-200845423 modification of the first embodiment. Fig. 6 is a view for explaining an LED wafer arrangement of an LED light source module according to a second embodiment of the present invention. Fig. 7 is a view for explaining an LED wafer arrangement of an LED light source module according to a modification of the second embodiment of the present invention. Fig. 8 is a view for explaining an LED wafer arrangement of an LED light source module according to a modification of the third embodiment. Fig. 9 is a view for explaining an LED wafer arrangement of an LED light source module according to a modification of the third embodiment of the present invention. [Fig. 10] is a view for explaining a modification of the treasure mode of the present invention. Fig. 11 is a view for explaining the arrangement of LED chips of the LED light source module.

[圖1 2 ]係爲將圖1 1所示之L E D光源模組,從箭頭A 的方向而視的圖。 [圖1 3 ]係爲爲了說明有關第4實施型態之變形例之 LED光源模組之LED晶片配置的圖。 [圖14]係爲爲了說明有本發明之關第5實施型%之 LED光源模組之LED晶片配置的圖。 [圖15]係爲爲了說明有關第5實施型態之變形例之 LED光源模組之LED晶片配置的圖。 [圖1 6 ]係爲有關本發明之第6實施型態之投影機的全 體構成圖。 [圖17]係爲爲了說明圖16所示之LED光源模組51 1 -76- 200845423 之LED晶片配置的圖。 [圖18]係爲爲了說明LED光源模組511之變形例的 圖。 [圖19]係爲有關本發明之第7實施型態之LED光源 模組之外觀斜視圖。 [圖20]係爲爲將圖19所示之LED光源模組,從側面 方向而視的圖。 [圖21]係爲爲將圖19所示之LED光源模組,從平面 方向而視的圖。 [圖22]係爲爲了說明有本發明之關第8實施型態之 LED光源模組之平面側的構成圖。 [圖23]係爲爲了說明有本發明之關第8實施型態之 LED光源模組之變形例的構成圖。 [圖24]係爲爲了說明有本發明之關第8實施型態之 LED光源模組之其他變形例的構成圖。 [圖25]係爲爲了說明有本發明之關第9實施型態之 LED光源模組之平面側的構成圖。 [圖26]係爲爲了說明有本發明之關第1〇實施型態之 LED光源模組之平面側的構成圖。 [圖27]係爲爲了說明LED光源模組之LED晶片配置 的圖。 [圖2 8]爲說明LED光源模組之p用電極銲墊及η用 電極靜塾之圖案之圖。 [圖29]係爲爲了說明LED光源模組之ρ用電極墊片 -77- 200845423 及η用電極墊片之圖案的圖。 [圖3 0]係爲LED光源模組之LED晶片配置的外觀斜 視圖。 [圖3 1]係爲圖27所示之發光二極體L ( X,Y )之外觀 斜視圖。 [圖3 2]係爲爲了說明使用毛細管之線接合的圖。 [圖33]係爲爲了說明有關第11實施型態之變形例之 LED光源模組之LED晶片配置的圖。 [圖34]係爲爲了說明LED光源模組之LED晶片配置 的圖。 [圖35]係爲爲了說明圖34所示之LED光源模組之p 用電極墊片及η用電極墊片之圖案的圖。 【主要元件符號說明】 1 :投影機 11R,11G,11Β,11R,llRa,411R,5 1 1R : LED 光 源模組 1 3 :光學系 1 5 :聚光透鏡 17 : DMD 1 9 :投影透鏡 21 :屏幕 L ( X,Y) ,L ( Χ,Υ):發光二極體 Wl,W2,W3,W4,W5 ( Χ,Υ ):導線 -78- 200845423 43 ( Χ,Υ) 45 ( Χ,Υ) 502 :分批I 61a ( Χ,Υ ) 6 1 b ( X,Υ ) L ( Χ,Υ), Χ,Υ):發光二 ^ 343 ( Χ,Υ ) : η 型電極 345 ( Χ,Υ ) : ρ 型電極 分器 ,261a ( Χ,Υ):第1矩形範圍 ’ 261b ( Χ,Υ):第2矩形範圍 N(X,Y) ,R(X,Y) ,G(X,Y) ,B( :體[Fig. 1 2] is a view in which the L E D light source module shown in Fig. 11 is viewed from the direction of the arrow A. Fig. 13 is a view for explaining an LED wafer arrangement of an LED light source module according to a modification of the fourth embodiment. Fig. 14 is a view for explaining the arrangement of LED wafers of the LED light source module of the fifth embodiment of the present invention. Fig. 15 is a view for explaining an LED wafer arrangement of an LED light source module according to a modification of the fifth embodiment. [Fig. 16] Fig. 16 is a general configuration diagram of a projector according to a sixth embodiment of the present invention. FIG. 17 is a view for explaining an LED wafer configuration of the LED light source modules 51 1 - 76 to 200845423 shown in FIG. Fig. 18 is a view for explaining a modification of the LED light source module 511. Fig. 19 is a perspective view showing the appearance of an LED light source module according to a seventh embodiment of the present invention. Fig. 20 is a view showing the LED light source module shown in Fig. 19 as viewed from the side direction. Fig. 21 is a view in which the LED light source module shown in Fig. 19 is viewed from a plane direction. Fig. 22 is a view showing the configuration of the plane side of the LED light source module of the eighth embodiment of the present invention. Fig. 23 is a configuration diagram for explaining a modification of the LED light source module of the eighth embodiment of the present invention. Fig. 24 is a configuration diagram for explaining another modification of the LED light source module of the eighth embodiment of the present invention. Fig. 25 is a view showing the configuration of the plane side of the LED light source module of the ninth embodiment of the present invention. Fig. 26 is a view showing the configuration of the plane side of the LED light source module of the first embodiment of the present invention. Fig. 27 is a view for explaining the arrangement of LED chips of the LED light source module. [Fig. 28] is a diagram for explaining the pattern of the electrode pad for p and the electrode for η of the LED light source module. FIG. 29 is a view for explaining the pattern of the electrode pads -77 to 200845423 and the electrode pads for n of the LED light source module. [Fig. 30] is a perspective view of the appearance of the LED wafer configuration of the LED light source module. Fig. 31 is an oblique perspective view showing the light-emitting diode L (X, Y) shown in Fig. 27. [Fig. 3 2] is a view for explaining the wire bonding using a capillary. Fig. 33 is a view for explaining the arrangement of LED chips of the LED light source module according to a modification of the eleventh embodiment. Fig. 34 is a view for explaining the arrangement of LED chips of the LED light source module. Fig. 35 is a view for explaining the pattern of the p-electrode pad and the n-electrode pad of the LED light source module shown in Fig. 34. [Description of main component symbols] 1 : Projector 11R, 11G, 11Β, 11R, llRa, 411R, 5 1 1R : LED light source module 1 3 : Optical system 1 5 : Condenser lens 17 : DMD 1 9 : Projection lens 21 : Screen L ( X, Y) , L ( Χ, Υ): Light-emitting diodes Wl, W2, W3, W4, W5 ( Χ, Υ ): Wire -78- 200845423 43 ( Χ, Υ) 45 ( Χ, Υ) 502 : Batch I 61a ( Χ, Υ ) 6 1 b ( X, Υ ) L ( Χ, Υ), Χ, Υ): illuminate two ^ 343 ( Χ, Υ ) : η-type electrode 345 ( Χ, Υ ) : ρ-type electrode divider, 261a ( Χ, Υ): 1st rectangle range ' 261b ( Χ, Υ): 2nd rectangle range N(X, Y) , R(X, Y) , G(X, Y) , B ( : body

-79--79-

Claims (1)

200845423 十、申請專利範圍 1. 一種發光裝置,將第1之電極、和與該第1之電極 具有逆極性的第2之電極備於同一表面,面發光之前述表 面側之2次元形狀爲略矩形,將外形互爲略相同之由複數 發光元件,各別複數配置於相互正交之列方向及行方向的 發光裝置中,其特徵乃令鄰接於前述列方向且以同姿態配 置之前述發光元件之異極間,以導線連接,形成連接列, 於前述行方向,與前述連接列同一之列則重覆複數配置, 前述導線乃對於前述列方向而言,配置呈非平行者。 2·如申請專利範圍第1項之發光裝置,其中乃前述行 方向之位置,與屬於該連接列之第奇數個之前述發光元件 之前述行方向之位置相同,與屬於該連接列之第偶數個之 前述發光元件之前述行方向之位置互爲相同,且與前述第 奇數個之發光元件之行方向位置不同。 3 ·如申請專利範圍第1項之發光裝置,其中,沿前述 矩形之對角線,位於前述第1之電極與前述第2之電極, 前述複數之發光元件乃配置呈矩陣狀。 4.一種投影機,其特徵乃具有將互爲不同之色以時分 割加以發光的複數之發光手段、和將來自前述發光裝置之 光線,對應於畫像資料,以畫素單位加以反射或透過,向 投影方向射出之光控制手段;前述發光手段乃使第1電極 '和具有與該第1之電極逆極性之第2之電極,備於同一 表面側,面發光之前述表面側之2次形狀爲略矩形,將互 爲外形略同之複數發光元件,各別複數配置於相互正交之 -80- 200845423 列方向及行方向之發光裝置中,令鄰接於前述列方向且以 同姿態配置之前述發光元件之異極間,以導線連接,形成 連接列,於前述行方向,與前述連接列同一之列則重覆複 數配置,前述導線乃對於前述列方向而言,配置呈非平行 者。 5. —種發光裝置,將第1之電極、和與該第1之電極 具有逆極性的第2之電極備於同一表面,面發光之前述表 面側之2次元形狀爲略矩形,將外形互爲略相同之由複數 發光元件,各別於相互正交之列方向、行方向,以一定間 隔加以複數配置的發光裝置中,其特徵乃於每奇數行與偶 數行之前述發光元件,以同姿態配置之前述發光元件之異 極,順序以導線連接,連接呈直列,使前述導線位在鄰接 於前述行方向之前述發光元件間地,使偶數行之前述發光 元件對於奇數行之前述發光元件而言,配置於向行方向偏 移之位置。 6. 如申請專利範圍第5項之發光裝置,其中,前述偏 移量爲前述行方向之各列間隔之1 /2。 7. 如申請專利範圍第6項之發光裝置,其中,前述第 1之電極及前述第2之電極在於矩形之對角方向’使前述 對角方向與前述列之方向一致地,配置前述各元件’奇數 行與偶數移在前述列方向,在於僅偏移各行之間隔之1/2 的位置。 ’ 8.如申請專利範圍第5項之發光裝置,其中,具有各 別發光紅色、綠色及藍色之前述發光元件’直列連接發同 -81 - 200845423 色光之複數之前述發光元件。 9. 一種發光裝置,其特徵乃將第1之電極及具有與該 第1之電極逆極性之第2之電極,備於同一表面側之複數 之發光元件,向列方向直列連接構成之發光元件群中,偶 數行之前述發光元件群對於奇數行之前述發光元件群而言 ,向列方向偏移特定量而定位地,配置於基板上,前述各 發光元件群乃使奇數列之前述發光元件與偶數列之前述發 光元件,對向前述表面之一部分的姿勢下,具有連接奇數 列之前述發光元件之前述第1之電極與偶數列之前述發光 元件之前述第2之電極的層積構造,來自前述偶數行之發 光元件群之端部之前述發光元件的導線則位於該發光元件 群與在行方向鄰接之前述奇數行之發光元件群間,來自前 述奇數行之發光元件群之端部之前述發光元件的導線則位 於該發光元件群與在行方向鄰接之前述偶數行之發光元件 群間。 10. 如申請專利範圍第9項之發光裝置,其中,前述 導線乃較前述層積之發光元件之光取出側表面,更位於前 述基板側。 1 1. 一種投影機,其特徵乃具有將互爲不同之色以時 分割加以發光的複數之發光手段、和將來自前述發光裝置 之光線,對應於畫像資料,以畫素單位加以反射或透過, 向投影方向射出之光控制手段;前述發光手段乃使第1電 極、和具有與該第1之電極逆極性之第2之電極,備於同 一表面側,面發光之前述表面側之2次形狀爲略矩形,將 -82- 200845423 互爲外形略同之複數發光元件,相互於正交之列、行方向 ,以各別一定之間隔複數配置之發光裝置中,於各前述之 列,於每一奇數行與偶數行之前述發光元件,以同姿勢配 置之前述發光元件之不同極,則順序以導線連接,連接呈 直列,使前述導線位於鄰接在前述行方向之前述發光元件 間地,偶數行之前述發光元件乃對於奇數行之發光元件而 言,配置於向行方向偏移之配置者。 12.—種發光裝置,其特徵乃成爲具備形成於發光面 之第1之電極、和與該第1之電極具有逆極性之形成於與 前述發光面相反側之面的第2之電極的略直方體,外淨略 相同化之複數發光元件則在安裝基板上配置呈矩陣狀,前 述各個複數之發光元件則令前述發光面之矩形之各邊,對 於前述矩陣之列方向或行方向而言,傾斜而配置,在不佔 有形成於鄰接之4個前述發光元件間之前述發光元件的前 述安裝基板上之範圍,位有導通在該4個發光元件之一個 之前述發光元件之前述第2之電極的電極墊片,前述4個 之發光元件中,前述一個發光元件之外的發光元件之前述 第1之電極、和位於前述未佔有之前述安裝基板上之範圍 之前述電極墊片則藉由導線加以連接。 1 3 .如申請專利範圍1 2項之發光裝置,其中,前述電 極墊片乃具有位於前述未佔有安裝基板上之範圍的第1之 範圍、介入存在於前述發光元件之前述第2之電極與前述 安裝基板間的第2之範圍。 14.如申請專利範圍第12項之發光裝置,其中,前述 -83- 200845423 第2之範圔爲沿前述發光面之2次元方向,位於前述發光 元件所佔有之範圍之內側,且較該範圍面積爲小者。 15. 如申請專利範圍第12項之發光裝置,其中,沿一 方向而定位的複數之前述發光元件之則經由導線直接連接 〇 16. 如申請專利範圍第12項之發光裝置,其中,前述 鄰接之前述發光元件之則經由導線直接連接。 17. 如申請專利範圍第12項之發光裝置,其中,具有 各別發光紅色、綠色及藍色之前述發光元件,直列連接發 同色光之複數之前述發光元件。 18. —種發光裝置,其特徵乃成爲具備形成於發光面 之第1之電極、和與該第1之電極具有逆極性之形成於與 前述發光面相反側之面的第2之電極的略直方體’外形略 相同之複數發光元件則在安裝基板上配置呈矩陣狀’正交 於第1之前述發光元件之前述發光面的第1之側面之一部 分則具備與鄰接於前述第1之發光元件之第2之前述發光 元件之第2之側靣對向,鄰接於前述第1之側面之前述一 部分以外之部分,未配置前述發光元件之第1之範圍’和 在前述第1之發光元件與安裝基板間,連接於前述第1之 發光元件之前述第2之電極的第2之範圍所成電極圖案, 前述電極圖案之前述第1之範圍乃與述第1之發光元件以 外之前述發光元件之前述第1之電極、藉由導線加以連接 〇 1 9 · 一種投影機,其特徵乃具有將互爲不同之顏色以 -84- 200845423 時分割加以發光的複數之發光手段,和將來自前述發光裝 置之光線,對應於畫像資料,以畫素單位加以反射或透過 ,向投影方向射出之光控制手段;前述發光手段乃成爲具 備形成於發光面之第1之電極、和與該第1之電極具有逆 極性之形成於與前述發光面相反側之面的第2之電極的略 直方體,外形略相同化之複數發光元件則在安裝基板上配 置呈矩陣狀,前述各個複數之發光元件則令前述發光面之 矩形之各邊,對於前述矩陣之列方向或行方向而言’傾斜 而配置,形成於鄰接之4個之前述發光元件間’在不佔有 該4個之前述發光元件的前述安裝基板上之範圍,位有導 通在該4個發光元件之一個之前述發光元件之前述第2之 電極的電極墊片,該電極墊片藉由前述未佔有之前述安裝 基板上之範圍,於前述4個之發光元件中之前述一個之發 光元件以外之發光元件之前述第1之電極,藉由導線加以 連接。 2 0.—種投影機,其特徵乃具有將互爲不同之顏色以 時分割加以發光的複數之發光手段,和將來自前述發光裝 置之光線,對應於畫像資料,以畫素單位加以反射或透過 ,向投影方向射出之光控制手段;前述發光手段乃成爲具 備形成於發光面之第1之電極、和與該第1之電極具有逆 極性之形成於與前述發光面相反側之面的第2之電極的略 直方體,外形略相同之複數發光元件則在安裝基板上配置 呈矩陣狀,正交於第1之前述發光元件之前述發光面的第 1之側面之一部分則具備與鄰接於前述第1之發光元件之 -85 - 200845423 第2之前述發光元件之第2之側面對向,鄰接 之側面之前述一部分以外之部分,未配置前述 第1之範圍,和在前述第1之發光元件與安裝 接於前述第1之發光元件之前述第2之電極的 所成電極圖案,前述電極圖案之前述第1之範 1之發光元件以外之前述發光元件之前述第1 由導線加以連接。 於前述第1 發光元件之 基板間,連 第2之範圍 圍乃與述第 之電極、藉200845423 X. Patent Application No. 1. A light-emitting device in which a first electrode and a second electrode having a reverse polarity with respect to the first electrode are provided on the same surface, and the second-order shape of the surface side of the surface light emission is slightly a rectangular light-emitting device in which a plurality of light-emitting elements having substantially the same shape are arranged in a plurality of light-emitting devices arranged in a mutually orthogonal direction and a row direction, and characterized in that the light-emitting elements are arranged adjacent to the column direction and arranged in the same posture. The different poles of the element are connected by wires to form a connection row. In the row direction, the same row as the connection row is repeatedly arranged in plural, and the wires are arranged non-parallel in the column direction. 2. The light-emitting device of claim 1, wherein the position in the row direction is the same as the position in the row direction of the odd-numbered light-emitting elements belonging to the connection column, and the even number belonging to the connection column The positions of the light-emitting elements in the row direction are the same as each other, and are different from the row direction of the odd-numbered light-emitting elements. 3. The light-emitting device according to claim 1, wherein the plurality of light-emitting elements are arranged in a matrix along the diagonal line of the rectangle and located on the first electrode and the second electrode. 4. A projector characterized by having a plurality of light-emitting means for dividing and mutually emitting colors in different colors, and reflecting light from the light-emitting means corresponding to image data in a pixel unit. a light control means for emitting the light in the projection direction; wherein the first electrode 'and the second electrode having the opposite polarity to the first electrode are provided on the same surface side, and the second surface shape of the surface side of the surface light emission a plurality of light-emitting elements having a slightly different shape, and each of which is disposed in a mutually adjacent light-emitting device of the -80-200845423 column direction and the row direction, and arranged adjacent to the column direction and in the same posture The opposite ends of the light-emitting elements are connected by wires to form a connection row. In the row direction, the same row as the connection row is repeatedly arranged in plural, and the wires are arranged non-parallel in the column direction. 5. A light-emitting device having a first electrode and a second electrode having a reverse polarity with respect to the first electrode; the second-order shape of the surface side of the surface light emission is slightly rectangular, and the outer shape is mutually In the light-emitting device in which the plurality of light-emitting elements are arranged in plural at a predetermined interval from the mutually orthogonal column direction and the row direction, the light-emitting device of each odd-numbered row and even-numbered row is the same. The different polarities of the light-emitting elements arranged in the posture are sequentially connected by wires, and the connections are arranged in an in-line such that the wires are positioned between the light-emitting elements adjacent to the row direction, and the light-emitting elements of the even-numbered rows are aligned with the light-emitting elements of the odd rows. In other words, it is placed at a position shifted in the row direction. 6. The light-emitting device of claim 5, wherein the offset amount is 1 / 2 of each column interval in the row direction. 7. The light-emitting device according to claim 6, wherein the first electrode and the second electrode are arranged in the diagonal direction of the rectangle so that the diagonal direction is aligned with the direction of the column, and the components are arranged The odd-numbered rows and the even-numbered shifts are in the aforementioned column direction, in that they are shifted only by 1/2 of the interval between the rows. 8. The illuminating device of claim 5, wherein the illuminating element having the respective illuminating red, green, and blue colors is connected in series to the plurality of illuminating elements of the chromaticity of -81 - 200845423. A light-emitting device characterized in that a first electrode and a second electrode having a second polarity opposite to the first electrode are provided on a plurality of light-emitting elements on the same surface side, and the light-emitting elements are connected in series in the column direction. In the group, the light-emitting element group of the even-numbered rows is disposed on the substrate by shifting by a specific amount in the column direction for the light-emitting element group of the odd-numbered rows, and each of the light-emitting element groups is an odd-numbered array of the light-emitting elements. And the light-emitting element of the even-numbered column has a laminated structure of the first electrode of the light-emitting element of the odd-numbered column and the second electrode of the light-emitting element of the even-numbered column in a posture facing the one surface of the surface, A lead wire of the light-emitting element from an end portion of the light-emitting element group of the even-numbered row is located between the light-emitting element group and the odd-numbered light-emitting element group adjacent in the row direction, and is derived from an end portion of the odd-numbered light-emitting element group The lead of the light-emitting element is located between the light-emitting element group and the light-emitting element group of the even-numbered rows adjacent in the row direction. 10. The light-emitting device of claim 9, wherein the wire is located on the side of the substrate more than the light extraction side surface of the light-emitting element laminated. 1 1. A projector characterized by having a plurality of light-emitting means for dividing a mutually different color in time to emit light, and reflecting light from the light-emitting device corresponding to image data in a pixel unit. a light control means for emitting light in a projection direction; wherein the first electrode and the second electrode having a polarity opposite to the first electrode are provided on the same surface side, and the surface side of the surface light emission is twice The shape is a slightly rectangular shape, and the light-emitting device of the plurality of light-emitting elements having a shape similar to that of the -82-200845423 is arranged in a plurality of mutually orthogonal rows and rows, and is arranged at a predetermined interval. The light-emitting elements of each of the odd-numbered rows and the even-numbered rows, the different poles of the light-emitting elements arranged in the same posture are sequentially connected by wires, and the wires are connected in an in-line manner so that the wires are located adjacent to the light-emitting elements in the row direction. The light-emitting elements of the even-numbered rows are arranged for shifting in the row direction for the odd-numbered rows of light-emitting elements. 12. A light-emitting device comprising: a first electrode formed on a light-emitting surface; and a second electrode having a reverse polarity on a surface opposite to the light-emitting surface, which is opposite to the first electrode; The plurality of light-emitting elements having a rectangular shape and a slightly identical outer surface are arranged in a matrix on the mounting substrate, and each of the plurality of light-emitting elements has a rectangular side of the light-emitting surface in a row direction or a row direction of the matrix. Arranged obliquely, in a range that does not occupy the mounting substrate of the light-emitting element formed between the adjacent four light-emitting elements, the second light-emitting element that is electrically connected to one of the four light-emitting elements In the electrode pad of the electrode, among the four light-emitting elements, the first electrode of the light-emitting element other than the one light-emitting element and the electrode pad located in the range of the unoccupied mounting substrate are Wires are connected. The light-emitting device of claim 12, wherein the electrode pad has a first range within a range of the non-occupied mounting substrate, and is interposed between the second electrode of the light-emitting element The second range between the mounting substrates. 14. The illuminating device of claim 12, wherein the second specification of -83-200845423 is located in a second dimension direction of the light emitting surface, located inside a range occupied by the light emitting element, and is larger than the range The area is small. 15. The illuminating device of claim 12, wherein the plurality of illuminating elements positioned in a direction are directly connected to each other via a wire. The illuminating device of claim 12, wherein the abutting The aforementioned light-emitting elements are directly connected via wires. 17. The light-emitting device of claim 12, wherein the light-emitting elements each having red, green, and blue light are respectively connected to the plurality of light-emitting elements that emit light of the same color. 18. A light-emitting device comprising: a first electrode formed on a light-emitting surface; and a second electrode having a reverse polarity formed on a surface opposite to the light-emitting surface from the first electrode a plurality of light-emitting elements having a substantially identical shape of a rectangular parallelepiped are disposed in a matrix form on the mounting substrate, and one of the first side faces of the light-emitting surface of the first light-emitting device is disposed adjacent to the first light-emitting portion The second side of the light-emitting element of the second element of the element is opposed to the first portion of the light-emitting element and the first light-emitting element is not disposed adjacent to the portion of the first side surface An electrode pattern is formed between the mounting substrate and the second electrode of the second light-emitting element; the first range of the electrode pattern is the light-emitting element other than the first light-emitting element The first electrode of the element is connected by a wire 〇1 9 · A projector characterized by a plurality of colors which are divided into different colors by -84-200845423 The light means and the light control means for reflecting or transmitting the light from the light-emitting device in the pixel unit in accordance with the image data, and the light-emitting means is provided with the first electrode formed on the light-emitting surface And a substantially rectangular parallelepiped of the second electrode having a reverse polarity formed on the surface opposite to the light-emitting surface of the first electrode, and the plurality of light-emitting elements having a slightly different outer shape are arranged in a matrix on the mounting substrate. Each of the plurality of light-emitting elements has a rectangular shape of the light-emitting surface disposed obliquely with respect to the column direction or the row direction of the matrix, and is formed between the adjacent four of the light-emitting elements. An electrode pad of the second electrode of the light-emitting element of one of the four light-emitting elements is disposed on the mounting substrate of the light-emitting element, and the electrode pad is not covered by the aforementioned The first electrode of the light-emitting element other than the light-emitting element of the one of the four light-emitting elements is mounted on the substrate Line to be connected. a projection machine having a plurality of illumination means for dividing a mutually different color in time to emit light, and reflecting light from the illumination device corresponding to image data in a pixel unit or a light control means that emits light in a projection direction; the light-emitting means includes a first electrode formed on the light-emitting surface and a surface having a reverse polarity with respect to the first electrode and opposite to the light-emitting surface A plurality of light-emitting elements having a slightly rectangular shape and having a substantially identical shape are arranged in a matrix on the mounting substrate, and one of the first side faces orthogonal to the light-emitting surface of the first light-emitting element is adjacent to In the light-emitting device of the first aspect, -85 - 200845423, the second side surface of the second light-emitting element is opposed to the first portion of the adjacent side surface, and the first range is not disposed, and the first light is emitted. And an electrode pattern to be mounted on the second electrode of the first light-emitting element; and the light-emitting element of the first aspect of the electrode pattern The first of said light emitting element to be connected by a wire. Between the substrates of the first light-emitting elements, the second range is the same as the electrode and the -86--86-
TW096145689A 2006-12-04 2007-11-30 Light emitting device and projector TW200845423A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006326407 2006-12-04
JP2006326408 2006-12-04
JP2006326409 2006-12-04
JP2007203810 2007-08-06

Publications (2)

Publication Number Publication Date
TW200845423A true TW200845423A (en) 2008-11-16
TWI369790B TWI369790B (en) 2012-08-01

Family

ID=39492090

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096145689A TW200845423A (en) 2006-12-04 2007-11-30 Light emitting device and projector

Country Status (3)

Country Link
JP (1) JP5357549B2 (en)
TW (1) TW200845423A (en)
WO (1) WO2008069204A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094267A (en) * 2011-11-01 2013-05-08 日亚化学工业株式会社 Light Emitting Device And Lighting Apparatus

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102119296B (en) 2008-08-11 2013-06-19 罗姆股份有限公司 Lighting device
US8567988B2 (en) * 2008-09-29 2013-10-29 Bridgelux, Inc. Efficient LED array
US8598602B2 (en) 2009-01-12 2013-12-03 Cree, Inc. Light emitting device packages with improved heat transfer
US7923739B2 (en) 2009-06-05 2011-04-12 Cree, Inc. Solid state lighting device
KR101267545B1 (en) * 2009-02-27 2013-05-24 도시바 라이텍쿠 가부시키가이샤 Light emitting module and illumination apparauts
JP4890576B2 (en) * 2009-02-27 2012-03-07 東芝ライテック株式会社 Light emitting module
US9111778B2 (en) 2009-06-05 2015-08-18 Cree, Inc. Light emitting diode (LED) devices, systems, and methods
JP5408414B2 (en) * 2009-06-10 2014-02-05 東芝ライテック株式会社 Light emitting module
JP2011060960A (en) * 2009-09-09 2011-03-24 Toshiba Lighting & Technology Corp Light-emitting module
JP5623062B2 (en) 2009-11-13 2014-11-12 シャープ株式会社 Light emitting device and manufacturing method thereof
JP2011151268A (en) * 2010-01-22 2011-08-04 Sharp Corp Light-emitting device
WO2011129202A1 (en) * 2010-04-16 2011-10-20 日亜化学工業株式会社 Light-emitting device and manufacturing method for light-emitting device
JP2013140823A (en) * 2010-04-16 2013-07-18 Nichia Chem Ind Ltd Light-emitting device
US8648359B2 (en) * 2010-06-28 2014-02-11 Cree, Inc. Light emitting devices and methods
US8269244B2 (en) 2010-06-28 2012-09-18 Cree, Inc. LED package with efficient, isolated thermal path
JP5126632B2 (en) * 2010-11-16 2013-01-23 東芝ライテック株式会社 Light emitting module
US8564000B2 (en) * 2010-11-22 2013-10-22 Cree, Inc. Light emitting devices for light emitting diodes (LEDs)
US9490235B2 (en) 2010-11-22 2016-11-08 Cree, Inc. Light emitting devices, systems, and methods
US9300062B2 (en) 2010-11-22 2016-03-29 Cree, Inc. Attachment devices and methods for light emitting devices
TW201251140A (en) 2011-01-31 2012-12-16 Cree Inc High brightness light emitting diode (LED) packages, systems and methods with improved resin filling and high adhesion
WO2012109225A1 (en) 2011-02-07 2012-08-16 Cree, Inc. Components and methods for light emitting diode (led) lighting
US8729589B2 (en) 2011-02-16 2014-05-20 Cree, Inc. High voltage array light emitting diode (LED) devices and fixtures
JP6209811B2 (en) * 2011-11-29 2017-10-11 日亜化学工業株式会社 Light emitting device, lighting equipment
US9735198B2 (en) 2012-03-30 2017-08-15 Cree, Inc. Substrate based light emitter devices, components, and related methods
US10222032B2 (en) 2012-03-30 2019-03-05 Cree, Inc. Light emitter components and methods having improved electrical contacts
US10134961B2 (en) 2012-03-30 2018-11-20 Cree, Inc. Submount based surface mount device (SMD) light emitter components and methods
JP6191308B2 (en) * 2012-07-27 2017-09-06 日亜化学工業株式会社 Light emitting device for line light source
JP5803835B2 (en) * 2012-07-30 2015-11-04 ウシオ電機株式会社 Light source unit
EP2882002B1 (en) 2012-07-30 2016-10-05 Ushio Denki Kabushiki Kaisha Light source unit
CN204577466U (en) * 2012-09-26 2015-08-19 松下知识产权经营株式会社 Light emitting module
JP6116867B2 (en) * 2012-11-20 2017-04-19 株式会社カネカ Organic EL light emitting system
JP6116868B2 (en) * 2012-11-21 2017-04-19 株式会社カネカ Organic EL panel
US9273834B2 (en) 2013-02-25 2016-03-01 Osram Gmbh Method for mounting light radiation sources and light source therefor
CN103390613B (en) * 2013-08-14 2016-08-10 中国科学院长春光学精密机械与物理研究所 The solid matter row LED area array device of high uniformity of luminance and preparation method
JP6301097B2 (en) * 2013-10-01 2018-03-28 シチズン電子株式会社 Semiconductor light emitting device
JP6221888B2 (en) * 2014-03-26 2017-11-01 豊田合成株式会社 Light emitting device and manufacturing method thereof
JP2014140076A (en) * 2014-04-17 2014-07-31 Sharp Corp Light-emitting device
JP5827387B2 (en) * 2014-08-22 2015-12-02 シャープ株式会社 Light emitting device
USD823492S1 (en) 2016-10-04 2018-07-17 Cree, Inc. Light emitting device
JP6519599B2 (en) * 2017-01-27 2019-05-29 日亜化学工業株式会社 Method of manufacturing light emitting device
KR101980548B1 (en) * 2017-11-09 2019-05-21 엘지전자 주식회사 Lamp for vehicle and vehicle
JP7227531B2 (en) * 2017-12-25 2023-02-22 日亜化学工業株式会社 Light-emitting device and light-emitting module
JP7007569B2 (en) * 2017-12-25 2022-02-10 日亜化学工業株式会社 Luminescent device
IT201800004928A1 (en) 2018-04-27 2019-10-27 MULTI-LED-COB LIGHTING MODULE
IT201800004931A1 (en) * 2018-04-27 2019-10-27 MULTI-LED-COB LIGHTING MODULE

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782375U (en) * 1980-11-05 1982-05-21
JP2748818B2 (en) * 1993-05-31 1998-05-13 日亜化学工業株式会社 Gallium nitride based compound semiconductor light emitting device
JP3319438B2 (en) * 1998-06-05 2002-09-03 セイコーエプソン株式会社 Light source device and display device
JP4491948B2 (en) * 2000-10-06 2010-06-30 ソニー株式会社 Device mounting method and image display device manufacturing method
JP2004014899A (en) * 2002-06-10 2004-01-15 Para Light Electronics Co Ltd Series connection of light emitting diode chip
JP2005259724A (en) * 2004-02-10 2005-09-22 Fuji Photo Film Co Ltd Method and apparatus for measuring forward voltage drop of light-emitting device, system of light source and thermal printer using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094267A (en) * 2011-11-01 2013-05-08 日亚化学工业株式会社 Light Emitting Device And Lighting Apparatus
CN107654912A (en) * 2011-11-01 2018-02-02 日亚化学工业株式会社 Light-emitting device and ligthing paraphernalia
CN103094267B (en) * 2011-11-01 2018-05-25 日亚化学工业株式会社 Light-emitting device, ligthing paraphernalia

Also Published As

Publication number Publication date
JPWO2008069204A1 (en) 2010-03-18
WO2008069204A1 (en) 2008-06-12
JP5357549B2 (en) 2013-12-04
TWI369790B (en) 2012-08-01

Similar Documents

Publication Publication Date Title
TW200845423A (en) Light emitting device and projector
US8238112B2 (en) Sub-mount, light emitting device including sub-mount and methods of manufacturing such sub-mount and/or light emitting device
JP7004777B2 (en) Color ILED display on silicon
JP7149939B2 (en) Multicolor micro LED array light source
JP6367526B2 (en) Sapphire substrate, light emitting diode chip, and light emitting device for forming a light emitting diode chip capable of emitting light in a plurality of directions
JP2018195831A (en) Light emitting device
US20060139580A1 (en) Illumination system using multiple light sources with integrating tunnel and projection systems using same
US7452736B2 (en) Surface emitting device, manufacturing method thereof and projection display device using the same
CN107390465B (en) Light source device and projector
EP2693268A1 (en) Illuminating device, projection display device, and direct view type display device
KR20060029820A (en) Led suface emitting source and projection display system of the same
TW201911562A (en) Micro light emitting diode display panel
WO2011060618A1 (en) Method and structure for encapsulating solid-state lighting chip and light sources using the encapsulating structure
TWI480660B (en) Display device
JP2017207732A (en) Light source device and projector
US8733950B2 (en) LED projector
JP2007003914A (en) Light emission module, and light source unit for projection type display apparatus using the same
US20100053560A1 (en) Led package having improved light coupling efficiency for an optical system and method of manufacture thereof
US8562142B2 (en) Projector for micro projection surfaces and use of a multicolour LED in a projector
JP4581407B2 (en) Light source unit and projection-type image display device using the same
TW200527708A (en) Light emitting diode illumination module
JP2006084962A (en) Illumination system and image display device
JP2018073951A (en) Light-emitting device
JP2002289924A (en) Light-emitting element, illuminator, and display device
TW200815904A (en) Optic projector

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees