TW200815540A - Ink for ink jet printing and method for preparing metal nanoparticles used therein - Google Patents

Ink for ink jet printing and method for preparing metal nanoparticles used therein Download PDF

Info

Publication number
TW200815540A
TW200815540A TW096106739A TW96106739A TW200815540A TW 200815540 A TW200815540 A TW 200815540A TW 096106739 A TW096106739 A TW 096106739A TW 96106739 A TW96106739 A TW 96106739A TW 200815540 A TW200815540 A TW 200815540A
Authority
TW
Taiwan
Prior art keywords
ink
surfactant
metal nanoparticles
weight
metal
Prior art date
Application number
TW096106739A
Other languages
Chinese (zh)
Other versions
TWI368635B (en
Inventor
Jong Taik Lee
Soo Yeon Heo
Min Seo Kim
Hyun Sik Kim
Jung Ho Park
Sang Ho Kim
Original Assignee
Lg Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Chemical Ltd filed Critical Lg Chemical Ltd
Publication of TW200815540A publication Critical patent/TW200815540A/en
Application granted granted Critical
Publication of TWI368635B publication Critical patent/TWI368635B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks

Abstract

Disclosed is ink for ink jet printing, which comprises: metal nanoparticles comprising a surfactant attach to surface thereof; and a first solvent, wherein the metal nanoparticles are present in an amount of 50 to 70 parts by weight based on 100 parts by weight of the ink, and the surfactant is present in an amount of 0.5 to 5 parts by weight based on 100 parts by weight of the metal nanoparticles. Metal nanoparticles used in the ink and a method for preparing the metal nanoparticles are also disclosed. The method for preparing metal nanoparticles for use in ink for ink jet printing comprises a step of washing surplus surfactant with at least one solvent. By doing so, the surplus surfactant remaining on the surfaces of the metal nanoparticles can be minimized, resulting in a drop in viscosity of ink comprising the metal nanoparticles. Therefore, even if the ink has a metal nanoparticles content of 50 wt% or more, the ink can satisfy a viscosity condition required for ink jet printing, a d thus can form an electrode pattern with high conductivity.

Description

200815540 九、發明說明:200815540 IX. Description of invention:

【發明所屬之技術領域】 本發明係關於噴墨印染 米微粒的製備方法。更特別 墨水,其組成包括為了將殘 活性劑數量減至最低,經由 米微粒表面存在的剩餘界面 微粒。 【先前技術】 用墨水以及用於其中之金屬奈 地’本發明係關於噴墨印染用 留在金屬奈米微粒表面的界面 使用至少一種溶劑沖洗金屬奈 活性劑而得的最大量金屬奈米 10 &來,各種平面顯示裝置已成為眾人注目焦點,成功 的取代陰極射線管作為顯示裝置,此類平面顯示裝置包括 液晶顯示(LCD)裝置、場發射顯示(FE戦置、電漿顯示平 面裝置(PDP)以及電致發光(EL)裝置。 在製造平面顯示裝置的傳統製程中,一般藉由照相平 15版印刷法(ph〇toUtho㈣PhicPr〇cess)執行成像步驟。照相平 丨 ^印刷製程具有一連串的攝影製程步驟,包括塗佈光阻 劑,光罩對位,曝光,顯像以及剝除光阻劑。此照像平版 印刷製程有其問題存在,例如需要長時間的作業時間,光 阻剤的花費,而為了移除成像光阻劑必須使用剝除溶液, 20並且需要昂貴的系統例如曝光系統。特別地,當基板尺寸 增加而形成在基板上的圖案尺寸縮小時,必須使用更加昂 貝的曝光系統。更甚者,在此製程中,更不易控制間距精 確度以及電極寬度。 6 200815540 同時’有鑒於為了獲得更精細的線寬、減低材料損失 以及簡化製程步驟,遂提出使用喷墨製程形成電極的想 法。除了平面顯示裝置的領域之外,此喷墨成像製程已成 為注目焦點還可運用在各種領域作為直接印刷製程之用。 5 喷墨製程允許經由使用具有多重微細喷嘴的噴墨頭在 基板上直接成像所需的圖案。因此,相較於照相平版印刷 製程,噴墨製程可以減少製程步驟,設備投資可做更有效 的lb費以及圖案變化可以更加有彈性。本質上噴墨製程不 允許使用高黏性膏狀物質,必須使用具有奈米等級微粒的 10 低黏性導電墨水。 經由喷墨製程形成一電極圖案的過程,首先,包含溶 刻、&電金屬微粒、分散劑與添加劑的金屬墨水由一喷墨 喷鳴喷射出進而印刷一圖案。然後,執行熱處理以便於移 除溶劑與分散劑並允許留下的金屬微粒彼此連結。 15 於此,當墨水内的金屬固體含量增加,已印刷的金屬 線厚度增加以及熱處理後殘留的有機殘餘物減少時,經由 喷墨印染製程所形成的金屬圖案可顯示較高的導電性。 同時,經由一通稱的聚醇(p〇ly〇1)製程可以製備金屬奈 米微粒。聚醇製程中,具有一高沸點的醇類化合物之使用 2〇 不僅只作為陽離子的還原劑,同時可作為溶劑。舉例之, 在150 C的溫度下,經由乙二醇還原硝酸銀溶液可能獲得銀 奈米微粒,並且可以使用一界面活性劑例如pvp(聚乙烯吡 喀烷酮)以便於穩定此還原銀奈米微粒的表面。在此時刻, 7 200815540 為促進反應,界面活性劑一般使用大於穩定金屬微粒表面 所需用1的一過度用量。 【發明内容】 5 經由聚醇製程製備金屬奈米微粒的上述製程中,奈米 微粒通常分散在溶劑中,依據所使用之奈米微粒的特性, 奈米微粒以分散液或其固體微粒分離後的型態使用。在聚 醇製程中所使用的過量界面活性劑,使得奈米微粒的分散 液中仍然含有不連結至奈米微粒的剩餘界面活性劑。如果 1〇 此剩餘界面活性劑不有效地移除,在後續製備噴墨用包含 奈米微粒的墨水時,可能造成高黏性墨水的產生。因此, 為了滿足適於喷墨用的黏性條件,必須減少墨水内奈米微 粒的用量。此點可能不利於喷墨技術形成一良好相互連接 的電極圖案。 15 本發明之發明人發現當經由一聚醇製程製備喷墨印染 用墨水内的金屬奈米微粒時,使用至少一種溶劑沖洗金屬 奈米微粒表面以及/或分散液内殘留的剩餘界面活性劑,可 以將殘留的界面活性劑的數量減至最低,能夠降低包含金 屬奈米微粒的墨水黏性並且能夠提高墨水内金屬奈米微粒 20的數量,進而能夠形成具有高導電性的電極圖案。本發明 係基於此項發現。 因此,本發明係提供喷墨印染用的墨水,其組成包括: 金屬奈米微粒,包含連結其表面的一界面活性劑;以及— 第-溶劑’其中金屬奈米微粒所存在的數量佔ι⑼重量份墨 8 200815540 水的50〜7G重量份,以及界面活性劑所存在的數量佔⑽重 量份金屬奈米微粒的〇·5〜5重量份。 同時,本發明係提供一種喷墨印染用墨水其内所使用 之金屬奈米微粒的製備方法’此方法的步驟包括·⑷添加一 :面活性劑以便於形成金屬奈米微粒;以及⑻以至少一種 第一冷劑冲洗除了可以連結至金屬纟米微粒表自,用於穩 定金屬奈米微粒的界面活性劑用量之外的剩餘界面活性 劑’以便於移除剩餘界面活性劑。 再者,本發明提供喷墨Ηρ染用墨水内的 粒,其組成包括:-界面活性劑連結至其表面,其中界面活 性劑所存在的數量佔100重量份金屬奈米微粒的〇5〜5重量 份,其數量以1〇代〜500t:m_TGA分析重量損失的方式 表式。 下文中’本發明將做更詳盡的敘述。 15 /匕處所使用的"第一溶劑”係指墨水用的溶劑,"第二溶 劑"係指在製備金屬奈米微粒的過財,使用料沖洗剩^ 界面活性劑的一沖洗溶劑,以及"第三溶劑,,係指在製備金 屬奈米微粒的過程中’作為溶解一金屬鹽類與一界面活性 劑作為執行聚醇縣(ροΐ# reduetiQn)反應所制的溶劑。 製備金屬奈米微粒的方法將詳述於下文中,依本發明 所述包含金屬奈米微粒的喷墨印染用墨水,其包含一界面 活性劑’連結至金屬奈米微粒表面以便於穩定金屬夺米微 粒,用量控制在佔100重量份金屬奈米微粒的重旦 份,當剩餘界面活性劑經沖洗後’維持在金屬奈米微粒: 20 200815540 的界面活丨生劑數$控制在佔丨重量份金屬奈米微粒的0.5 重里份。因此,依本發明所述之墨水,其特色為當所具有 的金屬奈米微粒含量提升至佔1〇〇重量份墨水的 50〜70重量 份的程度時’仍保留適於噴墨印染所需黏性。基於此一結 5果,當經由—喷墨印染製程使用本發明所述之墨水,在基 板上形成一導電圖案時,可提高導電微粒含量,進而增加 導電性。 ”根據本發明所述之墨水内所使用的金屬奈米微粒,其 t備方/i:的特色係以至少_種第三溶劑沖洗除了連結至金 1〇 j奈米微粒表面,用於穩定金屬奈米微粒的界面活性劑用 里之外的剩餘界面活性劑,以移除剩餘界面活性劑。 舉例之,當經由一聚醇製程製備金屬奈米微粒,以聚 醇作為-還原劑添加至含有一金屬鹽類、一界面活性劑以 及-第三溶劑的溶液中。在此時刻,除了可以連結至金屬 15作為分散劑功能的界面活性劑用量之外的剩餘界面活性 劑,可以保留在金屬奈米微粒以及包含金屬奈米微粒的墨 • 水所處的最終分散液中,此將導致墨水的黏性增加。 一般而言,欲從剩餘的界面活性劑中清楚地區分連結 至金屬奈米微粒的界面活性劑將十分困難。雖然兩種形態 20 的界面活性劑本質上相同,當使用全^ & 田從用隻屬奈未微粒製備墨水 時,大量不連結至金屬奈米微粒的剩餘界面活性劑,1存 在會導致墨水黏性增力”此可由TGA分析而得,其顯示高 比例的界面活性劑。 200815540 連、、、〇至金屬奈米微粒的界 水的黏性。^,此數^ 劑必然可同時影響墨 热而,此數1為穩定 量。因此,當擊備墨7jc _ _ 表面不可或缺的最小 ㈣,敕„ 貝謹慎思考此數量以便於執行 黏性凋整。相反地,依本發 机仃 囟产里p 处之方法較佳地可移除伴 留在墨水中不受歡迎而且會”玲、保 劑。 加墨水黏性的剩餘界面活性 在私除剩餘界面活性劑的過程中,由於 性劑之間的相互影響,輕 、’屬八界面居 性劑,、、。金屬不米微粒表面的界面活 10 15 20 丄 弟一洛劑以沖洗步驟將其移除。只有不連結 五屬的剩餘界面活性劑可於沖洗步驟移除。 因此’依本發明所述之方法, % V- . ^ 法其包括形成金屬奈米微 刀政液的步驟,添加至少—種第二溶劑至分散液以溶解 剩餘界面活性劑,以及你早政、6 及攸取終洛液中分離出金屬奈米微 粒,其可以從中保留任何剩餘界面活性劑的溶液中獲得釋 出的奈米微粒’並且包含連結至金屬奈米微粒表面,作為 穩定金屬奈米微粒,數量為佔刚重量份金屬奈米微粒的 0.5〜5重量份的界面活性劑。 於此作為冲洗剩餘界面活性劑的第二溶劑可為不與 金屬奈米微粒連結的一溶劑,並且可以溶解保留在金屬奈 米微粒表面以及溶液中的界面活性劑。依據欲被移除之界 面活性劑的特定型態選擇第二溶劑。第二溶劑之舉例無任 何限制’可包括:水、甲醇(methan〇1)、乙醇(ethan〇1y、丙醇 (propanol)、異丙醇(isopropan〇1)、丁醇(butan〇1)、戊醇 (pentanol)、己醇(hexanoi)、二甲基亞颯(dimethyl sulf〇xide, 11 200815540 DMSO)、Ν,Ν·二曱基乙酉藍胺(N,N-dimethylformamide, DMF)、N-甲基吼 口客烧酮(N-methyl pyrrolidone)、丙酮 (acetone)、乙腈(acetonitrile)、四氫 σ夫喃(tetrahydrofuran, THF)、癸炫((16。&116)、壬烧(110似1^)、辛烧(0(^3116)、庚烧 5 (heptane)、己烧(hexane)、戊烧(pentane)或其他類似溶劑。 同時,依據欲被移除之界面活性劑的特定型態,任一 上述溶劑可單獨使用或以組合方式使用。較佳地,為了有 效溶解保留在凝聚微粒缺口間的剩餘界面活性劑,可以使 用包含至少二種第二溶劑的混合溶劑,並且可使剩餘界面 10 活性劑在後續離心分離過程中分離成為一懸浮物。此外, 當使用包含至少二種第二溶劑的混合溶劑時,至少一種第 二溶劑較佳地為可以溶解界面活性劑的一溶劑。另一種無 法溶解界面活性劑的第二溶劑可以混合上述可以溶解界面 活性劑的溶劑。 15 包含至少二種第二溶劑的混合溶劑可以具有與單一溶 劑不同的極性與溶解度。較佳地,混合溶劑的組合變化依 據製備奈米微粒所使用之界面活性劑的特定型態而定。 依本發明所述,第二溶劑所添加的數量相當於金屬奈 米微粒分散液内界面活性劑總重量的5〜20倍。 20 如果第二溶劑的用量低於界面活性劑總重量的5倍,可 能無法充分的沖洗掉剩餘界面活性劑。第二溶劑的用量高 於界面活性劑總重量的20倍時,由於大量損失的沖洗溶 劑,將不符合成本效應。 12 200815540 以本叙明所述之至少一種第二溶劑沖洗剩餘界面活性 劑後,剩餘界面活性劑可能以佔1〇〇重量份金屬奈米微粒之 〇·5或更少重量份的數量保留在最終奈米微粒或包含該奈米 微粒的墨水中。此外,界面活性劑連結或連接至金屬奈米 5微粒的表面不經上述沖洗步驟移除,反而提供作為穩定金 屬奈米微粒之用,可以存在的數量為佔1〇〇重量份金屬奈米 微粒的0.5〜5重量份。 • 經由定性或定量分析可以測得界面活性劑的數量。換 。之可以從牙透式電子顯微鏡(ΤΕΜ)所拍攝到顯示奈米微 1〇粒包圍著界面活性劑的金屬奈米微粒照片判定界面活性劑 的存在從熱重为析儀(TGA)可以測定所保留之界面活性劑 的數I。舉例之,圖〗所顯示的圖表中,可見第一溶劑在约 15〇°C完全揮發,並且所有有機物質在約5〇〇c>c燃燒殆盡。 因此,在15(TC的重量與50(rc的重量之間的差異可視為界 15面活性劑的數量。任一具有不同溫度的溶劑在該處完全揮 發。因此,從第一溶劑完全揮發的溫度至5〇〇。(:的一區間 • Θ,從TGA所測量得到㈣量損失可視為有機物含量,即 界面活性劑的含量。帛一溶劑的完全揮發溫度依據溶劑的 特定種類而有所不同,但是一般範圍從1〇〇。(3至2〇〇。(:。 在本赉明所述之奈米微粒的製備過程中,當上述沖洗 步驟無法充分地執行日寺,由TGA所測得的有機物含量可能 局於佔H)0重量份金屬奈米微粒的5重量份。考慮連接至金 屬奈米微粒表面的界面活性劑數量,其範圍從佔ι〇〇重量份 金屬奈米微粒的0.5至5重量份,由此可見界面活性劑維持在 13 200815540 一明顯的數量。當上述沖洗製程執行至一充分的程产,剩 餘界面活性劑全數被移除,由TGA所測得的有機量^ 圍可能佔100重量份金屬奈米微粒的〇5至5重量份。s里乾 同時,即使沖洗步驟充分地執行’佔100重量份金屬奈 5米微粒的〇.5或更少重量份的剩餘界面活性劑,仍然殘留^ 金屬奈米微粒以及/或墨水中。此一少量無法輕易由儀写分 析偵測到。此外,即使此剩餘界面活性劑殘留,並不 顯影響墨水的黏性與其他物理特性,如此在沖洗步驟ς Φ 情形是可接受的。 ,4 、 10 可以使用一種界面活性劑製備金屬奈米微粒。界面活 性劑無特殊限㈣,只要界面活性劑可以穩定金屬奈米微粒 =可。當一金屬鹽類在溶液中經還原形成金屬奈米微粒 日守,因為金屬奈米微粒的高比表面積,使金屬奈米微粒具 :高表面能量因而處於不穩定狀態。為了降低此表面能 15里,金屬奈米微粒傾向彼此之間凝聚在一起。此奈米微粒 的旋聚作用經由使用一界面活性劑連接至金屬奈米微粒的 # 表面=便於圍繞金屬奈米微粒的方式可以加以預防。此 外,提供界面活性劑可以預防金屬奈米微粒的氧化以及將 金屬奈米微粒維持在一穩定的狀態下。 、 20 界面活性劑為一物質可在溶液中吸附在界面上進而降 低表面張力。一般而言,界面活性劑包含在一分子内同時 具有親水基與親脂基的兩親性物質。界面活性劑依據離子 化特可分類為陰離子界面活性劑、陽離子界面活性劑、 兩〖生界面,舌性劑以及非離子界面活性劑等等。依本發明所 200815540 述’可被移除的界面活性劑,其舉例無特殊限制,可包括. 聚乙烯吼錢㈣PVP)、聚乙烯亞胺(pEI)、聚甲基乙_ (PMVE)、$乙烯醇(pvA)、聚氧乙烯基烧基苯基縫 (P〇iy 〇xyethylene aiM phenyi ether)、聚乙烯山梨醇酐單硬 脂酸醋(P〇lyethylene sorbitan m〇n〇stearate)或其他類似物 質。此類界面活性劑的衍生物亦包含在本發明的範圍内。 上述界面活性劑可單獨使用或以組合方式使用。 使用本發明所獲得的金屬奈米微粒係為了在基板上例 如顯示器基板形成-電極圖t,以及經由喷墨印染製程可 以進行成像。奈米微粒㈣殊限制,只要具有高導電性即 可。金屬奈米微粒無任何限制,可包括:Ag、Cu、如、& A卜^^、/^^、^、卩卜抑或其合金。 I製備本發明所述之金屬奈米微粒的方法可以包括以至 15 20 少-種第二溶劑沖洗剩餘界面活性劑以便於移除剩餘界面 活}·生J的步驟。因此,製備金屬奈米微粒的方法無特殊限 制’除了上述沖洗步驟之外,只要此方法利用高於界面活 性劑連接至金屬奈米微粒表面所需量的過量界面活性劑, 然後剩餘界面活性劑仍具有保留在金屬奈米微粒的最二分 散液中的可能性。換言之,製備本發明所述之金屬奈米微 粒的方法,其步驟包括: ' (a) 添加一界面活性劑以便於形成金屬奈米微粒;以 及 (b) 以至少一種第二溶劑沖洗除了連結至金屬奈米微 粒表面,用於穩定金屬奈米微粒的界面活性劑用 15 200815540 1之外的剩餘界面活性劑, 活性劑。 乂驟⑷中為了形成金屬奈米微粒,由於金屬奈米微粒 的大=表面積,使其具有高表面能量並處於不穩定狀態 内。為了降低此表面能量,金屬奈米微粒傾向彼此之間凝 聚在-起。於此’添加界面活性劑並連接至奈米微粒表面 ::::吏表面圍繞界面活性劑。藉此動作,可以預防此類 ^卡试粒的减聚現象。再者,界面活性劑可以預防金屬奈 ^微粒的氧化’以便於使金屬奈諸粒維持在—穩定狀 10 悲。必須注意較雖然界面活性劑的使用量為可連接至金 屬奈米微粒的使用量,為了代 , 為了促進反應的進行,較佳地為使 用過2:且高於使用量的界面活性劑。 15 20 以便於移除剩餘界面 >較t地,可經由一聚醇製程製備金屬奈米微粒,其中 I醇不僅使用作為-還原劑還可作為—第三溶劑。聚醇製 =的-具體實施例中,經由將聚醇作為還原劑添加至含金 屬鹽類的溶液中’可以執行本發明所述方法中的步驟⑷, 過1的界面活性劑與第三溶劑進而形成包含表面連結界面 ::生劑的金屬奈米微粒。在此時刻,金屬奈米微粒存在於 刀政液中’其中金屬奈米微粒分散於溶劑中。步驟⑻即通 ,的聚醇製程,其中金屬奈米微粒經由還原金屬鹽類而 v驟(a)中,水醇不僅提供作為還原劑,亦可作為溶劑。 聚醇之舉例無任何限制,可包括:乙二醇⑽yleneglycol)、 二乙二醇㈣ethylene glyc〇1))、四乙:醇⑽如邮⑽ glycol))等等。 16 200815540 弟二溶劑無任何特殊限制,只 金屬鹽類的溶劑即可。第一八用作為還原 括:水、甲酵、乙醇、丙醇、異丙醇、丁醇、J=包 乙二醇單甲醚、乙:乙―:基乙醮胺(DMF)、乙二醇、 早 乙-知早***、乙二醇二甲醚、乙 乙酵、丙二醇、丙-醢 丙-、丙二醇甲趟乙酸g旨、 -編、甲基異丁 _、甲基乙基酮、乙腈、四氫咬; (THF)、十六烷、十五烷、十四烷、十三烷、十二烷、十一 10 15 20 烧、癸烧、壬烧、辛垸、庚烧、己院、二甲苯、甲苯、苯 或其他類似溶劑。上述溶劑可單獨使用或組合使用。 本發明可以使用的金屬鹽類為眾所熟知可經由還原反 應形成金屬的金屬鹽類。任何金屬鹽類皆可使用無特殊限 制,並且其舉例無任何限制,可包括:硝酸鹽類、鹵 化物(Cl、Br、I )、氫氧化物⑴Η·)、硫酸鹽類(s〇42_)、醋 酸鹽類(c2h3o2-)或其他類似化合物。 步驟(a)可在150°c〜300°c的溫度下執行。大體而言, 於聚醇製程中,在接近製程所使用之聚醇的沸點溫度下, 經由金屬鹽類還原反應的充分發生進而形成金屬奈米微 粒。有鑒於此,此一範圍的溫度較適宜。 如上所述,步驟(b)中,添加至少一種第二溶劑以便於 溶解保留在金屬奈米微粒的表面以及/或分散液中的剩餘 界面活性劑,如此界面活性劑可以從金屬奈米微粒沖洗除 去0 17 200815540 為了使用第二溶劑沖洗除去剩餘界面活性劑,第二溶 劑需均勻混合金屬奈米微粒的分散液,如上所述由此溶解 剩餘界面活性劑。然後使用本技術領域所熟知的液體_液體 分離法,例如離心分離法以便於移除液相。雖然沖洗剩餘 5界面活性劑的步驟(b)僅執行一次,依據移除剩餘界面活^ 劑的等級,此沖洗作業可執行數次。換言之,金屬奈米微 粒從分散回第三溶劑的溶劑中分離進而提供一金屬奈米微 粒的刀政液,接著重複步驟(b)作業。然而,當使用本發明 所述之第二溶劑移除剩餘界面活性劑時,可以獲得良好的 1〇沖洗效應、,以&方式經由重複沖洗數次可充分移除剩餘 面活性劑,較佳地為一至五次,而非重複沖洗許多次。 同日守,在一鍵結力下,連接至微粒的界面活性劑連結 2微粒上,如此無法經由上述沖洗剩餘界面活性劑的步驟 從微粒中分離。沖洗步驟僅能移除剩餘界面活性劑。 15 依本發明所述,依據使用在製程中作為製備金屬夺米 微粒的:面活性劑的特定型態,可能選擇適合的第二溶 劑,此第二溶劑具有溶解界面活性劑的能力。同時,經由 k制第一 ’谷劑對界面活性劑的用量比例,可能獲得無任何 剩餘界面活性劑殘留其中的金屬奈米微粒。 力 噴墨印染用之墨水内包含金屬奈米微粒分散其中,經 由上述沖洗步驟將剩餘界面活性劑充分移除,以此方式使 ,水具有一低黏性足夠使用於噴墨印染作業。因此,可以 提供喷墨印染用之墨水,其包括佔墨水固態含量基本成分 18 200815540 = 100重量份的50〜70重量份。墨水内較佳為具有較高固體 含虿的金屬奈米微粒。 5 15 同時,依本發明所述之噴墨印染用墨水具有如上所述 適於贺墨㈣純,並且難為具有卜他㈣性。如果墨 水=有的黏性超出上述範圍,對於穩定墨水本身以及喷 墨品質有其困難性。此外,依本發明所述之喷墨印染用墨 水較佳地具有適於喷墨用的物理特性,包括20〜4 表面張力。 依本發明所述之噴墨印染用墨水的特色為包含以上述 2所獲得的金屬奈米微粒,其包括以至少一種第二溶劑 殘留在金屬奈米微粒表面的剩餘界面活性劑以便於移 除剩餘界面活性劑的一步驟。 粒分"之噴墨印染用墨水係經由將金屬奈米微 中而4 ’合4中並且添加一分散劑與其他添加物至其 =二而言,因為分散劑具有相對較高的黏性 W未八添加一小量的分散劑。 Μ 1 二:吏用作為製備墨水的第-溶劑為近來使用的溶 ㈣。苐-_的舉例無任何限制,可包括:水、丙鋼 乙基酮、甲基異丁嗣、甲基溶纖劑、乙基溶纖劑、四气: 喝、二氧陸園、乙二醇二甲趟、乙二醇二乙越、两= 使用作為製備金屬奈米微粒的界面活性劑以及添加至 ί水=散劑皆提供作為微粒的表面,以便於預防微粒聚 Γ 一 U別添加至墨水的分散劑亦可能改變墨水的黏 19 200815540 甲醚、丙二醇二甲醚、丙二醇二***、三氯甲烷、二氯甲 烧、1,2-一氯乙炫、HI二氯乙燒、1,1,2-三氯乙烧、ι,ι 2_ 二氯乙稀、己燒、庚烧、辛烧、環己烧、苯、甲苯、一甲 苯、甲醇、乙醇、異丙醇、丙醇、丁醇、異丁醇、環己酮、 丙二醇甲醚醋酸醋、丙二醇***醋酸酯、2_甲氧基醋酸丁 酯、3-乙氧基醋酸丁酯、乙基溶纖劑乙酸酯、甲基溶纖劑 乙酸酯、乙酸丁酯、甲基丁酮、甲基異丁酮、乙二醇單乙 醚、7-丁内酯、N-曱基吡喀烷酮、二曱基乙醯胺、四甲基 石風、乙—酵錯酸、乙驗醋酸S旨、乳酸乙g旨、聚乙—醇、 環己酮或其他類似溶劑。 k供为散劑經由%疋金屬奈米微粒的表面以便於預防 金屬奈米微粒聚集。分散劑之舉例無任何限制,可包 括 ^ΥΚ-ΟδΟΑ、BYK] 10、BYK-130、BYK-174、BYK-180、 ΒΥΚ-183、ΒΥΚ.185、BYK-33G、ΒΥΚ.337、ΒΥΚ-2000、 15 ΒΥΚ-2001、Teg〇425、Teg〇735w、Teg〇75〇w或其他類似物 質。 依本發明所述之墨水可以進一步包括硬化起始劑、硬 化加速劑以及著色劑。硬化起始劑或加速劑可為水溶性或 經由乳化劑而溶解。 20 【實施方式】 20 200815540 下述將具體說明本發明之較佳實施例,但本發明所主 張之權利範圍自應以申請專利範圍所述為準,而非僅限於 下述實施例。 [實施例1】 5 提供一硝酸銀(AgN03)的乙二醇溶液,以及PVP(聚乙 烯吡喀烷酮)與一界面活性劑的乙二醇溶液,將此兩溶液在 150°C下,以回流方式進行1小時的混合與攪拌作業,使其 進行反應。反應後,獲得含有70〜150nm尺寸的銀奈米微粒 分散於其中的分散液。 10 將20ml丙酮與10ml THF添加至經由上述聚醇製程所獲 得的10ml銀奈米微粒溶液。所合成的混合物進行離心分離 作業(5000rpm,20分鐘),然後移除懸浮物。接著,將沉澱 物再次分散於5ml的乙醇中。然後,10ml丙酮與10ml THF 添加至其中,此合成混合物進行離心分離作業,接續移除 15 懸浮物。上述程序重複2次,然後將合成沉澱物分散於一溶 劑(例如乙醇)中進而提供墨水。 此墨水具有52.58重量百分比的固體含量以及14.5cPs 的黏性。經由TG A測量後,仍保留在溶液中的界面活性劑 數量佔100重量份Ag固體微粒的1.5重量份(請參考圖1,圖1 20 中所顯示的數值為銀固體含量佔墨水總重量的52.58重量百 分比)。此外,墨水進行喷墨5次以便於塗佈在一基板上, 然後將此墨水在580°C下燒結30分鐘。燒結後,獲得具有 1170111線寬,3.4740111厚度以及4.3(:111線長的圖案,此圖案顯 示2.698Ω的線電阻以及2.550μΩχηι·的比電阻率。圖2為圖案 21 200815540 燒結後使用SEM所拍攝的昭片。ώ闰。:曰α 将幻…月。由圖2可見,Ag微粒彼此相 互連結進而提供良好的導電性。 【實施例2】 如同實施例1所述之方式製備Ag微粒。接著,除了墨 5水具有70重量百分比的固體含量之外,其餘提供墨水的方 式皆相同實施例1所述之方式’然後以此墨水進行一嘖墨圖 案試驗。 墨水具有3〇.5cPs的黏性。將此墨水以喷墨“欠方式塗 佈於一基板上,然後在4〇〇°c下燒結3〇分鐘。燒結後,獲得 10具有9(^m線寬,〇·68μιη厚度以及2.lcm線長的圖案,此圖案 顯示16.3Ω的線電阻以及4·75μΩχιη·的比電阻率。再者,將 此墨水以噴墨1次方式塗佈於一基板上,然後在58〇。(3下燒 結30分鐘。燒結後,獲得具有44·7μχη線寬,12叫^厚度以及 1.5cm線長的圖案,此圖案顯示12〇的線電阻以及4·29μΩ』^ 15 的比電阻率。 [比較例1] •除了殘留在Ag奈米微粒溶液中的剩餘界面活性劑不 充分沖洗除去之外,其餘獲得奈米微粒、墨水以及電極圖 案的方式皆如同實施例1所述之方式。 20 當由於缺乏沖洗剩餘界面活性劑的步驟而使溶液具有 高黏性時,固體含量需下降以便於滿足喷墨所需的黏性。 最後,溶液具有21.85重量百分比的固體含量以及l6.5cPs的 黏性。經過TGA測量後,仍保留在溶液中的界面活性劑數 量佔100重量份Ag固體微粒的45重量份(請參考圖3)。 22 200815540 燒結後,合成圖案具有134_的線寬,2 297μιη的厚度 以及4.3cm的線長,並且無法獲得其電阻值。圖々為圖案經 燒結後以SEM所拍攝的照片。由圖4可見,Ag微粒彼此之= 不連結而是相互分離,因此使其無法維持導電狀況。 5 丨比較例2] 了墨水的固體含量提升至50重量百分比之外,其餘提 供墨水的方式皆如同比較例〗所述之方式。此事例中/,、墨水 *有lG〇eps或更高的雜,其值無法由本發明之發明者所 =用的黏度計所測得。由於此一高黏性,無法進行噴墨作 產業利用性 由前文可知,喷墨印染用墨水所使用之金屬奈米微粒 的製備方法包括以至少一種溶劑沖洗剩餘界面活性劑。經 此作業殘留在金屬奈米微粒表面的剩餘界面活性劑可以減 15至最少,致使包括金屬奈米微粒的墨水黏性可以大幅; 降二因此,即使墨水所具有的墨水含量為50重量百分Z或 鲁 t呵值,墨水仍能夠滿足喷墨印染所需的黏性條件,因而 可以形成具高導電性的電極圖案。 雖然本發明已以目前認為最實用的與較佳的具體實施 2〇例來做說明,吾人應當瞭解本發明並非只限於此處所揭露 之具體實施例與圖示,相反地,而是意指涵蓋在隨付申請 專利範圍之精神與範圍下所做的各種修飾與變化。 【圖式簡單說明】 23 200815540 田、、、"合伴隨的圖式做更詳盡的說明,本發明之前文與 其他目的,特徵與優點將更加顯而易見。 圖1係為曲線顯示圖,顯示實施例1所述之喷墨印染用墨 水的TGA(熱重分析)結果。 · 5圖2係為SEM(掃描式電子顯微鏡)所拍攝之照片,其為實施 例1所述之喷墨印染用墨水燒結後所顯示之結果。 圖3係為一曲線顯示圖,顯示比較例j所述之噴墨印染用黑 水的TGA(熱重分析)結果。 w 圖4係為SEM(掃描式電子顯微鏡)所拍攝之照片,其為比車* 10 例1所述之喷墨印染用墨水燒結後所顯示之結果。 乂 【主要元件符號說明】 益 24TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of preparing ink-jet printed rice particles. More particularly, the ink consists of the remaining interfacial particles present on the surface of the rice particles in order to minimize the amount of residual agent. [Prior Art] The ink and the metal used therein are the largest amount of metal nano 10 obtained by rinsing the metal nematic active agent with at least one solvent for the ink jet printing at the interface left on the surface of the metal nanoparticle. & Various flat display devices have become the focus of attention, successfully replacing cathode ray tubes as display devices, such flat display devices including liquid crystal display (LCD) devices, field emission displays (FE devices, plasma display plane devices) (PDP) and electroluminescence (EL) devices. In the conventional process of manufacturing a flat display device, the imaging step is generally performed by photolithography (ph〇toUtho (4) PhicPr〇cess). The photocopying process has a series of processes. The photographic process steps include coating photoresist, reticle alignment, exposure, development, and stripping of the photoresist. This photolithography process has its problems, such as the need for long working hours, photoresist 剤Cost, and in order to remove the imaging photoresist, a stripping solution must be used, 20 and an expensive system such as an exposure system is required. When the size of the substrate is increased and the pattern size formed on the substrate is reduced, a more extensive exposure system must be used. Moreover, in this process, it is more difficult to control the pitch accuracy and the electrode width. 6 200815540 In order to obtain finer line widths, reduce material loss, and simplify process steps, the idea of using an inkjet process to form electrodes has been proposed. In addition to the field of flat display devices, this inkjet imaging process has become a focus of attention and can be applied to various The field is used as a direct printing process. 5 The ink jet process allows direct imaging of the desired pattern on the substrate by using an ink jet head having multiple fine nozzles. Therefore, the ink jet process can reduce the number of steps compared to the photolithography process. Equipment investment can be more effective lb fee and pattern change can be more flexible. In essence, the inkjet process does not allow the use of high-viscosity paste materials, and must use 10 low-viscosity conductive inks with nano-scale particles. The process of forming an electrode pattern by an ink process, first, including etched, & The metallic ink of the fine particles, the dispersing agent and the additive is ejected by an ink jet squirting to print a pattern. Then, heat treatment is performed in order to remove the solvent and the dispersing agent and allow the remaining metal particles to be bonded to each other. 15 Here, when the ink When the content of the metal solid inside is increased, the thickness of the printed metal wire is increased, and the residual organic residue after the heat treatment is reduced, the metal pattern formed by the inkjet printing process can exhibit high conductivity. The alcohol (p〇ly〇1) process can prepare metal nano particles. In the process of polyalcohol, the use of a high boiling point alcohol compound is not only used as a reducing agent for cations, but also as a solvent. For example, Silver nanoparticle may be obtained by reducing the silver nitrate solution via ethylene glycol at a temperature of 150 C, and a surfactant such as pvp (polyvinylpyrrolidone) may be used in order to stabilize the surface of the reduced silver nanoparticle. At this point, 7 200815540 to promote the reaction, the surfactant typically uses an excess of 1 required to stabilize the surface of the metal particles. SUMMARY OF THE INVENTION 5 In the above process for preparing metal nanoparticle by a polyol process, the nanoparticle is usually dispersed in a solvent, and the nanoparticle is separated by a dispersion or a solid particle thereof depending on the characteristics of the nanoparticle used. The type of use. The excess surfactant used in the polyol process is such that the dispersion of nanoparticulates still contains the remaining surfactant that is not bonded to the nanoparticles. If the remaining surfactant is not effectively removed, the subsequent generation of ink containing ink particles for ink jets may result in the production of highly viscous ink. Therefore, in order to satisfy the viscous conditions suitable for inkjet, it is necessary to reduce the amount of nanoparticles in the ink. This may not be advantageous for ink jet technology to form a well interconnected electrode pattern. The inventors of the present invention have found that when preparing metal nanoparticles in ink for inkjet printing via a polyol process, at least one solvent is used to rinse the surface of the metal nanoparticles and/or the remaining surfactant remaining in the dispersion, The amount of residual surfactant can be minimized, the viscosity of the ink containing the metal nanoparticles can be lowered, and the number of the metal nanoparticles 20 in the ink can be increased, thereby forming an electrode pattern having high conductivity. The present invention is based on this finding. Accordingly, the present invention provides an ink for inkjet printing, the composition comprising: metal nanoparticle comprising a surfactant bonded to a surface thereof; and - a solvent - wherein the metal nanoparticle is present in an amount of 1 (9) by weight Part of the ink 8 200815540 50 to 7 G parts by weight of the water, and the surfactant is present in an amount of (10) parts by weight of the metal nanoparticles to be 5 to 5 parts by weight. Meanwhile, the present invention provides a method for preparing metal nanoparticles used in an ink for inkjet printing. The steps of the method include: (4) adding one: a surfactant to facilitate formation of metal nanoparticles; and (8) at least A first refrigerant rinse can be used to remove residual surfactant in addition to the amount of surfactant used to stabilize the metal nanoparticle particles in addition to the metal nanoparticles. Furthermore, the present invention provides a granule in an inkjet ink for inkjet, the composition of which comprises: - a surfactant is bonded to the surface thereof, wherein the surfactant is present in an amount of 重量5 to 5 of 100 parts by weight of the metal nanoparticle The parts are in the form of a weight loss of 1 〜 to 500 t:m_TGA. The invention will be described in more detail below. The "first solvent" used in the 15/匕 area refers to the solvent used for the ink, and the second solvent" refers to the preparation of the metal nanoparticle, and the rinse solvent of the surfactant is used. And "third solvent, refers to a solvent prepared by reacting a metal salt with a surfactant as a reaction to perform a polyphenol county (ροΐ# reduetiQn) in the process of preparing metal nanoparticle. The method of nanoparticles will be described in detail below. According to the invention, the ink for inkjet printing comprising metal nanoparticles comprises a surfactant which is bonded to the surface of the metal nanoparticles to stabilize the metal particles. The amount is controlled in the weight of 100 parts by weight of the metal nanoparticle particles, and when the remaining surfactant is washed, the 'maintained in the metal nanoparticle: 20 200815540 interface active agent number is controlled in the weight of the metal 0.5 parts by weight of the nanoparticle. Therefore, the ink according to the present invention is characterized in that the content of the metal nanoparticle is increased to 50 to 70 parts by weight based on 1 part by weight of the ink. To the extent that it still retains the viscosity required for inkjet printing. Based on this, when the ink of the present invention is used via the inkjet printing process, a conductive pattern can be formed on the substrate to improve the conductive particles. The content, in turn, increases the conductivity. "The metal nanoparticle used in the ink according to the present invention, the t preparation side / i: is characterized by at least a third solvent rinse except for the link to the gold 1〇jna The surface of the rice particles is used to stabilize the residual surfactant of the metal nanoparticles in addition to the surfactant to remove the remaining surfactant. For example, when a metal nanoparticle is prepared via a polyol process, a polyol is added as a reducing agent to a solution containing a metal salt, a surfactant, and a third solvent. At this point, in addition to the amount of surfactant that can be attached to the surfactant 15 as a dispersant, the remaining surfactant can remain in the metal nanoparticle and the final dispersion of the ink containing water. This will cause the viscosity of the ink to increase. In general, it would be very difficult to clearly distinguish between surfactants attached to metal nanoparticles from the remaining surfactants. Although the two surfactants of Form 20 are essentially the same, when using the whole ^ & field to prepare inks from only Naiwei particles, a large amount of residual surfactant not attached to the metal nanoparticles, 1 will cause the ink to stick This can be obtained by TGA analysis, which shows a high proportion of surfactants. 200815540 The viscosity of the boundary water of the continuous, metal, and nano-particles of metal nanoparticles. ^, this number of agents must affect the heat of the ink at the same time. However, this number 1 is a stable amount. Therefore, when the minimum of the surface of the ink 7jc _ _ is indispensable (four), 贝 „ Be careful to consider this amount in order to perform the viscous erection. Conversely, the method of p in the hairpin is preferably removed in the ink and is unwelcome and will be lingering. The remaining interface activity of the ink stickiness is in the private interface. In the process of the active agent, due to the interaction between the sex agents, the light, 'eight-interface intervening agent', the interface of the surface of the metal non-fine particles 10 15 20 丄弟一洛剂 to move it in the rinsing step Except that only the remaining surfactants that do not link the five genera can be removed in the rinsing step. Therefore, according to the method of the present invention, the % V-. ^ method includes the steps of forming a metal nano-micro-knife liquid, adding at least a second solvent to the dispersion to dissolve the remaining surfactant, and a metal nanoparticle that is separated from you in the morning, 6 and the extract, which can be released from the solution in which any remaining surfactant is retained. The nanoparticle 'and comprises a surfactant bonded to the surface of the metal nanoparticle as the stabilized metal nanoparticle in an amount of 0.5 to 5 parts by weight based on the weight of the metal nanoparticle. The second solvent of the agent may be a solvent that is not bonded to the metal nanoparticles, and may dissolve the surfactant remaining on the surface of the metal nanoparticles and in the solution. According to the specific type of the surfactant to be removed. The second solvent is selected. The second solvent is exemplified without any limitation 'may include: water, methanol (methan 〇 1), ethanol (ethan 〇 1 y, propanol, isopropan 〇 1 ), butanol ( Butan〇1), pentanol, hexanoi, dimethyl sulfoxixide (11 200815540 DMSO), hydrazine, N, N-dimethylformamide, DMF), N-methyl pyrrolidone, acetone, acetonitrile, tetrahydrofuran (THF), 癸 Hyun ((16. & 116) , 壬 ( (110 like 1 ^), 辛烧 (0 (^3116), heptane 5 (heptane), hexane, pentane or other similar solvents. Also, according to the desire to be removed A specific form of the surfactant, any of the above solvents may be used singly or in combination. In order to effectively dissolve the remaining surfactant remaining between the agglomerated particle gaps, a mixed solvent comprising at least two second solvents may be used, and the remaining interface 10 active agent may be separated into a suspension during subsequent centrifugation. When a mixed solvent comprising at least two second solvents is used, the at least one second solvent is preferably a solvent which can dissolve the surfactant. Another second solvent which does not dissolve the surfactant may be a mixture of the above solvents which dissolve the surfactant. 15 A mixed solvent comprising at least two second solvents may have a different polarity and solubility than a single solvent. Preferably, the combination of the mixed solvents varies depending on the particular type of surfactant used to prepare the nanoparticles. According to the invention, the second solvent is added in an amount corresponding to 5 to 20 times the total weight of the surfactant in the metal nanoparticle dispersion. 20 If the amount of the second solvent is less than 5 times the total weight of the surfactant, the remaining surfactant may not be adequately rinsed off. When the amount of the second solvent is more than 20 times the total weight of the surfactant, it will not be cost effective due to the large loss of the rinsing solvent. 12 200815540 After rinsing the remaining surfactant with at least one second solvent as described herein, the remaining surfactant may remain in an amount of 55 or less by weight of the metal nanoparticles of 1 part by weight. The final nanoparticle or ink containing the nanoparticle. In addition, the surface of the surfactant bonded or attached to the metal nanoparticle 5 is not removed by the above-described rinsing step, but is provided as a stable metal nanoparticle, and may be present in an amount of 1 part by weight of the metal nanoparticle. 0.5 to 5 parts by weight. • The amount of surfactant can be measured by qualitative or quantitative analysis. Change. It can be photographed from a dental electron microscope (ΤΕΜ) to show the presence of a surfactant in the nano-particles surrounding the surfactant. The presence of the surfactant can be determined from the thermogravimetric analyzer (TGA). The number I of the retained surfactant. For example, in the graph shown in the figure, it can be seen that the first solvent is completely volatilized at about 15 ° C, and all organic matter is burned out at about 5 〇〇 c > c. Therefore, the difference between the weight of 15 (TC) and the weight of 50 (rc) can be regarded as the number of surfactants in the boundary. Any solvent having a different temperature is completely volatilized there. Therefore, it is completely volatilized from the first solvent. The temperature is up to 5 〇〇. (1: interval • Θ, measured from TGA (4) The amount loss can be regarded as the organic content, ie the content of the surfactant. The complete volatilization temperature of the solvent varies depending on the specific type of solvent. , but generally ranges from 1 〇〇. (3 to 2 〇〇. (:. In the preparation process of the nanoparticle described in the present specification, when the above rinsing step cannot fully perform the zen temple, it is measured by TGA The organic content may account for 5 parts by weight of 0 parts by weight of the metal nanoparticle. Considering the amount of surfactant attached to the surface of the metal nanoparticle, it ranges from 0.5 part by weight of the metal nanoparticle. Up to 5 parts by weight, it can be seen that the surfactant is maintained at a significant amount of 13 200815540. When the above-mentioned rinsing process is carried out to a full process, the remaining surfactants are all removed, and the organic amount measured by TGA^ Wai 5 to 5 parts by weight of the cerium of 100 parts by weight of the metal nanoparticle. While the rinsing step is sufficiently performed, the remaining interface of 〇.5 or less by weight of 100 parts by weight of the metal 5 metre fine particles is performed. The active agent remains in the metal nanoparticles and/or ink. This small amount cannot be easily detected by instrumental analysis. In addition, even if the remaining surfactant remains, it does not affect the viscosity of the ink and other physics. Characteristics, such as in the rinsing step ς Φ situation is acceptable. 4, 10 can be used to prepare metal nanoparticles by a surfactant. The surfactant is not limited (4), as long as the surfactant can stabilize the metal nanoparticles = When a metal salt is reduced in solution to form a metal nanoparticle, the high specific surface area of the metal nanoparticle causes the metal nanoparticle to have a high surface energy and is therefore in an unstable state. In 15 minutes, the metal nanoparticles tend to condense with each other. The spin-polymerization of this nanoparticle is connected to the metal nanoparticle by using a surfactant. Surface = easy to prevent around the metal nanoparticles. In addition, providing a surfactant can prevent the oxidation of metal nanoparticles and maintain the metal nanoparticles in a stable state. 20 Surfactant is a substance It can be adsorbed at the interface in the solution to reduce the surface tension. In general, the surfactant contains an amphiphilic substance having a hydrophilic group and a lipophilic group in one molecule. The surfactant is classified into an anion according to ionization. Surfactants, cationic surfactants, two artificial interfaces, lingual agents, nonionic surfactants, etc. The surfactants that can be removed according to the invention of 200815540 are not particularly limited and may include Polyethylene ( money (4) PVP), polyethyleneimine (pEI), polymethyl _ (PMVE), vinyl alcohol (pvA), polyoxyethylene phenyl sulphide (P〇iy 〇 xyethylene aiM phenyi ether ), polyethylene sorbitan monostearate (P〇lyethylene sorbitan m〇n〇stearate) or other similar substances. Derivatives of such surfactants are also included within the scope of the invention. The above surfactants may be used singly or in combination. The metal nanoparticles obtained by the present invention can be imaged by forming an electrode pattern on a substrate such as a display substrate, and by an inkjet printing process. Nanoparticles (4) are limited as long as they have high conductivity. The metal nanoparticles are not limited, and may include: Ag, Cu, such as, & A, ^^, /^^, ^, 卩, or an alloy thereof. The method of preparing the metal nanoparticle of the present invention may comprise the step of rinsing the remaining surfactant with a second solvent to facilitate removal of the remaining interface. Therefore, the method of preparing the metal nanoparticle is not particularly limited 'except for the above-described rinsing step, as long as the method utilizes an excess amount of the surfactant which is higher than the amount required for the surfactant to be attached to the surface of the metal nanoparticle, and then the remaining surfactant There is still the possibility of remaining in the second dispersion of metal nanoparticles. In other words, a method of preparing the metal nanoparticle of the present invention, the steps comprising: '(a) adding a surfactant to facilitate formation of the metal nanoparticle; and (b) rinsing with at least one second solvent except for The surface of the metal nanoparticle, the surfactant used to stabilize the metal nanoparticle, the remaining surfactant other than the 15 200815540 1 , the active agent. In order to form the metal nanoparticles in the step (4), the metal nanoparticles have a high surface energy and are in an unstable state due to the large surface area of the metal nanoparticles. In order to reduce this surface energy, the metal nanoparticles tend to condense on each other. Here, the surfactant is added and attached to the surface of the nanoparticle :::: the surface of the crucible surrounds the surfactant. By this action, it is possible to prevent the depolymerization of such a card sample. Further, the surfactant can prevent the oxidation of the metal nanoparticles to maintain the metal particles in a stable state. It must be noted that although the surfactant is used in an amount that can be attached to the metal nanoparticles, in order to facilitate the progress of the reaction, it is preferred to use a surfactant of 2: and higher than the amount used. 15 20 in order to remove the remaining interface > t, a metal nanoparticle can be prepared via a polyol process, wherein the I alcohol can be used not only as a reducing agent but also as a third solvent. In a specific embodiment of the method for the production of a polyol, the step (4) in the method of the present invention can be carried out by adding a polyalcohol as a reducing agent to a solution containing a metal salt, and the surfactant and the third solvent are over 1 Further, metal nanoparticles including a surface-bonding interface: a green agent are formed. At this moment, the metal nanoparticle is present in the knife solution liquid in which the metal nanoparticle is dispersed in the solvent. Step (8) is a polyol process in which metal nanoparticles are passed through a reducing metal salt. In the step (a), the hydroalcohol is not only provided as a reducing agent but also as a solvent. The example of the polyol is not limited, and may include: ethylene glycol (10) yleneglycol), diethylene glycol (tetra) ethylene glyc 〇 1), tetraethyl: alcohol (10) such as (10) glycol) and the like. 16 200815540 Diyl solvent is not subject to any special restrictions, only metal salt solvents. The first eight is used as a reduction: water, methyl yeast, ethanol, propanol, isopropanol, butanol, J = ethylene glycol monomethyl ether, B: ethyl - methyl acetamide (DMF), ethylene Alcohol, early B-known early ether, ethylene glycol dimethyl ether, ethylene glycol, propylene glycol, propylene-propylene-propylene, propylene glycol methyl hydrazide acetic acid, - knitting, methyl isobutyl ketone, methyl ethyl ketone, Acetonitrile, tetrahydrogen bitrate; (THF), hexadecane, pentadecane, tetradecane, tridecane, dodecane, eleven 10 15 20 burning, simmering, simmering, simmering, simmering, simmering Home, xylene, toluene, benzene or other similar solvent. The above solvents may be used singly or in combination. The metal salts which can be used in the present invention are well known as metal salts which can form metals via a reduction reaction. Any metal salt can be used without particular limitation, and examples thereof include: nitrates, halides (Cl, Br, I), hydroxides (1) Η·), sulfates (s〇 42_) , acetate (c2h3o2-) or other similar compounds. Step (a) can be carried out at a temperature of from 150 ° C to 300 ° C. In general, in the process of the polyalcohol, the metal nanoparticle is formed by the metal salt-based reduction reaction at a boiling temperature close to the polyol used in the process. In view of this, the temperature of this range is suitable. As described above, in the step (b), at least one second solvent is added in order to dissolve the remaining surfactant remaining on the surface of the metal nanoparticles and/or the dispersion, so that the surfactant can be washed from the metal nanoparticles Removal 0 17 200815540 In order to remove the remaining surfactant using a second solvent rinse, the second solvent is required to uniformly mix the dispersion of metal nanoparticles, thereby dissolving the remaining surfactant as described above. Liquid-liquid separation methods well known in the art, such as centrifugation, are then used to facilitate removal of the liquid phase. Although the step (b) of rinsing the remaining 5 surfactants is performed only once, the rinsing operation can be performed several times depending on the level of removal of the remaining interface agents. In other words, the metal nanoparticle is separated from the solvent dispersed back to the third solvent to provide a metal nanoparticle of the knife solution, and then the step (b) is repeated. However, when the remaining surfactant is removed using the second solvent of the present invention, a good 1 rinsing effect can be obtained, and the remaining surfactant can be sufficiently removed by repeated rinsing several times in a & The ground is one to five times, rather than repeated washing many times. On the same day, under the bonding force, the surfactant is attached to the microparticles to the 2 microparticles, so that it cannot be separated from the microparticles by the step of rinsing the remaining surfactant. The rinsing step can only remove the remaining surfactant. According to the invention, it is possible to select a suitable second solvent which has the ability to dissolve the surfactant, depending on the particular type of surfactant used in the preparation of the metal smear particles. At the same time, it is possible to obtain metal nanoparticles without any residual surfactant remaining via the ratio of the amount of the first surfactant to the surfactant. The ink for inkjet printing contains metal nanoparticles dispersed therein, and the remaining surfactant is sufficiently removed by the above-mentioned rinsing step, so that water has a low viscosity enough for use in inkjet printing operations. Therefore, it is possible to provide an ink for ink jet printing comprising 50 to 70 parts by weight based on the ink solid content basic component 18 200815540 = 100 parts by weight. Preferably, the ink contains metal nanoparticles having a relatively high solids enthalpy. 5 15 At the same time, the ink for inkjet printing according to the present invention has the above-described suitability for the ink (4) pure, and it is difficult to have the properties of the ink. If the ink = some viscosity is outside the above range, it is difficult to stabilize the ink itself and the quality of the ink. Further, the ink for inkjet printing according to the present invention preferably has physical properties suitable for ink jetting, including 20 to 4 surface tension. The ink for inkjet printing according to the present invention is characterized by comprising the metal nanoparticle obtained by the above 2, which comprises residual surfactant remaining on the surface of the metal nanoparticle with at least one second solvent for easy removal One step of the remaining surfactant. The ink for inkjet printing of the "granules" is 4' in 4 by adding metal nanoparticles and adding a dispersing agent and other additives to it = two because the dispersing agent has a relatively high viscosity. W does not add a small amount of dispersant. Μ 1 2: The first solvent used as the ink is the solvent used recently (IV). The examples of 苐-_ are not limited, and may include: water, ethyl ketone, methyl isobutyl hydrazine, methyl cellosolve, ethyl cellosolve, four gases: drinking, dioxere, and ethylene Alcohol dimethyl hydrazine, ethylene glycol diethylene, two = use as a surfactant for the preparation of metal nanoparticles and added to ί water = powder are provided as a surface of the particles, in order to prevent the particle Γ Γ The dispersant of the ink may also change the viscosity of the ink. 19 200815540 Methyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, chloroform, methylene chloride, 1,2-chloroethane, HI dichloroethane, 1, 1,2-trichloroethane, ι,ι 2_ dichloroethylene, hexane, g-burn, octane, cyclohexane, benzene, toluene, mono-toluene, methanol, ethanol, isopropanol, propanol, butyl Alcohol, isobutanol, cyclohexanone, propylene glycol methyl ether acetate vinegar, propylene glycol ethyl ether acetate, butyl 2-methoxyacetate, 3-ethoxy butyl acetate, ethyl cellosolve acetate, methyl Cellulolytic acetate, butyl acetate, methyl butanone, methyl isobutyl ketone, ethylene glycol monoethyl ether, 7-butyrolactone, N-mercaptopyrrolidone, Dimercaptoacetamide, tetramethyl stone wind, B-fermented acid, acetic acid S, lactic acid, polyethyl alcohol, cyclohexanone or other similar solvents. k is supplied as a powder via the surface of the % bismuth metal nanoparticles to prevent the aggregation of metal nanoparticles. Examples of the dispersing agent are not limited, and may include ^ΥΚ-ΟδΟΑ, BYK] 10, BYK-130, BYK-174, BYK-180, ΒΥΚ-183, ΒΥΚ.185, BYK-33G, ΒΥΚ.337, ΒΥΚ-2000. , 15 ΒΥΚ-2001, Teg〇425, Teg〇735w, Teg〇75〇w or other similar substances. The ink according to the present invention may further comprise a hardening initiator, a hardening accelerator, and a coloring agent. The hardening initiator or accelerator may be water soluble or dissolved via an emulsifier. [Embodiment] 20 200815540 The following is a detailed description of the preferred embodiments of the present invention, but the scope of the present invention is defined by the scope of the claims, and is not limited to the following embodiments. [Example 1] 5 Providing a solution of silver nitrate (AgN03) in ethylene glycol, and a solution of PVP (polyvinylpyrrolidone) and a surfactant in ethylene glycol, the two solutions were at 150 ° C The mixture was mixed and stirred for 1 hour in a reflux mode to carry out a reaction. After the reaction, a dispersion liquid in which silver nanoparticles having a size of 70 to 150 nm were dispersed was obtained. 10 20 ml of acetone and 10 ml of THF were added to a solution of 10 ml of silver nanoparticle obtained by the above-mentioned polyol process. The synthesized mixture was subjected to centrifugation (5000 rpm, 20 minutes), and then the suspended matter was removed. Next, the precipitate was redispersed in 5 ml of ethanol. Then, 10 ml of acetone and 10 ml of THF were added thereto, and the synthesis mixture was subjected to centrifugation to successively remove 15 suspended solids. The above procedure was repeated twice, and then the synthetic precipitate was dispersed in a solvent such as ethanol to provide an ink. This ink has a solids content of 52.58 weight percent and a viscosity of 14.5 cPs. After the measurement by TG A, the amount of the surfactant remaining in the solution accounts for 1.5 parts by weight of 100 parts by weight of the Ag solid particles (refer to FIG. 1 , the value shown in FIG. 1 20 is the silver solid content as a percentage of the total weight of the ink. 52.58 weight percent). Further, the ink was ink-jetted 5 times to be coated on a substrate, and then this ink was sintered at 580 ° C for 30 minutes. After sintering, a pattern having a line width of 1170111, a thickness of 3.4740111, and a thickness of 4.3 (: 111 lines, which shows a line resistance of 2.698 Ω and a specific resistivity of 2.550 μΩχη·. FIG. 2 is a pattern 21 200815540.昭.. 曰α will be illusory...month. As can be seen from Fig. 2, the Ag particles are connected to each other to provide good conductivity. [Example 2] Ag particles were prepared in the same manner as in Example 1. Except that the ink of the ink 5 has a solid content of 70% by weight, the manner of providing the ink is the same as that described in the embodiment 1 and then the ink pattern test is performed with the ink. The ink has a viscosity of 3 〇.5 cPs. The ink was applied to a substrate by inkjet "under-application" and then sintered at 4 ° C for 3 minutes. After sintering, 10 was obtained with a thickness of 9 (m line width, 〇 · 68 μιη thickness and 2. A pattern of a line length of lcm, which shows a line resistance of 16.3 Ω and a specific resistivity of 4·75 μΩχ. Further, this ink is applied to a substrate by inkjet one time, and then at 58 〇. (3) Sintered for 30 minutes. After sintering A pattern having a line width of 44·7 μχη, a thickness of 12, and a line length of 1.5 cm was obtained, and this pattern showed a line resistance of 12 以及 and a specific resistivity of 4·29 μΩ ^ 15 [Comparative Example 1] • The remaining surfactant in the Ag nanoparticulate solution was not sufficiently rinsed out, and the rest of the nanoparticle, ink, and electrode patterns were obtained in the same manner as described in Example 1. 20 When there was a lack of flushing of the remaining surfactant When the solution is made to have high viscosity, the solid content needs to be lowered to satisfy the viscosity required for inkjet. Finally, the solution has a solid content of 21.85 weight percent and a viscosity of 16.5 cPs. After TGA measurement, it remains. The amount of the surfactant in the solution accounts for 45 parts by weight of 100 parts by weight of the Ag solid particles (refer to Fig. 3). 22 200815540 After sintering, the synthetic pattern has a line width of 134 mm, a thickness of 2 297 μm, and a line length of 4.3 cm. And the resistance value cannot be obtained. Figure 々 is a photograph taken by SEM after the pattern is sintered. It can be seen from Fig. 4 that the Ag particles are not connected to each other but are separated from each other, thus making it impossible to maintain Conductive condition 5 丨Comparative Example 2] The solid content of the ink is increased to 50% by weight, and the rest of the ink is supplied in the same manner as in the comparative example. In this case, /, ink* has lG〇eps or The higher the amount, the value cannot be measured by the viscometer used by the inventors of the present invention. Due to the high viscosity, the inkjet is not industrially usable. As described above, the ink for inkjet printing is used. The method for preparing the metal nanoparticle comprises washing the remaining surfactant with at least one solvent, and the remaining surfactant remaining on the surface of the metal nanoparticle can be reduced by 15 to a minimum, so that the viscosity of the ink including the metal nanoparticle can be Therefore, even if the ink has an ink content of 50% by weight or a value of 5%, the ink can satisfy the viscous conditions required for inkjet printing, and thus an electrode pattern having high conductivity can be formed. While the invention has been described with respect to the preferred embodiments and the preferred embodiments of the present invention, it is understood that the invention is not intended to Various modifications and changes made in the spirit and scope of the patent application. [Simple description of the drawings] 23 200815540 The accompanying drawings are to be explained in more detail, and the foregoing and other objects, features and advantages of the present invention will become more apparent. Fig. 1 is a graph showing the results of TGA (thermogravimetric analysis) of the ink for inkjet printing described in Example 1. Fig. 2 is a photograph taken by SEM (Scanning Electron Microscope), which is a result of sintering of the ink for inkjet printing described in Example 1. Fig. 3 is a graph showing the results of TGA (thermogravimetric analysis) of black water for inkjet printing described in Comparative Example j. w Fig. 4 is a photograph taken by SEM (Scanning Electron Microscope), which is a result obtained by sintering the ink for inkjet printing described in Example 10 of the vehicle.乂 【Main component symbol description】 Benefit 24

Claims (1)

200815540 鵪 十、申請專利範圍: 1· 一種喷墨印染用墨水,其组 金屬奈米微粒,包括連結至其表面的一界面活性劑;以及 一第一溶劑, 5其中該金屬奈米微粒所存在的數量佔100重量份墨水的 50〜70重量份,以及該界面活性劑存在的數量佔1〇〇重量份 金屬奈未微粒的0 · 5〜5重量份。 2.如申請專利範圍第1項中所述之墨水,其具有 攀 1〜50cPs的黏性。 10 3·如中請專利範圍第旧中所述之墨水,其中該界面活 性劑之使用係為製備金屬奈米微粒。 4·如申請專利範圍第〗項中所述之墨水,其中該界面活 性劑的數量以第一溶劑完全揮發的溫度至之間的一 區域範圍内Μ由TGA(熱重分析)所測得的重量漏失值表示 15 之。 5.如申請專利範圍第4項中所述之墨水,其中該第一溶 # 劑完全揮發的溫度範圍從100°c至200°C。 6·如申請專利範圍第1項中所述之墨水,其中包括不連 、、Ό至金屬奈米微粒表面的剩餘界面活性劑,其數量佔1⑽重 20 量份金屬奈米微粒的0.5重量份或更少值。 7·如申請專利範圍第丨項中所述之墨水,其中該金屬奈 米微粒為選自由Ag、Cu、Au、Cr、w、Zri、Ni、Fe、 Pt以及Pb所組成之群組中至少一種型態的微粒。 25 200815540 8.如申請專利範圍第i項中所述之墨水,其中該界面活 性劑為一聚合物類物質,選自由聚乙烯吡喀烷酮(pvp)、聚 乙烯亞胺(PEI)、聚甲基乙烯醚(PMVE)、聚乙烯醇(PVA)、 ♦氧乙稀基烧基苯基_以及聚乙稀山梨醇酐單硬脂酸酯所 5 組成之群組。200815540 鹌10, the scope of application for patents: 1. An ink for inkjet printing, the group of metal nanoparticles, comprising a surfactant attached to the surface thereof; and a first solvent, 5 wherein the metal nanoparticles are present The amount is from 50 to 70 parts by weight based on 100 parts by weight of the ink, and the surfactant is present in an amount of from 0.5 to 5 parts by weight based on 1 part by weight of the metal nanoparticle. 2. The ink of claim 1, wherein the ink has a viscosity of from 1 to 50 cPs. 10 3. The ink of the above-mentioned patent scope, wherein the use of the surfactant is for the preparation of metal nanoparticles. 4. The ink of claim 1, wherein the amount of the surfactant is measured by TGA (thermogravimetric analysis) in a range between the temperature at which the first solvent is completely volatilized to between The weight loss value indicates 15%. 5. The ink of claim 4, wherein the first solvent is completely volatilized at a temperature ranging from 100 ° C to 200 ° C. 6. The ink as claimed in claim 1, which comprises the remaining surfactant which is not connected to the surface of the metal nanoparticles, and the amount of which is 1 (10) by weight and 0.5 parts by weight of the metal nanoparticles. Or less. 7. The ink according to claim 2, wherein the metal nanoparticle is at least selected from the group consisting of Ag, Cu, Au, Cr, w, Zri, Ni, Fe, Pt, and Pb. A type of particle. 25 200815540 8. The ink of claim i, wherein the surfactant is a polymer material selected from the group consisting of polyvinylpyrrolidone (pvp), polyethyleneimine (PEI), poly A group consisting of methyl vinyl ether (PMVE), polyvinyl alcohol (PVA), oxyethyl phenyl phenyl hydride, and polyethyl sorbitan monostearate 5 . 10 15 20 9· 一種喷墨印染所用之墨水,其獲得的方法包括以至 v —種第二溶劑,沖洗除了可以連結在金屬奈米微粒表 面,用於穩定金屬奈米微粒的界面活性劑用量之外的剩餘 界面活性劑,以便於移除剩餘界面活性劑的一步驟。 10· —種喷墨印染用墨水内所用的金屬奈米微粒之製 備方法,該方法的步驟包括: (a)添加一界面活性劑以便於形成金屬奈米微粒;以及 山(b)以至少一種第二溶劑沖洗除了可以連結至金屬奈米 微粒表面,用於穩定金屬奈米微粒的界面活性劑用量^ 的剩餘界面活性劑,以便於移除剩餘界面活性劑。 U·如巾請專利範圍第10項中所述噴墨印染用墨水内 所使用的金屬奈米微粒之製備方法,#中連結至金屬奈米 微粒表面,用於穩定金屬奈米微粒之界面活性劑的用量佔 1〇〇重里伤金屬奈米微粒的0·5〜5重量份。 12· ”請專利範圍第1〇項中所述喷墨印染用墨水内 用的金屬奈米微粒之製備方法,其中關餘界面活性 ^ ’係指除了可㈣結至金屬奈綠 屬奈米微粒的界面活性劑用量之外的界面活性劑,、 26 200815540 驟後其存在的數量佔⑽重量份金屬奈米微粒的0.5重量份 或更少值。 13·如中請專利範圍第1G項中所述喷墨印染用墨水内 所使用的金屬奈米微粒之製備方法,其中該第二溶劑能夠 5 浴解界面活性劑。 Η·如中請專利範圍第1G項中所述喷墨印染用墨水内 所使用的金屬奈米微粒之製備方法,其中該第二溶劑選自 由水、甲醇、乙醇'丙醇、異丙醇、丁醇、戊醇、己醇、 • 卿〇(二甲基亞職)、DMF(N,N_二甲基乙醯胺)、N•甲基。比 10喀烷酮、丙酮、乙腈、THF(西氫吱味)、癸烷、壬烷、辛^、 庚烧、己烧以及戊烧所組成之群組。 15.如申請專利範圍第10項中所述噴墨印染用墨水内 所使用的金屬奈米微粒之製備方法,其中該第二溶劑所添 加的數量相當於界面活性劑總重量的5〜2〇倍。 15 I6·如申請專利範圍第10項中所述噴墨印染用墨水内 所使用的金屬奈米微粒之製備方法,其中步驟(a)之執行係 Φ 經由添加功能如同還原劑的一聚醇至包含一金屬鴎類、一 界面活性劑以及一第三溶劑的溶液中,以便於形成包含界 面活性劑連結於其表面的金屬奈米微粒。 20 n. 一種噴墨印染用墨水所使用之金屬奈米微粒,其包 括以估100重置份金屬奈米微粒的〇·5〜5重量份數量,連衾士 至其表面的界面活性劑,其中界面活性劑的數量以工至 5〇〇°C的一區域範圍内以TGA(熱重分析)所測得的重量漏失 值表示之。 27 200815540 18.如申請專利範圍第17項中所述喷墨印染用墨水所 使用之金屬奈米微粒,其為選自由Ag、Cu、Au、Cr、A卜 W、Zn、Ni、Fe、Pt以及Pb所組成之群組中至少一種形態 的微粒。10 15 20 9· An ink for inkjet printing, which comprises obtaining a second solvent, which is used for rinsing a surfactant which can be bonded to the surface of the metal nanoparticle for stabilizing the metal nanoparticle. The remaining surfactant is used to facilitate removal of the remaining surfactant. 10. A method of preparing metal nanoparticles for use in inks for inkjet printing, the method comprising the steps of: (a) adding a surfactant to facilitate formation of metal nanoparticles; and (b) at least one The second solvent rinse removes the remaining surfactant in addition to the amount of surfactant used to stabilize the metal nanoparticles, in addition to the surface of the metal nanoparticle particles, to facilitate removal of the remaining surfactant. U. For example, the preparation method of the metal nanoparticle used in the ink for inkjet printing described in Item 10 of the patent scope is linked to the surface of the metal nanoparticle to stabilize the interfacial activity of the metal nanoparticle. The amount of the agent is from 0.5 to 5 parts by weight of the metal nanoparticles of the ruthenium. 12. The method for preparing metal nanoparticles for use in inks for inkjet printing according to the first aspect of the patent, wherein the interface activity is in addition to the (four) junction to the metal nano-nanoparticles The amount of the surfactant other than the surfactant, 26 200815540 is present in the amount of 0.5 parts by weight or less of the (10) parts by weight of the metal nanoparticle. 13 · As stated in the scope of the patent A method for preparing metal nanoparticles for use in an ink for inkjet printing, wherein the second solvent is capable of decomposing a surfactant in a bath of 5. The inkjet ink for inkjet printing is described in the scope of claim 1G. The preparation method of the metal nanoparticle used, wherein the second solvent is selected from the group consisting of water, methanol, ethanol 'propanol, isopropanol, butanol, pentanol, hexanol, • qing 〇 (dimethyl sub-job) , DMF (N,N-dimethylacetamide), N•methyl. Compared with 10 carbitol, acetone, acetonitrile, THF (Western oxime), decane, decane, octane, gamma, a group consisting of burned and burnt. 15. As described in claim 10 A method for preparing metal nanoparticles for use in an ink for inkjet printing, wherein the second solvent is added in an amount equivalent to 5 to 2 times the total weight of the surfactant. 15 I6·If the patent application is in the 10th item The method for preparing metal nanoparticles used in the ink for inkjet printing, wherein the step (a) is performed by adding a polyalcohol which functions as a reducing agent to a metal quinone, a surfactant And a solution of a third solvent to form a metal nanoparticle comprising a surfactant attached to the surface thereof. 20 n. A metal nanoparticle for use in an ink for inkjet printing, comprising an 5% by weight of the metal nanoparticles, 5 to 5 parts by weight of the surfactant, even the surfactant to the surface of the surfactant, wherein the amount of surfactant is in the range of 5 ° ° C to TGA (thermogravi Analytical) The measured weight loss value is represented by 27. The high-grade metal nanoparticle used in the ink for inkjet printing as described in claim 17 of the patent application is selected from the group consisting of Ag, Cu, Au, and Cr. A Bu W Zn,, Fe, Pt group consisting of Ni and Pb in at least one form of fine particles. 28 200815540 七、指定代表圖: (一) 本案指定代表圖為:圖(2 )。 (二) 本代表圖之元件符號簡單說明: 無28 200815540 VII. Designation of representative representatives: (1) The representative representative of the case is: Figure (2). (2) A brief description of the component symbols of this representative figure: None 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 200815540 .▲轉一**1-1认〜丨__·«ι. “产 _ _ 丨 修辰 發明專利說明書 (本說明書格式、順序及粗體字,請勿任意更動,※記號部分請勿填寫) ※申請案號:96106739 ※申請日期:96.2.27 XIPC分類: 一、發明名稱:(中文/英文) 用於噴墨印染之墨水及其金屬奈米微粒之製備方法 Ink for Ink Jet Printing and Method for Preparing Metal Nanoparticles Used Therein 一、申請人:(共1人) 姓名或名稱:(中文/英文) LG 化學公司 /LGCHEM,LTD. 代表人:(中文/英文)李翰宣/LEE,HAN SUN 住居所或營業所地址:(中文/英文) 大韓民國首爾市永登浦區汝矣島洞2〇番地 20? Yoido-dong, Yoimgdungpo-gu5 Seoul 150-721, Republic of Korea 國籍:(中文/英文)大韓民國/Republic ofKorea 三、發明人:(共6人) 姓名:(中文/英文) 1 ·李宗澤 / LEE,JONG TAIK 2·許秀連 /HEO’SOOYEON 3 ·金珉鋤 / KIM,MIN SEO 4·金賢堤 /KIM,HYUNSIK 5.朴晶浩 / PARK,JUNG HO 6·金相濉 /KIM,SANGHO 國籍:(中文/英文)1·2·3·4·5·6·大韓民國 /Republic ofKorea8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: 200815540 .▲ 转一**1-1 recognition~丨__·«ι. "Production_ _ 丨修辰 Invention patent specification (this manual Format, order, and bold characters, please do not change it at all. ※Please do not fill in the ※ part. ※Application number: 96106739 ※Application date: 96.2.27 XIPC classification: 1. Invention name: (Chinese / English) For inkjet Ink for Ink Jet Printing and Method for Preparing Metal Nanoparticles Used Therein 1. Applicant: (1 person in total) Name: (Chinese / English) LG Chemical Company / LGCHEM, LTD. Representative: (Chinese / English) Li Hanxuan / LEE, HAN SUN Residence or Business Office Address: (Chinese / English) 2nd Floor, Yeouido-dong, Yeongdeung-gu, Seoul, Korea 20? Yoido-dong, Yoimgdungpo- Gu5 Seoul 150-721, Republic of Korea Nationality: (Chinese/English) Republic of Korea/Republic ofKorea III. Inventor: (Total 6 persons) Name: (Chinese/English) 1 · Li Zongze / LE E, JONG TAIK 2·Xu Xiulian/HEO'SOOYEON 3 ·Jinyu / KIM,MIN SEO 4·金贤堤/KIM,HYUNSIK 5.Park Jinghao / PARK,JUNG HO 6·金相濉/KIM,SANGHO Nationality: (Chinese/English)1·2·3·4·5·6·Republic of Korea/Republic of Korea
TW096106739A 2006-09-29 2007-02-27 Ink for ink jet printing and method for preparing metal nanoparticles used therein TWI368635B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060096424A KR20080029600A (en) 2006-09-29 2006-09-29 Ink for inkjet printing, metal nano particle used therein, and method for preparing the same

Publications (2)

Publication Number Publication Date
TW200815540A true TW200815540A (en) 2008-04-01
TWI368635B TWI368635B (en) 2012-07-21

Family

ID=39532140

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096106739A TWI368635B (en) 2006-09-29 2007-02-27 Ink for ink jet printing and method for preparing metal nanoparticles used therein

Country Status (2)

Country Link
KR (1) KR20080029600A (en)
TW (1) TWI368635B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028724B2 (en) 2009-09-14 2015-05-12 Hanwha Chemical Corporation Method for preparing water-soluble nanoparticles and their dispersions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103555049A (en) * 2013-10-24 2014-02-05 北京印刷学院 Preparation method of nano-copper conductive ink capable of realizing mass production
TWI707923B (en) * 2017-05-19 2020-10-21 日商迪愛生股份有限公司 Metal Nanoparticle Water Dispersion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028724B2 (en) 2009-09-14 2015-05-12 Hanwha Chemical Corporation Method for preparing water-soluble nanoparticles and their dispersions

Also Published As

Publication number Publication date
TWI368635B (en) 2012-07-21
KR20080029600A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
US7867413B2 (en) Ink for ink jet printing and method for preparing metal nanoparticles used therein
JP5190412B2 (en) ALLOY NANOPARTICLE, PROCESS FOR PRODUCING THE SAME, AND INK AND PASTE USING THE ALLOY NANOPARTICLE
US9580811B2 (en) Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
TWI277469B (en) Silver particle powder and its production method
JP5819744B2 (en) Solvent-based ink containing silver nanoparticles
JP5453813B2 (en) Metal nanoparticle dispersion and method for producing the same
JP5322173B2 (en) Formation method of fine channel
EP2303492A1 (en) Core-shell metallic nanoparticles, methods of production thereof, and ink compositions containing same
JP2008527169A (en) Aqueous dispersion of metal nanoparticles
JP4960993B2 (en) Method of forming metal wiring and metal wiring formed using the same
JP4581319B2 (en) Water-based ink composition, method for producing the same, and image forming method using water-based ink composition
JP2009074054A (en) Non-aqueous electroconductive nano ink composition
WO2009031849A2 (en) Conductive ink compositions incorporating nano glass frit and nano metal for enhanced adhesion with glass and ceramic substrates used in displays
TW201137055A (en) Conductive metal ink composition and preparation method for conductive pattern
JP5041440B2 (en) Method for producing fine particle dispersion, and fine particle dispersion
JP2009149888A (en) Metallic ink for inkjet printing
TW200815540A (en) Ink for ink jet printing and method for preparing metal nanoparticles used therein
JP2010153184A (en) Electrode forming composition, method of manufacturing conductive base material, and the conductive base material
WO2020127676A1 (en) Conductive ink jet printing ink composition
JP2006257484A (en) Nonaqueous organic-solvent solution of metallic nanoparticle and preparation method therefor
WO2011025229A2 (en) Conductive metal ink composition and method for forming a conductive pattern
JP2006249399A (en) Composition, image forming method using composition and electrically conductive pattern forming method using composition
TWI754708B (en) Conductive paste for gravure transfer, method for forming conductive pattern, and method for producing conductive substrate
TW201143941A (en) Method for preparing copper nanoparticle which is capable of being calcined under atmospheric pressure
JP5151230B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method