TW200524991A - Radiation-curing conductive composition - Google Patents

Radiation-curing conductive composition Download PDF

Info

Publication number
TW200524991A
TW200524991A TW93137936A TW93137936A TW200524991A TW 200524991 A TW200524991 A TW 200524991A TW 93137936 A TW93137936 A TW 93137936A TW 93137936 A TW93137936 A TW 93137936A TW 200524991 A TW200524991 A TW 200524991A
Authority
TW
Taiwan
Prior art keywords
radiation
water
acrylate
soluble
compound
Prior art date
Application number
TW93137936A
Other languages
Chinese (zh)
Inventor
Takamasa Harada
Original Assignee
Az Electronic Materials Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Az Electronic Materials Japan filed Critical Az Electronic Materials Japan
Publication of TW200524991A publication Critical patent/TW200524991A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Epoxy Resins (AREA)
  • Conductive Materials (AREA)

Abstract

To provide a radiation-curable conductive composition using a radiation-curable material and an organic conductive material which are water-soluble or can be dissolved in a water-soluble organic solvent, the separation of the composition will not happen, and it may form a conductive film excellent in heat resistance, abrasion resistance, transparency and can hardly be damaged. A radiation-curable conductive composition comprises an organic conductive polymer of polythiophene, polyaniline or derivatives thereof and the like, a water-soluble or aqueous emulsion-forming compound, a water-soluble or aqueous emulsion-forming epoxy or oxetane compound, light cationic polymerization photosensitizer and/or radical polymerization photosensitizer, an optional water-soluble or water-dispersible aqueous resin, water and/or a water soluble organic solvent.

Description

200524991 九、發明說明: 【發明所屬之技術分野】 本發明關於一種含有有機導電性聚合物的放射線硬化型 導電性組成物,其可形成對於塑膠、玻璃表面等的附著性、 被膜形成性優良的透明性、耐熱性、耐磨耗性之難以損傷的 導電膜。 【先前技術】 向來,由於合成樹脂通常爲疏水性,故在合成樹脂所成的 構造形成體的表面上易發生靜電,使灰塵等容易附著在表面 上,而引起各種困擾。例如,在由聚酯薄膜得到磁帶的情況 中,磁帶發生靜電,而使得磁帶纏黏,作業性變差,磁帶上 附著灰塵,而容易污損,伴隨著發生信號失落情況增加等之 問題。又,於處理半導體元件等的情況中,若不能將抗靜電 機能賦予其之包裝材料等,則有由於靜電而破壞半導體的情 況。在作爲其之對策的磁帶或半導體元件之包裝材料中,係 添加或塗佈有抗靜電劑。作爲其之方法,通常進行的方法爲: 在聚酯薄膜等的絶緣基材中摻入界面活性劑、碳粉末、金屬 粉未等的導電性物質之方法;在黏着劑中配合如上述的導電 性物質之方法;在膠帶背面塗佈界面活性劑和其它抗靜電劑 之方法;於基材與黏着材層之間給予由離子導電性高分子所 成的抗靜電層之方法等。然而,藉將導電性物質的碳粉末或 金屬粉末摻入基材中或是藉由混合它們的方法以賦予充分的 抗靜電性時,有損害基材的透明性的缺點。因此’通常’使 200524991 用界面活性劑當作薄膜、包裝材料等的抗靜電劑之界面活性 劑,但是界面活性劑雖然能抑制麈土、灰塵等的附著,然而 卻不僅不能得到充分表面電阻(1〇ιαΩ/口以下),而且抗靜電 能力易被周圍的濕氣或水分所影饗而變化。特別地,由界面 活性劑所降低的薄膜表面電阻在低濕度下係會大幅地增大, 而有不能得到所欲的抗靜電能力之缺點。結果,發生灰塵附 著在薄膜、包裝材料表面,而各種困擾的形成原因。在更高 科技化的今日,正尋求在低濕度環境下沒有靜電障礙的薄 膜,因此希望一種在低濕度下能給予101()Ω/口以下的表面電阻 値之抗靜電劑的出現。 作爲賦予該低表面電阻値的材料,有提供各式各樣者,其 中之一爲有機導電性聚合物。作爲該有機導電性聚合物,已 知有聚苯胺或聚苯胺衍生物、聚噻吩、聚噻吩衍生物、聚吡 咯、聚乙炔、聚對伸苯基、聚伸苯基伸乙烯基等(例如參照發 明專利文獻1、2)。然而,此等有機導電性聚合物通常係脆的、 不熔的、不溶於水性溶劑、有機溶劑中,而有成形性差的問 題。與其相對地,有提案以藉由使用聚苯胺或聚苯胺衍生物 與塗佈液,以及視需要可用的水溶性樹脂或聚合物乳液,而 改善其在水性溶劑中的溶解性,以形成導電性皮膜之方法(例 如參照發明專利文獻3〜6 )。 【發明專利文獻1】特開平6-73270號公報 【發明專利文獻2】特開2001-8 1413號公報 【發明專利文獻3】特開平7-330901號公報 200524991 【發明專利文獻4】特開平8-41321號公報 【發明專利文獻5】特開平8- 100060號公報 【發明專利文獻6】特開2000-2566 17號公報 又。於聚苯胺的情況,亦有提案以藉由使磺酸基鍵結於芳 香環,同時混合水溶性或水分散性樹脂,而形成導電性皮膜 之方法(例如參照發明專利文獻7、8)。然而,若混合與磺化 聚苯胺之相溶性差的樹脂時,膜表面會有產生白濁的問題, 另一方面在使用相溶性佳的樹脂時,則發生不能產生所指定 的表面電阻値之問題。又,以往爲了改善潤濕性而添加界面 活性劑係會有使2次加工性變差等的問題。再者,於使用水 溶性樹脂時,由於機械特性亦變差,故此等之導電性聚合物 所形成的抗靜電膜係有表面損傷、磨耗等的問題。另一方面, 在導電性聚合物爲聚噻吩或聚噻吩衍生物的情況中,特別是 雖然與水溶性聚合物的相溶性佳,與水溶性聚合物能良好混 合,但是通常水溶性聚合物的耐磨耗性、硬度等差,而難以 得到機械特性良好的抗靜電膜。 【發明專利文獻7】特開平8-325432號公報 【發明專利文獻8】特開平9-279025號公報 與其相對地,亦已知有藉由與聚噻吩調製物經離子化照射 (例如紫外線或電子線)而硬化的組成物作組合,以形成具有改 良耐刮傷性的導電性被膜(例如參照發明專利文獻9),但使用 該組成物所形成的被膜有發生白濁的傾向,而且透明性、耐 刮傷性優良,而且耐熱性、耐摩耗性等優良的有機導電性材 200524991 料之導電膜。 【發明專利文獻9】特開平9- 12968號公報 【發明內容】 發明所欲解決的問疆· 本發明之目的爲提供一種導電性組成物,其使用沒有上述 問題的有機導電性聚合物,更具體地,本發明之目的爲提供 一種放射線硬化型導電性組成物,其使用水溶性或在水可溶 性有機溶劑中可溶的聚合物材料之水溶液或水性乳液與有機 導電性聚合物,組成物不會分離,因此所形成的膜係透明的, 而且能形成耐熱性、耐磨耗性、透明性優良、難以損傷的導 電膜。 解決問題的丰段 本發明關於以下的放射線硬化型導電性組成物,藉由本發 明的組成物可達成上述目的。 (1) 一種有機導電性聚合物,其特徵爲含有水溶性或水性乳液 形成性化合物,水溶性或水性乳液形成性的環氧或氧雜環 丁烷化合物,感光劑,及水及/或水可溶性有機溶劑。 (2) 如上述(1)記載的放射線硬化型導電性組成物,其中該水溶 性或水性乳液形成性化合物係胺甲酸酯丙烯酸酯化合物。 (3) 如上述(2)記載的放射線硬化型導電性組成物,其中胺甲酸 酯丙烯酸酯化合物係具有丙烯醯基的水溶性或水性乳液形 成性多官能丙烯酸化合物。 (4) 如上述(2)記載的放射線硬化型導電性組成物,其中胺甲酸 200524991 酯丙烯酸酯化合物係(A)含羥基的丙烯酸酯、(B)有機聚異氰 酸酯類、(C)分子內含有至少1個羥基的聚乙二醇類、及(D) 分子內含有至少1個羥基的脂肪酸所成的反應生成物經由 (E)3級胺中和而成的該反應生成物之中和鹽的聚胺甲酸酯 丙烯酸酯。 (5) 如上述(1)記載的放射線硬化型導電性組成物,其中該水溶 性或水性乳液形成性化合物係環氧丙烯酸酯化合物。 (6) 如上述(5)記載的放射線硬化型導電性組成物,其中環氧丙 烯酸酯化合物係爲通式(I )所示的化合物。 【化5】200524991 IX. Description of the invention: [Technical field to which the invention belongs] The present invention relates to a radiation-curable conductive composition containing an organic conductive polymer, which can form a coating with excellent adhesion to plastics, glass surfaces, and the like. A conductive film that is difficult to damage due to its transparency, heat resistance, and abrasion resistance. [Prior Art] Since synthetic resins are usually hydrophobic, static electricity is easily generated on the surface of the structure forming body made of synthetic resin, and dust and the like are easily attached to the surface, causing various problems. For example, in the case of obtaining a magnetic tape from a polyester film, the tape is electrostatically charged, which causes the tape to become entangled, deteriorates the workability, and dust adheres to the tape, and is easily stained. This is accompanied by problems such as an increase in signal loss. Moreover, in the case of processing semiconductor elements, etc., if the packaging material or the like cannot be imparted with an antistatic function, the semiconductor may be damaged by static electricity. An antistatic agent is added or applied to a packaging material of a magnetic tape or a semiconductor device as a countermeasure. As a method thereof, a generally performed method is: a method in which a conductive material such as a surfactant, carbon powder, or metal powder is mixed into an insulating substrate such as a polyester film; and an adhesive is compounded as described above. A method of a conductive substance; a method of coating a surfactant and other antistatic agents on the back surface of the tape; a method of providing an antistatic layer made of an ion conductive polymer between the substrate and the adhesive layer; However, when carbon powder or metal powder of a conductive substance is incorporated into a base material or a method of mixing them to impart sufficient antistatic properties, there is a disadvantage that the transparency of the base material is impaired. Therefore, it is common for 200524991 to use surfactants as surfactants for antistatic agents such as films and packaging materials. However, although surfactants can inhibit the adhesion of earth, dust, etc., they not only cannot obtain sufficient surface resistance ( 1〇Ω / mouth), and the antistatic ability is easily affected by the surrounding moisture or moisture. In particular, the surface resistance of a thin film reduced by a surfactant is greatly increased at low humidity, and there is a disadvantage that the desired antistatic ability cannot be obtained. As a result, dust adheres to the surface of the film and the packaging material, and various causes of the trouble are formed. In today's higher technology, we are looking for a thin film without static obstacles in a low humidity environment. Therefore, we hope the emergence of an antistatic agent that can give a surface resistance of less than 101 () Ω / mouth under low humidity. As a material for imparting this low surface resistance 値, there are various kinds provided, and one of them is an organic conductive polymer. As the organic conductive polymer, polyaniline or a polyaniline derivative, polythiophene, polythiophene derivative, polypyrrole, polyacetylene, polyparaphenylene, polyphenylene vinylene, etc. are known (for example, refer to the invention Patent Documents 1 and 2). However, these organic conductive polymers are usually brittle, infusible, insoluble in aqueous solvents and organic solvents, and have a problem of poor formability. In contrast, there are proposals to improve the solubility in an aqueous solvent by using polyaniline or a polyaniline derivative and a coating liquid, and a water-soluble resin or polymer emulsion that is available as needed to form conductivity Coating method (for example, refer to Patent Documents 3 to 6). [Invention Patent Document 1] JP 6-73270 [Invention Patent Document 2] JP 2001-8 1413 [Invention Patent Document 3] JP 7-330901 20052005991 [Invention Patent Document 4] JP 8 -41321 [Invention Patent Document 5] JP 8-100060 [Invention Patent Document 6] JP 2000-2566 17 and again. In the case of polyaniline, there is also a method for forming a conductive film by bonding a sulfonic acid group to an aromatic ring and mixing a water-soluble or water-dispersible resin at the same time (for example, see Patent Documents 7 and 8). However, if a resin with poor compatibility with sulfonated polyaniline is mixed, there will be a problem of white turbidity on the film surface. On the other hand, when a resin with good compatibility is used, a problem that the specified surface resistance 値 cannot be generated will occur. . In addition, conventionally, the addition of a surfactant to improve wettability has problems such as deterioration of secondary workability. Furthermore, when a water-soluble resin is used, the mechanical properties are also deteriorated, so that the antistatic film formed by these conductive polymers has problems such as surface damage and abrasion. On the other hand, when the conductive polymer is a polythiophene or a polythiophene derivative, in particular, although the compatibility with the water-soluble polymer is good, and the water-soluble polymer can be mixed well, The abrasion resistance and hardness are poor, and it is difficult to obtain an antistatic film with good mechanical properties. [Invention Patent Document 7] Japanese Patent Application Laid-Open No. 8-325432 [Invention Patent Document 8] Japanese Patent Application Laid-Open No. 9-279025 It is also known that ionizing irradiation (for example, ultraviolet rays or electrons) is performed by using a polythiophene modulation substance. Wire) and the hardened composition is combined to form a conductive film having improved scratch resistance (for example, see Patent Document 9). However, the film formed using this composition tends to become cloudy, and has transparency, Organic conductive material with excellent scratch resistance, heat resistance, abrasion resistance, etc. 200524991. [Inventive Patent Document 9] Japanese Patent Application Laid-Open No. 9-12968 [Summary of the Invention] Problems to be Solved by the Invention The object of the present invention is to provide a conductive composition that uses an organic conductive polymer that does not have the problems described above. Specifically, an object of the present invention is to provide a radiation-curable conductive composition using an aqueous solution or an aqueous emulsion of a polymer material that is water-soluble or soluble in a water-soluble organic solvent, and an organic conductive polymer. It is separated, so the formed film is transparent, and it can form a conductive film that is excellent in heat resistance, abrasion resistance, transparency, and hard to be damaged. The problem-solving aspect The present invention relates to the following radiation-curable conductive composition, and the above-mentioned object can be achieved by the composition of the present invention. (1) An organic conductive polymer characterized by containing a water-soluble or aqueous emulsion-forming compound, a water-soluble or aqueous emulsion-forming epoxy or oxetane compound, a sensitizer, and water and / or water Soluble organic solvents. (2) The radiation-curable conductive composition according to the above (1), wherein the water-soluble or aqueous emulsion-forming compound is a urethane acrylate compound. (3) The radiation-curable conductive composition according to the above (2), wherein the urethane acrylate compound is a water-soluble or aqueous emulsion-forming polyfunctional acrylic compound having an acrylic fluorenyl group. (4) The radiation-curable conductive composition according to the above (2), wherein the carbamate 200524991 ester acrylate compound is (A) a hydroxyl-containing acrylate, (B) an organic polyisocyanate, and (C) is contained in a molecule Polyethylene glycols having at least one hydroxyl group, and (D) a reaction product formed by a fatty acid containing at least one hydroxyl group in the molecule, which is neutralized by a (E) tertiary amine Polyurethane acrylate. (5) The radiation-curable conductive composition according to the above (1), wherein the water-soluble or aqueous emulsion-forming compound is an epoxy acrylate compound. (6) The radiation-curable conductive composition according to the above (5), wherein the epoxy acrylate compound is a compound represented by the general formula (I). [Chemical 5]

RR

R CH2=C—C一〇一CH2-CH - CH2—〇—X_01¾ - CH—CH2- 0 OH OH Ο (I) (式中,R表示氫原子或甲基,χ表示-ch2ch2〇--[CH2CH(CH3)0]k-、-[CH2CH(0H)CH20]m-、 【化6】R CH2 = C—C—0—CH2-CH—CH2—〇—X_01¾—CH—CH2- 0 OH OH Ο (I) (where R represents a hydrogen atom or a methyl group, and χ represents -ch2ch2〇-[ CH2CH (CH3) 0] k-,-[CH2CH (0H) CH20] m-, [Chem. 6]

-9 200524991-9 200524991

,]<:及111表示1〜4的整數)。 (7) 如上述(6)記載的放射線硬化型導電性組成物,其中通式(1) ^ 所表示的環氧丙烯酸酯化合物係爲通式(II)之化合物。 【化8】 CH2=CH-g-OCHrCH-CH2-〇CH2-CH-CH2-〇-CH2-CH-CH2-OC-CH=CH2 〇 OH OH OH Ο φ -…(II) (8) 如上述(1)記載的放射線硬化型導電性組成物,其中該水溶 性或水性乳液形成性化合物係含有乙烯醚基的丙烯酸化合 物。 (9) 如上述上述(1)〜(8)中任一項記載的放射線硬化型導電性組 成物,其中有機導電性聚合物係選自於聚苯胺、聚苯胺衍 生物、聚噻吩及聚噻吩衍生物的至少一種。 φ (1 0)如上述上述(1)〜(8)中任一項記載的放射線硬化型導電性 組成物,其中有機導電性聚合物係由聚噻吩或聚噻吩衍生物 及聚苯乙烯磺酸所構成。 (1 1)如上述上述(1)〜(8)中任一項記載的放射線硬化型導電性 組成物,其中聚苯胺或磺化聚苯胺係爲由磺酸基及/或其之 鹼金屬鹽基所鍵結的聚酯樹脂,或是聚噻吩或聚噻吩衍生物 在聚陰離子的存在下,所水溶性或水性分散化的有機導電性 -10- 200524991 聚合物。 (1 2)如上述(1)〜(1 1)中任一項記載的放射線硬化型導電性組成 物,其中感光劑係自由基聚合感光劑及/或光陽離子聚合感 光劑。 (1 3)如上述(1)〜(1 2)中任一項記載的放射線硬化.型導電性組成 物,其中水溶性或水性乳液形成性的環氧化合物係含有多官 能的縮水甘油基化合物。 【實施方式】 本發明的放射線硬化型導電性組成物例如可如下地製 造。即,例如對於聚苯胺及/或磺化聚苯胺等的聚苯胺衍生物, 將藉由磺酸基及/或其之鹼金屬鹽基所鍵結的聚酯樹脂,或是 對於噻吩,將藉由聚陰離子所水溶性或水分散性的有機導電 性聚合物之水溶液或水性乳液,溶解或分散於水或水可溶性 溶劑中,與水溶性或水性乳液形成性化合物混合而溶液化。 該水溶性或水性乳液形成性化合物係可爲放射線硬化型單 體、寡聚物或高分子化合物,放射線不能硬化的高分子化合 物。以下亦將含有該些放射線硬化型單體、寡聚物及高分子 化合物以及放射線不能硬化的高分子化合物者稱爲「基礎樹 脂」。爲了改善該溶液對於基板的密接性、所形成的被膜之 耐摩耗性、耐刮傷性等,更添加水溶性或水性乳液形成性的 環氧或氧雜環丁烷化合物之水溶液或水性乳液。此時,藉由 使用水性乳液形態的基礎樹脂、環氧或氧雜環丁烷化合物, 可以得到乳液不會分離的放射線硬化型導電性組成物,而且 200524991 由組成物可形成透明性優良、耐熱性、耐磨耗性亦優良、沒 有損傷的導電膜,故基礎樹脂及環氧或氧雜環丁烷化合物較 佳係以水性乳液形態使用。 以下,更詳細說明本發明。於本發明中使用有機導電性聚 合物’該有機導電性聚合物可以爲已知的習用有機導電性聚 合物,例如可爲聚苯胺或聚苯胺衍生物、聚噻吩或聚噻吩衍 生物、聚吡咯、聚乙炔、聚對伸苯基、聚伸苯基伸乙基等任 意者。作爲該等有機導電性聚合物,亦較佳爲聚苯胺或聚苯 胺衍生物、聚噻吩或聚噻吩衍生物、聚颯硫化物等。 作爲聚苯胺或其衍生物,例如可爲下述通式(ΙΠ)所示的苯 胺或其衍生物經氧化聚合所得者。 【化9】,] ≪: and 111 represent integers from 1 to 4). (7) The radiation-curable conductive composition according to the above (6), wherein the epoxy acrylate compound represented by the general formula (1) ^ is a compound of the general formula (II). [Chem. 8] CH2 = CH-g-OCHrCH-CH2-〇CH2-CH-CH2-〇-CH2-CH-CH2-OC-CH = CH2 OH OH OH 〇 φ -... (II) (8) as above (1) The radiation-curable conductive composition according to (1), wherein the water-soluble or aqueous emulsion-forming compound is an acrylic compound containing a vinyl ether group. (9) The radiation-curable conductive composition according to any one of (1) to (8) above, wherein the organic conductive polymer is selected from the group consisting of polyaniline, a polyaniline derivative, polythiophene, and polythiophene At least one derivative. φ (1 0) The radiation-curable conductive composition according to any one of (1) to (8) above, wherein the organic conductive polymer is composed of polythiophene or a polythiophene derivative and polystyrenesulfonic acid Made up. (1 1) The radiation-curable conductive composition according to any one of the above (1) to (8), wherein the polyaniline or the sulfonated polyaniline is a sulfonic acid group and / or an alkali metal salt thereof Based on the polyester resin bonded to the base, or polythiophene or polythiophene derivative in the presence of polyanion, the water-soluble or water-dispersible organic conductive -10- 200524991 polymer. (1 2) The radiation-curable conductive composition according to any one of (1) to (1 1) above, wherein the photosensitizer is a radical polymerization photosensitizer and / or a photocationic photosensitizer. (1 3) The radiation-hardening type conductive composition according to any one of (1) to (12) above, wherein the water-soluble or aqueous emulsion-forming epoxy compound contains a polyfunctional glycidyl compound . [Embodiment] The radiation-curable conductive composition of the present invention can be produced, for example, as follows. That is, for example, for polyaniline derivatives such as polyaniline and / or sulfonated polyaniline, a polyester resin bonded by a sulfonic acid group and / or its alkali metal salt group, or An aqueous solution or an aqueous emulsion of a water-soluble or water-dispersible organic conductive polymer made of a polyanion is dissolved or dispersed in water or a water-soluble solvent, and mixed with a water-soluble or aqueous emulsion-forming compound to form a solution. The water-soluble or aqueous emulsion-forming compound may be a radiation-curable monomer, oligomer, or polymer compound, and a polymer compound that cannot be cured by radiation. Hereinafter, those containing these radiation-curable monomers, oligomers, and polymer compounds, and polymer compounds that cannot be cured by radiation are referred to as "base resins". In order to improve the adhesion of the solution to the substrate, the abrasion resistance and scratch resistance of the formed film, a water-soluble or aqueous emulsion-forming epoxy or oxetane compound aqueous solution or aqueous emulsion is further added. In this case, by using a base resin, an epoxy, or an oxetane compound in the form of an aqueous emulsion, a radiation-curable conductive composition that does not separate the emulsion can be obtained. In addition, 200524991 can form a composition with excellent transparency and heat resistance. The conductive film is also excellent in abrasion resistance and abrasion resistance without damage, so the base resin and epoxy or oxetane compound are preferably used in the form of an aqueous emulsion. Hereinafter, the present invention will be described in more detail. In the present invention, an organic conductive polymer is used. The organic conductive polymer may be a known conventional organic conductive polymer, and may be, for example, polyaniline or a polyaniline derivative, polythiophene or a polythiophene derivative, and polypyrrole. , Polyacetylene, polyparaphenylene, polyphenylene, etc. As these organic conductive polymers, polyaniline or a polyaniline derivative, polythiophene or a polythiophene derivative, polyfluorene sulfide, and the like are also preferable. Examples of the polyaniline or a derivative thereof include those obtained by oxidative polymerization of an aniline or a derivative thereof represented by the following general formula (III). [Chemical 9]

(式中,R1可相同或不同,各表示氫原子、烷基、烯基、烷氧 基、院醇基、院硫基、芳氧基、焼硫基院基、芳基、院基芳 基、芳烷基、烷基亞磺醯基、烷氧基烷基、烷基亞磺醯基、 烷氧羰基、胺基、烷胺基、二烷胺基、芳硫基、芳基亞磺醯 基、芳基磺醯基、羧基、鹵素、氰基、鹵烷基、硝基烷基或 氰院基,η表示0〜5之整數)。 式中,R1較佳爲氫原子、碳數1〜5的烷基、烷氧基、芳基、 氰基、鹵素及芳氧基等,具體的化合物爲苯胺、鄰甲苯胺、 -12- 200524991 間甲苯胺、鄰乙基苯胺、間乙基苯胺、鄰乙氧基苯胺、間丁 基苯胺、間己基苯胺、間辛基苯胺、2,3-二甲基苯胺、2,5-二 甲基苯胺、2,5 -二甲氧基苯胺、鄰氰基苯胺、2,5 -二氯苯胺、 2-溴苯胺、5-氯-2-甲氧基苯胺、3-苯氧基苯胺等。此等苯胺 或其衍生物係可單獨地使用或可以2種以上倂用。 氧化聚合反應例如係可藉由在上述通式(III)所表示的苯 胺及/或其衍生物與質子酸的溶液或懸浮液中,添加氧化劑的 溶,於-l〇°C至40°C的溫度,歷30分鐘至48小時,在常壓下攪 拌進行。氧化聚合時所用的氧化劑例如是過氧二硫酸銨、過 氧化氫、氯化鐵等。 該等聚苯胺或其衍生物通常可與質子酸摻雜物一起使 用,以使在水性溶劑或有機溶劑中有溶解性或分散性。該質 子酸摻雜物例如爲苯單磺酸類、分子內含有至少一個磺酸基 和至少一個磺酸鹽(例如鹼金屬鹽)的芳香族酸、通式(IV) ·· 【化10】(In the formula, R1 may be the same or different, and each represents a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group, an alcohol group, an alkylthio group, an aryloxy group, a sulfanyl group, an aryl group, or an alkylaryl group. , Aralkyl, alkylsulfinyl, alkoxyalkyl, alkylsulfinyl, alkoxycarbonyl, amino, alkylamino, dialkylamino, arylthio, arylsulfinyl Group, arylsulfonyl, carboxyl, halogen, cyano, haloalkyl, nitroalkyl, or cyano, η represents an integer from 0 to 5). In the formula, R1 is preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group, an aryl group, a cyano group, a halogen group, and an aryloxy group. Specific compounds are aniline, o-toluidine, -12-200524991 M-Toluidine, o-ethylaniline, m-ethylaniline, o-ethoxyaniline, m-butylaniline, m-hexylaniline, m-octylaniline, 2,3-dimethylaniline, 2,5-dimethyl Aniline, 2,5-dimethoxyaniline, o-cyanoaniline, 2,5-dichloroaniline, 2-bromoaniline, 5-chloro-2-methoxyaniline, 3-phenoxyaniline, etc. These anilines or their derivatives may be used alone or in combination of two or more. The oxidative polymerization reaction can be performed, for example, by adding an oxidizing agent to a solution or suspension of the aniline and / or its derivative represented by the general formula (III) and a protonic acid, at -10 ° C to 40 ° C. The temperature is from 30 minutes to 48 hours under stirring at normal pressure. Examples of the oxidizing agent used in the oxidative polymerization include ammonium peroxodisulfate, hydrogen peroxide, and ferric chloride. These polyanilines or their derivatives can usually be used with proton acid dopants to make them soluble or dispersible in aqueous or organic solvents. The proton acid dopant is, for example, a benzene monosulfonic acid, an aromatic acid containing at least one sulfonic acid group and at least one sulfonic acid salt (for example, an alkali metal salt) in the molecule, and the general formula (IV)

- —| ―― /P 〇、 S-— | —— / P 〇, S

(式中,R2、R3及R4可爲相同或不同,且各表示伸烷基或伸苯 基’又P及r可爲相同或不同,各表示1至5〇之整數)所示的化合 物、 200524991 通式(V) 【化11】 0 R5〇CH2CH2OCH2CH2 — 〇—CH2CH2OCH2CH2OR6 (V)(Wherein R2, R3, and R4 may be the same or different, and each represents an alkylene or phenylene group, and P and r may be the same or different, and each represents an integer of 1 to 50) 200524991 General formula (V) [Chem. 11] 0 R5〇CH2CH2OCH2CH2 — 〇—CH2CH2OCH2CH2OR6 (V)

so3h (式中,R5及R6可爲相同或不同’各表示碳數1〜10,較佳2〜 8的烷基、烯基、烷硫基烷基、芳基、烷芳基、芳烷基或烷氧 基烷基)所示的化合物、磺酸基及彼等之鹼金屬鹽基所組成 族群所選出的至少一種基所鍵結的水溶性或水分散性共聚合 聚酯等。 又,聚噻吩或聚噻吩衍生物,例如爲含有通式(VI): 【化12】so3h (wherein R5 and R6 may be the same or different; each represents an alkyl, alkenyl, alkylthioalkyl, aryl, alkylaryl, aralkyl group having 1 to 10 carbon atoms, preferably 2 to 8 carbon atoms) Or an alkoxyalkyl) compound, a water-soluble or water-dispersible copolymerized polyester, etc., bonded to at least one selected from the group consisting of a compound consisting of a compound represented by a sulfonic acid group and an alkali metal salt group thereof. The polythiophene or polythiophene derivative contains, for example, a general formula (VI): [Chem 12]

(VI)(VI)

(式中,R7及R8係互相獨立地表示氫原子或C1〜C4烷基,或表 示一起形成任意經取代的C1〜C4伸烷基,較佳爲任意經烷基 取的亞甲基,任意經C1〜C1 2烷基或苯基取代的伸乙基-1,2 基、伸丙基-1,3基或伸環己基_1,2基)所示的重複單位者。 於上式中,R7及R8較佳爲甲基或乙基,或R7及R8—起形成 -14- 200524991 亞甲基、伸乙基-1,2及伸丙基-1,3基、特佳爲伸乙基-1,2基。 作爲上述聚噻吩或聚噻吩衍生物的摻雜物,例如可爲聚合 物羧酸,例聚丙烯酸、聚甲基丙烯酸或聚馬來酸,或是聚合 . 物磺酸,例如聚苯乙烯磺酸及聚乙烯基磺酸的陰離子。此等 聚合物羧酸或磺酸等的聚陰離子若存在時,則聚噻吩或聚噻 吩衍生物係製成該等聚羧酸及聚磺酸的複合體,安定聚噻吩 或聚噻吩衍生物的導電性,同時提高在水性溶劑中溶解性或 分散性。此等聚合物羧酸及聚合物磺酸可爲乙烯基羧酸及乙 烯基磺酸與其它可聚合性單體如丙烯酸酯及苯乙烯之共聚 物。供給聚陰離子的聚合酸之分子量Μη較佳爲 1,000〜2,000.000,特佳爲2,000〜500,000。聚合酸或其之鹼金 屬鹽,例如聚苯乙烯磺酸及聚丙烯酸,係可由商業上取得或 可由公知的方法製得。 又,於本發明的放射線硬化型導電性組成物中,亦可使用 水溶性或水性乳液形成性化合物。水溶性或水性乳液形成性 化合物的用量就相對於上述組成物而言係3〜50重量%,較佳爲 φ 5〜3 0重量%。於該水溶性或水性乳液形成性化合物之內,作爲 具有不飽和雙鍵等不飽和鍵的化合物,例如爲胺甲酸酯丙烯 酸酯、環氧丙烯酸酯、丙烯酸月桂酯、乙氧基二乙二醇丙烯 酸酯、甲氧基三乙二醇丙烯酸酯、苯氧基乙基丙烯酸酯、四 氫呋喃基丙烯酸酯、異佛爾酮丙烯酸酯、2-羥乙基丙烯酸酯、 ‘ 2-羥丙基丙烯酸酯及2-羥基-3-苯氧基丙烯酸酯等的單官能丙 烯酸酯化合物、新戊二醇二丙烯酸酯、I6-己二醇二丙烯酸 -15- 200524991 酯、1,6-己二醇二甲基丙烯酸酯、三羥甲基丙烷三丙烯酸酯、 異戊四醇三丙烯酸酯、二異戊四醇三丙烯酸酯、二異戊四醇 六丙烯酸酯、三異戊四醇聚丙烯酸酯、四異戊四醇聚丙烯酸 酯及三羥甲基丙烷丙烯酸苯甲酸酯等的多官能丙烯酸酯化合 物等之丙烯酸衍生物、2-乙基己基甲基丙烯酸酯、正硬脂基 甲基丙烯酸酯、環己基甲基丙烯酸酯、四氫呋喃基甲基丙烯 酸酯、2-羥乙基甲基丙烯酸酯及2-羥丁基甲基丙烯酸酯等的單 官能甲基丙烯酸酯化合物、1,6 -己二醇二甲基丙烯酸酯、三羥 甲基丙烷三甲基丙烯酸酯及甘油二甲基丙烯酸酯等的多官能 甲基丙烯酸酯化合物等的甲基丙烯酸衍生物,甘甲二甲基丙 烯酸酯六亞甲基二異氰酸酯及異戊四醇三丙烯酸酯六亞甲基 二異氰酸酯等的胺甲酸酯丙烯酸酯化合物等之單體,及上述 單體的寡聚物、聚合物等之紫外線硬化性化合物,於本發明 中特別適合者爲該些單體及寡聚物的水性乳液。就該些胺甲 酸酯丙烯酸酯單體、胺甲酸酯丙烯酸酯的寡聚物、聚合物等 而言,例如可由發明專利文獻1 0〜1 6等所周知,而且就環氧 丙烯酸酯單體、環氧丙烯酸酯的寡聚物、聚合物等而言,例 如可由發明專利文獻17〜33等所周知,可以使用此等公知者 中任何具有不飽和鍵的化合物。 [發明專利文獻10]特開2003-40955號公報 [發明專利文獻11]特開2000-159847號公報 [發明專利文獻12]特開2000- 1 18 193號公報 [發明專利文獻13]特開平11-209448號公報 200524991 [發明專利文獻14]特開平11-106468號公報 [發明專利文獻15]特開平8-109230號公報 [發明專利文獻16]特開平5-222 145號公報 [發明專利文獻17]特開2003-238653號公報 [發明專利文獻18]特開2003- 1 83350號公報 [發明專利文獻19]特開2003- 12660號公報 [發明專利文獻20]特開2002-284842號公報 [發明專利文獻21]特開2002- 1 28 863號公報 [發明專利文獻22]特開平2002-105 168號公報 [發明專利文獻23]特開2001- 1 83820號公報 [發明專利文獻24]特開2001-1 14850號公報 [發明專利文獻25]特開2000-336144號公報 [發明專利文獻26]特開10- 168033號公報 [發明專利文獻27]特開平10- 101770號公報 [發明專利文獻28]特開平9-48838號公報 [發明專利文獻29]特開平8-677737號公報 [發明專利文獻30]特開平7-316107號公報 [發明專利文獻31]特開平7-7028 1號公報 [發明專利文獻32]特開平7-48424號公報 [發明專利文獻33]特開平5-194708號公報 作爲胺甲酸酯丙烯酸酯類,特佳係(A)含羥基的丙烯酸 酯、(B)有機聚異氰酸酯類、(C)分子內含有至少1個羥基的聚 乙二醇類、及(D)分子內含有至少1個羥基的脂肪酸所成的反 200524991 應生成物經由(E) 3級胺中和而成的該反應生成物之中和鹽的 聚胺甲酸酯丙烯酸酯。 於製造上述聚胺甲酸酯丙烯酸酯時,所用的(A)成分之含 羥基的丙烯酸酯,例如爲2-羥乙基(甲基)丙烯酸酯、2-羥丙基 (甲基)丙烯酸酯、4-羥丁基(甲基)丙烯酸酯等的2-羥烷基(甲 基)丙烯酸酯類,聚乙二醇單(甲基)丙烯酸酯、聚丙二醇單(甲 基)丙烯酸酯等的羥烷二醇單(甲基)丙烯酸酯、異戊四醇三丙 烯酸酯、松香環氧丙烯酸酯等,此等可各單獨地或組合地使 又,作爲有機聚異氰酸酯類的(B)成分,係相當於在分子 內具有3個以上反應性異氰酸酯基的有機聚異氰酸酯類。又’ 其之分子量較佳爲500〜1000左右。(B)成分有具體例子如1,6-己烷二異氰酸酯、異佛爾酮二異氰酸酯、伸二甲苯二異氰酸 酯、氫化伸二甲苯二異氰酸酯、伸甲苯二異氰酸酯、二苯基 甲烷二異氰酸酯等的各種二異氰酸酯所得到的三聚物’該二 異氰酸酯類與三羥甲基丙烷等的多價醇反應而成的預聚物' 聚亞甲基聚苯基聚異氰酸酯等。 (C)成分的聚乙二醇類係可使用各種在分子內具有至少1 個羥基者,而沒有特別的限制,特佳爲下述通式(νΠ)所表示 者。 【化1 3】 H-(OCH2CH2)s-OR9 (VII) 200524991 (式中,r9表示碳數1〜4的烷基,s表示7〜25的整數)。 (C) 成分的使用量就相對於聚胺甲酸酯丙烯酸酯的全量而 言通常係3〜12重量%,較佳5〜10重量%。若不滿3重量%’ 則水洗淨性變成不足’而係不宜的。又’若超過1 2重量% ’ 則硬化塗膜的耐水性變成不足’凝集性成爲不足’而係不宜 的。 (D) 成分的脂肪酸係在分子內含有至少1個羥基和1個羧 基。其之酸値及羥基値並沒有特別的限制’但通常皆爲 150〜50 ° (E) 成分的3級有機胺,例如爲三甲胺、三乙胺、N-甲基 二乙醇胺、三乙醇胺等。此等之中,特佳爲三甲胺、三乙胺。 其理由爲:將本活性能量線硬化性含水樹脂組成物塗佈及使 乾燥時,三甲胺或三乙胺係比較容易揮發而不會殘存在塗膜 中〇 又,環氧丙烯酸酯例如較佳爲上述通式(I)所示的化合物, 具體地例如以下的化合物。 200524991 H2 c H-H CIO 1 2 H c 1 〇 H2- c H-DH CIO - 2 H c - o 4]f o 1 H 匕c {II ίΗ2 c cH-)H CIO c H2 c II H c c-no 【化15】 ch3 ch3 CHa^C-C—0 - CH〗- CH - CH2-O - CH2 - CH - 0¾ - 0— C—C—CH2 Ο OH OH Ο 【化1 6】(In the formula, R7 and R8 each independently represent a hydrogen atom or a C1 to C4 alkyl group, or to form an optionally substituted C1 to C4 alkylene group, preferably any methylene group taken through an alkyl group. C1 ~ C1 2 alkyl or phenyl substituted alkylene-1, 2-yl, propyl-1, 3-yl, or cyclohexyl-1, 2-yl) repeating units. In the above formula, R7 and R8 are preferably methyl or ethyl, or R7 and R8 together form -14-200524991 methylene, ethylene-1, 2 and propyl-1, 3, Ethyl-1,2 is preferred. As a dopant of the above polythiophene or polythiophene derivative, for example, it can be a polymer carboxylic acid, such as polyacrylic acid, polymethacrylic acid, or polymaleic acid, or a polymeric sulfonic acid, such as polystyrenesulfonic acid. And polyvinyl anion. If polyanions such as carboxylic acid or sulfonic acid are present, the polythiophene or polythiophene derivative is made into a complex of the polycarboxylic acid and polysulfonic acid, and the polythiophene or polythiophene derivative is stabilized. Electrical conductivity, while improving solubility or dispersibility in aqueous solvents. These polymer carboxylic acids and polymer sulfonic acids may be copolymers of vinyl carboxylic acid and vinyl sulfonic acid with other polymerizable monomers such as acrylate and styrene. The molecular weight Mη of the polyanion-provided polymeric acid is preferably 1,000 to 2,000.000, and particularly preferably 2,000 to 500,000. Polymeric acids or alkali metal salts thereof, such as polystyrene sulfonic acid and polyacrylic acid, are commercially available or can be prepared by known methods. In the radiation-curable conductive composition of the present invention, a water-soluble or aqueous emulsion-forming compound may be used. The water-soluble or aqueous emulsion-forming compound is used in an amount of 3 to 50% by weight, preferably φ 5 to 30% by weight based on the composition. Among the water-soluble or aqueous emulsion-forming compounds, as the compound having an unsaturated bond such as an unsaturated double bond, for example, urethane acrylate, epoxy acrylate, lauryl acrylate, and ethoxy diethylene glycol Alcohol acrylate, methoxytriethylene glycol acrylate, phenoxyethyl acrylate, tetrahydrofuryl acrylate, isophorone acrylate, 2-hydroxyethyl acrylate, '2-hydroxypropyl acrylate Monofunctional acrylate compounds such as 2-hydroxy-3-phenoxy acrylate, neopentyl glycol diacrylate, I6-hexanediol diacrylate-15-200524991 ester, 1,6-hexanediol dimethyl Acrylate, trimethylolpropane triacrylate, isopentaerythritol triacrylate, diisopentaerythritol triacrylate, diisopentaerythritol hexaacrylate, triisopentaerythritol polyacrylate, tetraisopropyl Acrylic derivatives such as polyfunctional acrylate compounds such as pentaerythritol polyacrylate and trimethylolpropane acrylate, 2-ethylhexyl methacrylate, n-stearyl methacrylate, cyclic Hexyl methacrylate Monofunctional methacrylate compounds such as tetrahydrofuryl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxybutyl methacrylate, 1,6-hexanediol dimethacrylate, trimethylol Methacrylic acid derivatives such as polyfunctional methacrylic acid compounds such as propane trimethacrylate and glycerol dimethacrylate, glyceryl dimethacrylate hexamethylene diisocyanate and isopentaerythritol Monomers such as urethane acrylate compounds such as acrylate hexamethylene diisocyanate, and ultraviolet curable compounds such as oligomers and polymers of the above monomers are particularly suitable in the present invention. Aqueous emulsion of monomers and oligomers. These urethane acrylate monomers, urethane acrylate oligomers, polymers, etc. are well known from, for example, invention patent documents 10 to 16 and the like, and the epoxy acrylate monomers are well known. Polymers, oligomers, and polymers of epoxy acrylates are well known from, for example, invention patent documents 17 to 33, and any of these known compounds having an unsaturated bond can be used. [Invention Patent Document 10] JP 2003-40955 [Invention Patent Document 11] JP 2000-159847 [Invention Patent Document 12] JP 2000- 1 18 193 [Invention Patent Document 13] JP 11 -209448 200524991 [Invention Patent Document 14] JP 11-106468 [Invention Patent Document 15] JP 8-109230 [Invention Patent Document 16] JP 5-222 145 [Invention Patent Document 17 ] JP 2003-238653 [Invention Patent Document 18] JP 2003-1 83350 [Invention Patent Document 19] JP 2003--12660 [Invention Patent Document 20] JP 2002-284842 [Invention Patent Document 21] JP 2002-1 28 863 [Invention Patent Document 22] JP 2002-105 168 [Invention Patent Document 23] JP 2001-1 83820 [Invention Patent Document 24] JP 2001 -1 JP 14850 [Invention Patent Document 25] JP 2000-336144 [Invention Patent Document 26] JP 10-168033 [Invention Patent Document 27] JP 10-101770 [Invention Patent Document 28] Japanese Patent Application Laid-Open No. 9-48838 [Invention Patent Document 29] Japanese Patent Application Laid-Open No. 8-677737 Publication [Invention Patent Document 30] JP 7-316107 [Invention Patent Document 31] JP 7-7028 Publication 1 [Invention Patent Document 32] JP 7-48424 [Invention Patent Document 33] JP 5 -194708 As the urethane acrylates, particularly preferred are (A) hydroxyl-containing acrylates, (B) organic polyisocyanates, (C) polyethylene glycols containing at least one hydroxyl group in the molecule, And (D) a poly (urethane acrylate) which is a neutralized salt of a reaction product formed by a fatty acid containing at least one hydroxyl group in the molecule through neutralization of (E) a tertiary amine. In the production of the polyurethane acrylate, the hydroxyl-containing acrylate of the component (A) used is, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate , 2-hydroxyalkyl (meth) acrylates such as 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, etc. The hydroxyalkanediol mono (meth) acrylate, isopentaerythritol triacrylate, rosin epoxy acrylate, etc. can be used individually or in combination as the (B) component of the organic polyisocyanate, They are equivalent to organic polyisocyanates having three or more reactive isocyanate groups in the molecule. The molecular weight is preferably about 500 to 1,000. (B) There are specific examples of the components such as 1,6-hexane diisocyanate, isophorone diisocyanate, xylene diisocyanate, hydrogenated xylene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, and the like. The trimer obtained by isocyanate is a prepolymer obtained by reacting the diisocyanates with a polyvalent alcohol such as trimethylolpropane, polymethylene polyphenyl polyisocyanate, and the like. As the polyethylene glycol component of the component (C), various ones having at least one hydroxyl group in the molecule can be used without particular limitation, and particularly preferred are those represented by the following general formula (νΠ). [Chemical Formula 1] H- (OCH2CH2) s-OR9 (VII) 200524991 (wherein, r9 represents an alkyl group having 1 to 4 carbon atoms, and s represents an integer of 7 to 25). The amount of the component (C) used is usually 3 to 12% by weight, and preferably 5 to 10% by weight based on the total amount of the polyurethane acrylate. If the content is less than 3% by weight, the water detergency will be insufficient, which is not suitable. Further, if it exceeds 12% by weight, the water resistance of the cured coating film becomes insufficient, and the agglutination becomes insufficient, which is unfavorable. The fatty acid component (D) contains at least one hydroxyl group and one carboxyl group in the molecule. There are no particular restrictions on their acid hydrazones and hydroxyamidines, but they are usually Class 3 organic amines with a composition of 150 to 50 ° (E), such as trimethylamine, triethylamine, N-methyldiethanolamine, and triethanolamine. . Among these, trimethylamine and triethylamine are particularly preferred. The reason is that when the active energy ray-curable aqueous resin composition is applied and dried, trimethylamine or triethylamine is relatively volatile and does not remain in the coating film. Also, epoxy acrylate is preferred, for example. It is a compound represented by the said General formula (I), Specifically, the following compounds are mentioned, for example. 200524991 H2 c HH CIO 1 2 H c 1 〇H2- c H-DH CIO-2 H c-o 4] fo 1 H dagger {II ίΗ2 c cH-) H CIO c H2 c II H c c-no 【 Chemistry 15] ch3 ch3 CHa ^ CC—0-CH〗-CH-CH2-O-CH2-CH-0¾-0— C—C—CH2 〇 OH OH Ο [Chemical 1 6]

CH2=CH-C- 0-CH2-CH-CH2-〇-CH2-CH-0-CH2-CH-CH2-〇-C-CH=CH2 0 OH CH3 OH OCH2 = CH-C- 0-CH2-CH-CH2-〇-CH2-CH-0-CH2-CH-CH2-〇-C-CH = CH2 0 OH CH3 OH O

[化1 7】 CH2=CH-C-0_CH2~CH-CH2-0-eCH2CHO^CH2 - CH-ch2-o-c - ch=ch2 0 OH CH, OH " -20- 200524991 [化1 8】[Chem 1 7] CH2 = CH-C-0_CH2 ~ CH-CH2-0-eCH2CHO ^ CH2-CH-ch2-o-c-ch = ch2 0 OH CH, OH " -20- 200524991 [Chem 1 8]

ch3 Ich3 I

IIII

OH CH2=:C—C-O-CH2-CH-CH2-O-CH-CH2-O ch3OH CH2 =: C—C-O-CH2-CH-CH2-O-CH-CH2-O ch3

ch3 - CH2-CH - o-ch2-ch-ch2-o - C—C=CH? I I 八 ch3 OH 0 【化1 9】ch3-CH2-CH-o-ch2-ch-ch2-o-C—C = CH? I I eight ch3 OH 0 [Chem. 1 9]

OH CH2~CH—C^〇—CH2_,CH—CH2~0~CH ch3OH CH2 ~ CH-C ^ 〇-CH2_, CH-CH2 ~ 0 ~ CH ch3

-CH2-CH-0-CH2-CH-CH2-0-C-CH=CH2 CHj-CH2-CH-0-CH2-CH-CH2-0-C-CH = CH2 CHj

II 【化2 0II [Chemical 2 0

CICICCICIC

CNOCNO

3 C Η η CIC c=o3 C Η η CIC c = o

此等之中,特佳爲以上述式(II)所示的三甘油二丙烯酸酯 當作主成分的環氧酯(共榮社化學製80MFA) 又,作爲具有不飽和雙鍵的上述以外之化合物,例如有如 下之化合物。即,(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲 基)丙烯酸丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸酯2-乙基己 酯、(甲基)丙烯酸正壬酯、(甲基)丙烯酸月桂酯、(甲基)丙烯 酸環己酯、(甲基)丙烯酸環己基甲酯、(甲基)丙烯酸甲氧基乙 酯、(甲基)丙烯酸乙氧基乙酯、(甲基)丙烯酸甲氧基乙氧基乙 酯、(甲基)丙烯酸乙氧基乙氧基乙酯、(曱基)丙烯酸甲氧基聚 乙二醇酯、(甲基)丙烯酸2-羥乙酯、(甲基)丙烯酸4_羥丁酯、 (甲基)丙烯酸聚乙二醇酯、(甲基)丙烯酸、(甲基)丙烯酸N,N- -2 1- 200524991 二甲基胺基乙酯、α-羥甲基丙烯酸甲酯、α-羥甲基丙烯酸乙 酯、α-羥甲基丙烯酸丁酯等的單官能(甲基)丙烯酸酯類; Ν,Ν-二甲基(甲基)丙烯醯胺、Ν-羥甲基(甲基)丙烯醯胺等 的單官能(甲基)丙烯醯胺類; 甲基乙烯醚、乙基乙烯醚、丙基乙烯醚、丁基乙烯醚、2-乙基己基乙烯醚、正壬基乙烯醚、月桂基乙烯醚、環己基乙 烯醚、甲氧基乙基乙烯醚、乙氧基乙基乙烯醚、甲氧基乙氧 基乙基乙烯醚、乙氧基乙氧基乙基乙烯醚、甲氧基聚乙二醇 乙烯醚、2-羥乙基乙烯醚、4-羥丁基乙烯醚、二乙二醇單乙烯 醚、聚乙二醇乙烯醚、氯乙基乙烯醚等的單官能乙烯醚類; Ν-乙烯吡咯啶酮、Ν-乙烯己內醯胺、Ν-乙烯基-Ν-甲基甲 醯胺、Ν-乙基咪唑、Ν-乙烯甲醯胺、Ν-乙烯乙醯胺等的單官 能Ν-乙烯基化合物類; 苯乙烯、Α-甲基苯乙烯、乙烯基甲苯、醋酸烯丙酯、醋酸 乙烯酯、丙酸乙烯酯、苯甲酸乙烯酯等的單官能乙烯基化合 物類; 馬來酐、馬來酸、馬來酸二甲酯、馬來酸二乙酯、馬來酸 單甲酯、馬來酸單乙酯、富馬酸、富馬酸二甲酯、富馬酸二 乙酯、富馬酸單甲酯、富馬酸單乙酯、伊康酸、伊康酸、伊 康酸二甲酯、伊康酸二乙酯、伊康酸單甲酯、伊康酸單乙酯、 亞甲基丙二酸、亞甲基丙二酸二甲酯、亞甲基丙二酸單甲酯、 桂皮酸、桂皮酸甲酯、桂皮酸乙酯、巴豆酸、巴豆酸甲酯、 巴豆酸乙酯等的單官能α,β-不飽和化合物類; 200524991 乙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、 聚乙二醇二(甲基)丙烯酸酯、丙二醇二(甲基)丙烯酸酯、丁二 醇二(甲基)丙烯酸酯、己二醇二(甲基)丙烯酸酯、環己烷二甲 醇二(甲基)丙烯酸酯、雙酚A環氧烷二(甲基)丙烯酸酯、雙酚A 環氧烷二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、 二-三羥甲基丙烷四(甲基)丙烯酸酯、甘油三(甲基)丙烯酸 酯、異戊四醇四(甲基)丙烯酸酯、二異戊四醇五(甲基)丙烯酸 酯、二異戊四醇六(甲基)丙烯酸酯、環氧乙烷加成的三羥甲基 丙烷三(甲基)丙烯酸酯、環氧乙烷加成的二-三羥甲基丙烷四 (甲基)丙烯酸酯、環氧乙烷加成的異戊四醇四(甲基)丙烯酸 酯、環氧乙烷加成的二異戊四醇六(甲基)丙烯酸酯等的多官能 (甲基)丙烯酸酯類; 乙二醇二乙烯醚、二乙二醇二乙烯醚、聚乙二醇二乙烯 醚、丙二醇二乙烯醚、丁二醇二乙烯醚、己二醇二乙烯醚、 雙酚A環氧烷二乙烯醚、雙酚F環氧烷二乙烯醚、三羥甲基丙 烷三乙烯醚、二-三羥甲基丙烷四乙烯醚、甘油三乙烯醚、異 戊四醇四乙烯醚、二異戊四醇五乙烯醚、二異戊四醇六乙烯 醚、環氧乙烷加成的三羥甲基丙烷三乙烯醚、環氧乙烷加成 的二-三羥甲基丙烷四乙烯醚、環氧乙烷加成的異戊四醇四乙 烯醚、環氧乙烷加成的二異戊四醇六乙烯醚等之多官能乙烯 醚類; 二乙烯基苯等的多官能乙烯基化合物類; 乙二醇二縮水甘油基醚、二乙二醇二縮水甘油基醚、聚乙 200524991 二醇二縮水甘油基醚、丙二醇二縮水甘油基醚、丁二醇二縮 水甘油基醚、己二醇二縮水甘油基醚、雙酚A環氧烷二縮水甘 油基醚 '雙酚F環氧烷二縮水甘油基醚、三羥甲基丙烷三縮水 甘油基醚、二-三羥甲基丙烷四縮水甘油基醚、甘油三縮水甘 油基醚、異戊四醇四縮水甘油基醚、二異戊四醇五縮水甘油 基醚、二異戊四醇六縮水甘油基醚、環氧乙烷加成的三羥甲 基丙烷三縮水甘油基醚、環氧乙烷加成的二-三羥甲基丙烷四 縮水甘油基醚、環氧乙烷加成的異戊四醇四縮水甘油基醚、 環氧乙烷加成的二異戊四醇六縮水甘油基醚等的多官能環氧 化合物類; 二[1-甲基(3-氧雜環丁基)]甲醚、二[1-乙基(3-氧雜環丁 基)]甲醚、1,4-雙([(3-甲基-3-氧雜環丁基)甲氧基]甲基)苯、 1,4-雙([(3-乙基-3-氧雜環丁基)甲氧基]甲基)苯、雙(4-[(3-甲 基-3-氧雜環丁基)甲氧基]甲基)苄基醚、雙(4-[(3-乙基_3-氧雜 環丁基)甲氧基]甲基)苄基醚等的多官能脂環式醚化合物類及 其之寡聚物。 此等之中,較佳爲(甲基)丙烯酸甲酯、(甲基)丙烯酸丁酯、 (甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸甲氧基聚乙二醇酯、 (甲基)丙烯酸、丁基乙烯醚、環己基乙烯醚、馬來酐、馬來酸、 馬來酸二甲酯、馬來酸二乙基及其之寡聚物等。 又,含乙烯醚基的丙烯酸化合物亦爲較佳的化合物。含乙 烯醚基的丙烯酸化合物,例如爲含乙烯醚基的(甲基)丙烯酸酯 類。含乙烯醚基的(甲基)丙烯酸酯較佳是以下的化合物。 -24- 200524991 (甲基)丙烯酸2-乙烯氧基乙酯、(甲基)丙烯酸3_乙烯氧基 丙酯、(甲基)丙烯酸1-甲基-2-乙烯氧基乙酯、(甲基)丙烯酸2-乙烯氧基丙酯、(甲基)丙烯酸4-乙烯氧基丁酯、(甲基)丙烯酸 , 1- 甲基-3-乙烯氧基丙酯、(甲基)丙烯酸^乙烯氧基甲基丙 酯、(甲基)丙烯酸2-曱基-3-乙烯氧基丙酯、(甲基)丙烯酸3_ 甲基-3-乙烯氧基丙酯、(甲基)丙烯酸二甲基—2_乙烯氧基 乙酯、(甲基)丙烯酸3-乙烯氧基丁酯、(甲基)丙烯酸丨_甲基一2-乙烯氧基丙酯、(甲基)丙烯酸2-乙烯氧基丁酯、(甲基)丙烯酸 4-乙烯氧基環己酯、(甲基)丙烯酸5_乙烯氧基戊酯、(甲基)丙 ® 烯酸6-乙烯氧基己酯、(甲基)丙烯酸4-乙烯氧基甲基環己基甲 酯、(甲基)丙烯酸3-乙烯氧基甲基環己基甲酯、(甲基)丙烯酸 2- 乙嫌氧基甲基環己基甲酯、(甲基)丙烯酸對乙烯氧基甲基苯 基甲酯、(甲基)丙烯酸間乙烯氧基甲基苯基甲酯、(甲基)丙烯 酸鄰乙烯氧基甲基苯基甲酯、(甲基)丙烯酸乙烯氧基乙氧 基)乙酯、(甲基)丙烯酸2-(乙烯氧基異丙氧基)乙酯、(甲基) 丙嫌酸2-(乙烯氧基乙氧基)丙酯、(甲基)丙烯酸2气乙烯氧基乙 φ 氧基)異丙酯、(甲基)丙烯酸2-(乙烯氧基異丙氧基)丙酯、(甲 基)丙烯酸2-(乙烯氧基異丙氧基)異丙酯、(甲基)丙烯酸(乙 嫌氧基乙氧基乙氧基)乙酯、(甲基)丙烯酸2_(乙烯氧基乙氧基 異丙氧基)乙酯、(甲基)丙烯酸2-(乙烯氧基異丙氧基乙氧基) 乙酯、(甲基)丙烯酸2-(乙烯氧基異丙氧基異丙氧基)乙酯、(甲 · 基)丙烯酸2-(乙烯氧基乙氧基乙氧基)丙酯、(甲基)丙烯酸 2-(乙烯氧基乙氧基異丙氧基)丙酯、(甲基)丙烯酸2-(乙烯氧基 -25- 200524991 異丙氧基乙氧基)丙酯、(甲基)丙烯酸2-(乙烯氧基異丙氧基異 丙氧基)丙酯、(甲基)丙烯酸2-(乙烯氧基乙氧基乙氧基)異丙 酯、(甲基)丙烯酸2-(乙烯氧基乙氧基異丙氧基)異丙酯、(甲基) 丙烯酸2-(乙烯氧基異丙氧基乙氧基)異丙酯、(甲基)丙烯酸 2-(乙烯氧基異丙氧基異丙氧基)異丙酯、(甲基)丙烯酸2一(乙 烯氧基乙氧基乙氧基乙氧基)乙酯、(甲基)丙烯酸2-(乙烯氧基 乙氧基乙氧基乙氧基乙氧基)乙酯、(甲基)丙烯酸2-(乙烯氧基 異丙氧基乙氧基)乙酯、(甲基)丙烯酸2-(乙烯氧基異丙氧基乙 氧基乙氧基)乙酯、(甲基)丙烯酸2-(乙烯氧基異丙氧基乙氧基 乙氧基乙氧基)乙酯、(甲基)丙烯酸2-(乙烯氧基異丙氧基乙氧 基乙氧基乙氧基乙氧基)乙酯、(甲基)丙烯酸聚乙二醇單乙烯 醚、(甲基)丙烯酸聚丙二醇單乙烯醚。 此等化合物亦可爲寡聚物。此等化合物,較佳爲(甲基)丙 烯酸2-乙烯氧基乙酯、(甲基)丙烯酸3-乙烯氧基丙酯、(甲基) 丙烯酸1-甲基-2-乙烯氧基乙酯、(甲基)丙烯酸2-乙烯氧基丙 酯、(甲基)丙烯酸4-乙烯氧基丁酯、(甲基)丙烯酸4-乙烯氧基 環己酯、(甲基)丙烯酸5—乙烯氧基戊酯、(甲基)丙烯酸6-乙 烯氧基己酯、(甲基)丙烯酸4-乙烯氧基甲基環己基甲酯、(甲 基)丙烯酸對乙烯氧基甲基苯基甲酯、(甲基)丙烯酸2-(乙烯氧 基乙氧基)乙醋、(甲基)丙嫌酸2-(乙儲氧基乙氧基乙氧基)乙 酯、(甲基)丙烯酸2-(乙烯氧基乙氧基乙氧基乙氧基)乙酯及其 之寡聚物。 另一方面,作爲不具有水溶性或水性乳液形成性的不飽和 200524991 鍵之化合物,例如爲醋酸乙烯酯系聚合物、乙烯-乙烯酯系聚 合物、丙烯酸系聚合物、氯乙烯系聚合物、偏二氯乙烯系聚 合物、苯乙烯系聚合物、聚胺甲酸酯、聚酯、環氧樹脂、聚 矽氧樹脂、聚丁烯、聚丁二烯、丁二烯系共聚物、聚異戊二 烯、聚氯丁烯、多硫化橡膠等。此等可單獨地或倂用兩種以 上。其較佳爲聚胺甲酸酯、乙烯-乙烯酯共聚物、丙烯酸系聚 合物。此等水溶性或水性乳液形成性樹脂亦可爲具有一種含 放射線可聚合的不飽和雙鍵之構造者。 作爲水溶性或水性乳液形成性樹脂,亦可使用上述以外的 聚丙烯醯胺、聚乙烯吡咯啶酮等之樹脂、含羥基或羧酸基的 水溶性或水分散性共聚合聚酯、聚丙烯酸、聚甲基丙烯酸等 的丙烯酸系樹脂、聚丙烯酸酯、聚甲基丙烯酸酯等的丙烯酸 酯系樹脂、聚對酞酸乙二酯、聚對酞酸丁二酯等的酯樹脂、 聚苯乙烯、聚-α-甲基苯乙烯、聚氯甲基苯乙烯、聚苯乙烯磺 酸、聚乙烯基酚等的苯乙烯系樹脂、聚乙烯基甲醚、聚乙烯 基***等的乙烯醚樹脂、聚乙烯醇、聚乙烯系聚合物、聚乙 烯縮丁醛等的聚乙烯醇類、酚醛清漆、甲階酚醛樹脂等的酚 樹脂等。 又,於本發明的放射線硬化型導電性組成物中,可使用水 溶性或水性乳液型(形成性)的環氧或氧雜環丁烷化合物。作爲 該環氧或氧雜環丁烷化合物,例如爲甲基縮水甘油基醚、乙 基縮水甘油基醚、丙基縮水甘油基醚、丁基縮水甘油基醚、 2 -乙基己基縮水甘油基醚、正壬基縮水甘油基醚、月桂基縮 200524991 水甘油基醚、環己基縮水甘油基醚、甲氧基乙基縮水甘油基 醚、乙氧基乙基縮水甘油基醚、甲氧基乙氧基乙基縮水甘油 基醚、乙氧基乙氧基乙基縮水甘油基醚、甲氧基聚乙二醇縮 水甘油基醚等的單官能環氧化合物類;3-甲基-3-羥甲基氧雜 環丁烷、3-乙基-3-羥甲基氧雜環丁烷、3-甲基-3-苯氧基甲基 氧雜環丁烷、3-乙基-3-苯氧基甲基氧雜環丁烷、3-甲基-3-(2-乙基己氧基甲基)氧雜環丁烷、3-乙基-3-(2_乙基己氧基甲基) 氧雜環丁烷等的單官能脂環族醚化合物類。環氧或氧雜環丁 烷化合物的用量就相對於水溶性或乳液形成性化合物而言係 5〜80重量%,較佳10~50重量%。 再者,於本發明中,作爲水溶性或水性乳液型的含環氧基 的化合物,可使用多官能環氧化合物、雙酚A型水溶性環氧化 合物、酚醛清漆型水溶性環氧化合物等。作爲多官能環氧化 合物,例如有二甘油聚縮水甘油基醚等。其之含量就相對於 水溶性或乳液形成性化合物而言係5〜50重量%,較佳10〜30重 量% 〇 放射線硬化的陽離子聚合型單體、寡聚物以及高分子化合 物可與陽離子光聚合引發劑一起使用,該陽離子光聚合引發 劑較佳係爲藉由放射線的照射而產生酸的光酸發生劑。作爲 陽離子光聚合引發劑所可使用的光酸發生劑可與離子性化合 物和非離子性化合物有大區別。作爲離子性化合物,使用芳 基重氮鑰鹽、二芳基碘鑰鹽、三芳基硫鑰鹽及及三芳基磷鑰 鹽等,作爲配對離子可使用BF4·、PF6·、AsF6·、SbF6·等。該 200524991 等鐵鹽系光酸發生劑視需要可倂用蒽或咕噸酮等的光增感 劑。作爲非離子性光酸發生劑,可使用由於光照射而產生羧 酸、磺酸、磷酸、鹵化氫等者,具體的光酸發生劑係可利用 磺酸的2-硝基苄基酯、磺酸亞胺酯、1-酮基-2—重氮萘醌-4-磺酸酯衍生物、N-羥基醯亞胺磺酸酯、三(甲烷磺醯氧基)苯衍 生物等,而且可使用羧酸鄰硝基苄基酯、1-酮基-2-重氮萘醌-5-芳基磺酸酯、三芳基磷酸酯衍生物等。陽離子光聚合引發 劑的用量就就相對於水溶性或乳液形成性化合物而言係1〜10 重量%,較佳2〜5重量%。 於本發明的組成物中,爲了對具有上述不飽和雙鍵的化合 物作光聚合,視需要可使用自由基光聚合引發劑。就該自由 基光聚合引發劑而言,任何以往可使用於光聚合具有不飽和 雙鍵的化合物時的聚合引發劑,係可使用在本發明中。作爲 該自由基光聚合引發劑,具體例子爲二苯甲酮、苯乙酮、苯 偶姻及苯偶姻的甲基、乙基、異丙基、丁基或異丁基醚、α-@基或α-胺基芳基酮及苄基縮酮。自由基光聚合引發劑就相 對於水溶性或乳液形成性化合物而言係1〜1 0重量%,較佳2〜5 重量%。 又’於混合上述化合物時,於高黏度的情況可適時混合異 丙醇(ΙΡΑ)等的水可溶性有機溶劑以調整黏度。又,於形成乳 '液時’可藉由界面活性劑使水不溶性化合物溶於水溶性有機 ^劑中而乳化成乳液。水溶性有機溶劑如酮系水可溶性有機 溶劑’例如爲甲基乙基酮、甲基異丁基酮、甲基丁基酮、乙 -29- 200524991 基丁基酮、環己酮、異佛爾酮等。作爲其以外的水可溶性有 機溶劑,例如有醋酸乙酯、醋酸丁酯、醋酸異丁酯、醋酸異 丙酯、醋酸第二丁酯、醋酸乙二醇單甲醚、醋酸乙二醇單乙 > 醚、醋酸乙二醇單丁基醚等的醋酸酯系溶劑;乙醇、正丙醇、 異丙醇、正丁醇、異丁醇、第二丁基醇、第三丁基醇、正戊 醇、異戊醇、第二戊基醇、第三戊基醇、環己醇、乙二醇、 丙二醇、丁二醇等的醇系溶劑;乙二醇單甲醚、乙二醇單乙 醚、乙二醇二甲醚、乙二醇二***、二乙二醇單甲醚、二乙 0 二醇單丁基醚等的二醇醚系溶劑;二噁烷、二甲基二噁烷等 的醚系溶劑等。特別地,二醇醚系溶劑由於與水及其它有機 溶劑相溶性亦良好,而且可良好地溶解有機溶劑可溶性樹脂 或其它添加物,故可說是最適合的溶劑。 於本發明的放射線硬化型導電性組成物中,爲了將乳液安 定化亦可使用分散劑。分散劑有非離子系界面活性劑、陽離 子系界面活性劑、陰離子系界面活性劑等,但對於聚苯胺及/ 或磺化聚苯胺,於磺酸基及/或其之鹼金屬鹽基所鍵結的聚酯 φ 樹脂或聚陰離子之存在下的聚噻吩水溶液中,非離子系界面 活性劑係特別優的。分散劑的用量就相對於放射線硬化型導 電性組成物而言係0.5〜5重量%,較佳1〜3重量%。 但是,由於所使用的有機導電性聚合物係離子性,而使得 當感光劑等爲離子性時會使有機導電性聚合物發生凝集,而 ’ 有產生沈殿物情況。經由銳意硏究,結果清楚了解,藉由降 低感光劑的混合比率,則不會發生凝集。離子性的陽離子光 -30- 200524991 聚合引發劑之混合比率就相對於其它固體成分而言係3%以 下。 本發明的放射線硬化型導電性組成物係以乳液型塗佈在 基材上。塗布時的組成物之固體成分濃度並沒有特別的限 定,而係0.5〜50重量%,較佳1〜30重量%。塗布時所需的基材 並沒有特別的限制,但通常爲玻璃、薄膜、繊維等。特別地, 由玻璃或聚酯、耐隆、聚丙烯、聚乙烯等的熱可塑性樹脂所 成的薄膜、由芳香族聚醯胺、聚醯胺醯亞胺、聚醯亞胺等的 有機溶劑可溶型樹脂所成的薄膜等係較宜的。 作爲於上述基材表面塗佈本發明的導電性組成物之方 法,例如有凹槽輥塗佈法、逆輥塗佈法、刀塗法、浸塗法、 旋塗法等,可爲習知形成塗膜的方法而沒有特別的限定。 所形成的塗膜在適宜的溫度被加熱、乾燥後,進行放射線 照射,例如紫外線照射,以使塗膜硬化。藉此,在基材表面 上形成導電性的硬化被膜。加熱乾燥通常在50〜200°C的溫度 進行10〜300秒左右。又,放射線係可爲紫外線、遠紫外線、 X線、電子線等中任一者,但通常從裝置的泛用性方面看, 紫外線係較宜的。放射線的照射量並沒有特別的限定,只要 將塗膜硬化的量即可。於使用紫外線作爲放射線時,雖然隨 著所使用的組成物之組成、膜厚等而不同,但是照射量通常 爲 1,000〜20,000mJ/cm2,較佳 5,000〜1 5,000mJ/cm2左右。 發明效果 藉由本發明的導電性組成物,可形成透明性、優良的耐溶 200524991 劑性、高的表面硬度且在低濕度下亦具有高導電性的膜,例 如較宜用作爲抗靜電膜。 實施發明的最佳形態 以下藉由實施例來更詳細説明,惟本發明不受以下的實施 例所限定。再者,於以下中,只要沒有特別指明,則%係表示 重量%。 【實施例1】 作爲導電性材料,使用含有聚苯乙烯磺酸(固體成分量 1.2%)當作摻雜物的聚乙烯-二氧基噻吩膠體的水性分散液(聚 乙烯-二氧基噻吩的固體成分量2%)。另外,於胺甲酸酯丙烯 酸酯水性乳液(荒川化學工業製EM90,固體成分量40%)中混 合聚丙二醇單甲醚,以製作胺甲酸酯丙烯酸酯10%乳液溶液。 於該溶液中,加入多官能二醇系環氧化合物的二甘油聚縮水 甘油基醚之10%聚丙二醇單甲醚乳液溶液,及混合以得到具有 1 0%固體成分的基礎溶液。然後,相對於該基礎溶液的固體成 分量,添加2%陽離子光聚合引發劑(Irgacure 250、Ciba-Geigy 公司製)及3%自由基光聚合引發劑(Irgacure 184、Ciba-Geigy 公司製)及混合,然後於分散機的攪拌下添加上述聚噻吩膠體 溶液,以將有機導電性材料的固體成分濃度調整成爲上述基 礎溶液之固體成分的10%,於添加後再以分散機攪拌1.5小 時。其之乳液溶液爲白濁狀,並沒有見到成分的分離。使用 間隙爲1〇μιη的塗佈機將該溶液塗佈在PET(聚對酞酸乙二酯) 薄膜上,於l〇(TC乾燥,然後以UV照射裝置在lOOOmJ的照射 200524991 量作照射,而使塗膜硬化,以形成硬化被膜(硬塗層)。所得到 的硬化被膜之表面電阻0.2〜0.5ΜΩ,硬化被膜係爲透明的。根 據以下的測定法來測量所得到的被膜之透光率、耐熱性 '密 接性、表面硬度。結果示於表1中。 (透光率) 以日本電色製COH 3 00 A來測量在PET所製作的硬塗層’ 當作含PET的透光率。 (耐熱試驗) 於80°C的烘箱中保持1000小時後,測量被膜的電阻値’調 查與耐熱試驗前的電阻値之變化。 (密接性試驗) 於硬塗層表面上使用切割器以得到感覺上具有Inimx 1 mm 傷痕的100個方格,於該方格上貼附賽洛膠帶(註冊商標; Nichib an(株)製)No .405,於30秒後剝離賽洛膠帶,剝離後觀 察邊緣有缺陷的方格之數目。100個方格者係爲〇,一部分的 方格有缺陷者係△,多數方格被剝離者係X。 (表面硬度) 藉田鉛筆硬度試驗(鉛筆刮劃試驗)來進行表面硬度測 試。即,表面硬度係爲對所製作的硬塗層薄膜,使用JIS-S_6006 所規定的試驗用鉛筆,根據JIS-K-5400所規定的鉛筆硬度評估 方法,在9.7N的荷重下沒有看到時的鉛筆硬度之値。 【實施例2】 代替多官能二醇系環氧化合物的二甘油聚縮水甘油基醚 -33- 200524991 之1 0 %聚丙二醇單甲醚溶液,使用多官能二醇系環氧化合物 (共榮社化學製80MF)的10%聚丙二醇單甲醚溶液,以外係與實 施例1同樣地作,以製造放射線硬化型導電性組成物。用與實 施例1同樣的方法,將該放射線硬化型導電性組成物塗佈在 PET薄膜上,於100°C乾燥,然後以UV照射裝置在lOOOmJ的照 射量作照射,而使塗膜硬化,以形成硬化被膜。所得到的被 膜之表面電阻爲〇·8〜1.3ΜΩ,硬化被膜係透明的。與實施例1 同樣地作,測量所得到的被膜之透光率、耐熱性、密接性、 表面硬度。結果示於表1中。 【實施例3】 除了使用厘?-三阱(三和化學製)代替11^&€11^ 250當作陽 離子光聚合引發劑以外,與實施例1同樣地作,以製造放射線 硬化型導電性組成物。用與實施例1同樣的方法將放射線硬化 型導電性組成物塗佈在PET薄膜上,於l〇(TC乾燥,然後以紫 外線照射裝置在l〇〇〇mJ的照射量作照射,而使塗膜硬化,以 形成硬化被膜。所得到的被膜之表面電阻爲1.0~1·5ΜΩ,硬化 被膜係透明的。與實施例1同樣地作,測量所得到的被膜之透 光率、耐熱性、密接性、表面硬度。結果示於表1中。 【實施例4】 使用WPAG-145 (和光純藥工業製;雙(環己基磺醯基)重氮 甲烷)代替Irgacure 250當作陽離子光聚合引發劑以外,與實施 例1同樣地作,以製造放射線硬化型導電性組成物。用與實施 例1同樣的方法將放射線硬化型導電性組成物塗佈在PET薄膜 -34- 200524991 上,於loot:乾燥,然後以紫外線照射裝置在1〇〇〇!!^的照射量 作照射,而使塗膜硬化,以形成硬化被膜。所得到的被膜之 表面電阻爲0.5〜0.7ΜΩ,硬化被膜係透明的。與實施例1同樣 地作,測量所得到的被膜之透光率、耐熱性、密接性、表面 硬度。結果示於表1中。 【實施例5】 代替於胺甲酸酯丙烯酸酯水性乳液(荒川化學工業製 EM90,固體成分量40%)中混合聚丙二醇單甲醚而製造的胺甲 酸酯丙烯酸酯10%溶液,使用於環氧酯(共榮社化學製80MFA) 中混合聚丙二醇單甲醚而製造的環氧酯10%溶液,而且使用 WPAG-170(和光純藥工業製;雙(第三丁基磺醯基)重氮甲烷) 代替Irgacure 250當作陽離子光聚合引發劑以外,用與實施例1 同樣的方法將該放射線硬化型導電性組成物塗佈在PET薄膜 上,於l〇〇°C乾燥,然後以紫外線照射裝置在lOOOmJ的照射量 作照射,而使塗膜硬化,以形成硬化被膜。所得到的被膜之 表面電阻爲0.3〜0.8ΜΩ,硬化被膜係透明的。與實施例1同樣 地作,測量所得到的被膜之透光率、耐熱性、密接性、表面 硬度。結果示於表1中。 【實施例6】 代替於胺甲酸酯丙烯酸酯水性乳液(荒川化學工業製 EM90,固體成分量40%)中混合聚丙二醇單甲醚而製造的胺甲 酸酯丙烯酸酯10%溶液,使用於環氧酯(共榮社化學製80MFA) 中混合聚丙二醇單甲醚而製造的環氧酯10%溶液,以外係與實 200524991 施例1同樣地作,以製造放射線硬化型導電性組成物。用與實 施例1同樣的方法將該放射線硬化型導電性組成物塗佈在PET 薄膜上,於l〇〇°C乾燥,然後以紫外線照射裝置在lOOOmJ的照 射量作照射,而使塗膜硬化,以形成硬化被膜。所得到的被 膜之表面電阻爲0.3〜0.8ΜΩ,硬化被膜係透明的。與實施例1 同樣地作,測量所得到的被膜之透光率、耐熱性、密接性、 表面硬度。結果示於表1中。 【實施例7】 作爲導電性材料,使用含有聚苯乙烯磺酸(固體成分量 1.2%)當作摻雜物的聚乙烯-二氧基噻吩膠體的水性分散液(聚 乙烯-二氧基噻吩的固體成分量2%)。另外,於胺甲酸酯丙烯 酸酯水性乳液(荒川化學工業製EM90, 40%)中混合IPA(異丙 醇)以製作胺甲酸酯丙烯酸酯10%乳液溶液。於該溶液中混合 多官能二醇系環氧化合物的二甘油聚縮水甘油基醚之 10%IPA(異丙醇)溶液,以得到具有10%固體成分的基礎溶液。 然後,混合就相對於該基礎溶液的乳液固體成分量而言2%光 陽離子聚合劑WPAG-199 (和光純藥工業製;雙(對甲苯磺醯基) 重氮甲烷)及3%自由基光聚合引發劑(11^3^1^184、 Ciba-Geigy公司製),及於分散機的攪拌下添加上述聚噻吩膠 體溶液,以將有機導電性材料的固體成分濃度調整成爲上述 基礎溶液之固體成分的10%,於添加後再以分散機攪拌1.5小 時。其之乳化溶液爲白濁狀,並沒有見到成分的分離。使用 間隙爲ΙΟμπι的塗佈機將該溶液塗佈在PET(聚對酞酸乙二酯) 200524991 薄膜上,於100°C乾燥,然後以紫外線照射裝置在l〇〇〇mJ的照 射量作照射,而使塗膜硬化,以形成硬化被膜。所得到的硬 化被膜之表面電阻爲0.5〜0.7MQ,硬化被膜係爲透明的。與實 施例1同樣地作,測量所得到的被膜之透光率、耐熱性、密接 性、表面硬度。結果示於表1中。 【實施例8】 作爲導電性材料,使用含有聚苯乙烯磺酸(固體成分量 1.2%)當作摻雜物的聚乙烯-二氧基噻吩膠體的水性分散液(聚 乙烯-二氧基噻吩的固體成分量2%)。另外,於胺甲酸酯丙烯 酸酯水性乳液(荒川化學工業製EM90, 40%)中混合甲基乙基 酮以製作胺甲酸酯丙烯酸酯10%乳液溶液。於該溶液中加入及 混合多官能二醇系環氧化合物的二甘油聚縮水甘油基醚之 10%甲基乙基酮溶液,以得到具有10%固體成分的基礎溶液。 然後,添加及混合就相對於該基礎溶液的固體成分量而言2% 光陽離子聚合劑(WPAG-145,和光純藥工業製)及3%自由基光 聚合引發劑(Irgacure 184,Ciba-Geigy公司製),及於分散機的 攪拌下添加上述聚噻吩膠體溶液,以將有機導電性材料的固 體成分濃度調整成爲上述基礎溶液之固體成分的10%,於添加 後再以分散機攪拌1.5小時。使用間隙爲ΙΟμιη的塗佈機將該溶 液塗佈在PET(聚對酞酸乙二酯)薄膜上,於100°C乾燥,然後 以紫外線照射裝置在lOOOmJ的照射量作照射,而使塗膜硬 化,以形成硬化被膜。所得到的硬化被膜之表面電阻爲 0.5〜0.7MQ,硬化被膜係爲透明的。與實施例1同樣地作,測 200524991 量所得到的被膜之透光率、耐熱性、密接性、表面硬度。結 果示於表1中。 表1Among these, an epoxy ester containing triglycerol diacrylate represented by the above formula (II) as a main component (80MFA manufactured by Kyoeisha Chemical Co., Ltd.) as a main component is particularly preferred, and it is an other than the above having an unsaturated double bond. The compounds include, for example, the following compounds. That is, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) ) Nononyl acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate, cyclohexyl methyl (meth) acrylate, methoxyethyl (meth) acrylate, ethyl (meth) acrylate Ethoxyethyl ester, methoxyethoxyethyl (meth) acrylate, ethoxyethoxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, (methyl ) 2-hydroxyethyl acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol (meth) acrylate, (meth) acrylic acid, (meth) acrylic acid N, N- -2 1- 200524991 Monofunctional (meth) acrylates such as dimethylaminoethyl ester, α-hydroxymethyl methacrylate, α-hydroxymethyl acrylate, α-hydroxymethyl acrylate, etc .; Ν, Ν- Monofunctional (meth) acrylamides such as dimethyl (meth) acrylamide, N-hydroxymethyl (meth) acrylamide; methyl Vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, 2-ethylhexyl vinyl ether, n-nonyl vinyl ether, lauryl vinyl ether, cyclohexyl vinyl ether, methoxyethyl vinyl ether, Ethoxy ethyl vinyl ether, methoxy ethoxy ethyl vinyl ether, ethoxy ethoxy ethyl vinyl ether, methoxy polyethylene glycol vinyl ether, 2-hydroxyethyl vinyl ether, 4- Monofunctional vinyl ethers such as hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, polyethylene glycol vinyl ether, and chloroethyl vinyl ether; N-vinylpyrrolidone, N-vinylcaprolactam, N -Vinyl-N-methylformamide, N-ethylimidazole, N-vinylformamide, N-vinylacetamide and other monofunctional N-vinyl compounds; styrene, A-methylbenzene Monofunctional vinyl compounds such as ethylene, vinyl toluene, allyl acetate, vinyl acetate, vinyl propionate, vinyl benzoate, etc .; maleic anhydride, maleic acid, dimethyl maleate, maleate Diethyl acid, monomethyl maleate, monoethyl maleate, fumaric acid, dimethyl fumarate, diethyl fumarate, monomethyl fumarate, Monoethyl Ester, Ikonic Acid, Ikonic Acid, Dimethyl Ikonate, Diethyl Ikonate, Monomethyl Ikonate, Monoethyl Ikonate, Methylene Malonate, Iso Monofunctional α such as dimethyl methyl malonate, monomethyl methylene malonate, cinnamic acid, methyl cinnamate, ethyl cinnamate, crotonic acid, methyl crotonic acid, ethyl crotonic acid, etc., β-unsaturated compounds; 200524991 ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylic acid Ester, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, bisphenol A alkylene oxide di (meth) acrylate , Bisphenol A alkylene oxide di (meth) acrylate, trimethylolpropane tri (meth) acrylate, di-trimethylolpropane tetra (meth) acrylate, glycerol tri (meth) acrylate Ester, isopentaerythritol tetra (meth) acrylate, diisopentaerythritol penta (meth) acrylate, diisopentaerythritol hexa (methyl) ) Acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, ethylene oxide-added di-trimethylolpropane tetra (meth) acrylate, ethylene oxide Multifunctional (meth) acrylates such as added isopentaerythritol tetra (meth) acrylate and ethylene oxide added diisopentaerythritol hexa (meth) acrylate; ethylene glycol di Vinyl ether, diethylene glycol divinyl ether, polyethylene glycol divinyl ether, propylene glycol divinyl ether, butylene glycol divinyl ether, hexanediol divinyl ether, bisphenol A alkylene oxide divinyl ether, bisphenol F alkylene oxide divinyl ether, trimethylolpropane trivinyl ether, di-trimethylolpropane tetravinyl ether, glycerol trivinyl ether, isopentaerythritol tetravinyl ether, diisopentaerythritol pentaethylene ether, Diisopentaerythritol hexaethylene ether, ethylene oxide-added trimethylolpropane triethylene ether, ethylene oxide-added di-trimethylolpropane tetravinyl ether, and ethylene oxide Multifunctional vinyl ethers such as isopentaerythritol tetravinyl ether and ethylene oxide-added diisopentaerythritol hexavinyl ether; polyfunctionals such as divinylbenzene Alkenyl compounds; ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, polyethylene 200524991 glycol diglycidyl ether, propylene glycol diglycidyl ether, butanediol diglycidyl ether , Hexanediol diglycidyl ether, bisphenol A alkylene oxide diglycidyl ether 'bisphenol F alkylene oxide diglycidyl ether, trimethylolpropane triglycidyl ether, bis-trimethylol Propane tetraglycidyl ether, glycerol triglycidyl ether, isoprene tetraol glycidyl ether, diisopentaerythritol pentaglycidyl ether, diisopentaerythritol hexaglycidyl ether, ethylene oxide Alkane addition trimethylolpropane triglycidyl ether, ethylene oxide addition bis-trimethylolpropane tetraglycidyl ether, ethylene oxide addition isoprene tetraol glycidyl Polyfunctional epoxy compounds such as ether, ethylene oxide-added diisopentaerythritol hexaglycidyl ether; di [1-methyl (3-oxetanyl)] methyl ether, di [1 -Ethyl (3-oxetanyl)] methyl ether, 1,4-bis ([(3-methyl-3-oxetanyl) methoxy] methyl) benzene, 1,4-bis ([(3-ethyl-3-oxetanyl) methoxy] methyl) benzene, bis (4-[(3-methyl-3-oxetanyl) methyl) Polyfunctional alicyclic ether compounds such as oxy] methyl) benzyl ether, bis (4-[(3-ethyl_3-oxetanyl) methoxy] methyl) benzyl ether, and Its oligomer. Among these, methyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, (Meth) acrylic acid, butyl vinyl ether, cyclohexyl vinyl ether, maleic anhydride, maleic acid, dimethyl maleate, diethyl maleate, and oligomers thereof. Moreover, a vinyl ether group-containing acrylic compound is also a preferable compound. Acrylic compounds containing vinyl ether groups are, for example, (meth) acrylates containing vinyl ether groups. The vinyl ether group-containing (meth) acrylate is preferably the following compounds. -24- 200524991 2-vinyloxyethyl (meth) acrylate, 3-vinyloxypropyl (meth) acrylate, 1-methyl-2-vinyloxyethyl (meth) acrylate, (formaldehyde) Base) 2-vinyloxypropyl acrylate, 4-vinyloxybutyl (meth) acrylate, (meth) acrylic acid, 1-methyl-3-vinyloxypropyl, (meth) acrylate ^ ethylene Oxymethylpropyl, 2-fluorenyl-3-vinyloxypropyl (meth) acrylate, 3-methyl-3-vinyloxypropyl (meth) acrylate, dimethyl (meth) acrylate —2_vinyloxyethyl ester, 3-vinyloxybutyl (meth) acrylate, (meth) acrylic acid 丨 _methyl-2-vinyloxypropyl, 2-vinyloxy (meth) acrylate Butyl ester, 4-vinyloxycyclohexyl (meth) acrylate, 5-vinyloxypentyl (meth) acrylate, 6-vinyloxyhexyl methacrylate, (meth) acrylate 4-vinyloxymethylcyclohexyl methyl acrylate, 3-vinyloxymethyl cyclohexyl methyl (meth) acrylate, 2-ethoxymethyl cyclohexyl methyl (meth) acrylate, (methyl Base) propylene P-vinyloxymethylphenylmethyl, m-vinyloxymethylphenylmethyl (meth) acrylate, o-vinyloxymethylphenylmethyl (meth) acrylate, vinyloxy (meth) acrylate Ethoxy) ethyl, 2- (ethyleneoxyisopropoxy) ethyl (meth) acrylate, 2- (vinyloxyethoxy) propyl (meth) propanoate, (methyl ) Acrylic 2-Gas, Vinyloxyethyl φoxy) Isopropyl, 2- (Ethyloxyisopropoxy) propyl (meth) acrylate, 2- (Ethyloxyisopropoxy) (meth) acrylate ) Isopropyl ester, (ethoxyethoxyethoxy) ethyl (meth) acrylate, 2- (vinyloxyethoxyisopropoxy) ethyl (meth) acrylate, (meth) 2- (vinyloxyisopropoxyethoxy) ethyl acrylate, 2- (vinyloxyisopropoxyisopropoxy) ethyl (meth) acrylate, (meth) acrylic acid 2- ( Ethyloxyethoxyethoxy) propyl, 2- (vinyloxyethoxyisopropoxy) propyl (meth) acrylate, 2- (vinyloxy-25-200524991) Isopropoxyethyl Oxy) propyl ester, 2- (ethyleneoxyisopropoxyisopropoxy) propyl (meth) acrylate, 2- (ethyleneoxyethoxyethoxy) isopropyl (meth) acrylate , 2- (vinyloxyethoxyisopropoxy) isopropyl (meth) acrylate, 2- (ethyleneoxyisopropoxyethoxy) isopropyl (meth) acrylate, (methyl ) 2- (vinyloxyisopropoxyisopropoxy) isopropyl acrylate, 2- (vinyloxyethoxyethoxyethoxy) ethyl (meth) acrylate, (meth) acrylic acid 2- (vinyloxyethoxyethoxyethoxyethoxy) ethyl ester, (meth) acrylic acid 2- (vinyloxyisopropoxyethoxy) ethyl ester, (meth) acrylic acid 2 -(Vinyloxyisopropoxyethoxyethoxy) ethyl ester, (meth) acrylic acid 2- (ethyleneoxyisopropoxyethoxyethoxyethoxy) ethyl ester, (methyl ) 2- (ethyleneoxyisopropoxyethoxyethoxyethoxyethoxy) ethyl acrylate, polyethylene glycol (meth) acrylate monoethylene ether, polypropylene glycol (meth) acrylate monoethylene ether. These compounds may also be oligomers. These compounds are preferably 2-vinyloxyethyl (meth) acrylate, 3-vinyloxypropyl (meth) acrylate, and 1-methyl-2-vinyloxyethyl (meth) acrylate , 2-vinyloxypropyl (meth) acrylate, 4-vinyloxybutyl (meth) acrylate, 4-vinyloxycyclohexyl (meth) acrylate, 5-vinyloxy (meth) acrylate Pentyl ester, 6-vinyloxyhexyl (meth) acrylate, 4-vinyloxymethylcyclohexylmethyl (meth) acrylate, p-vinyloxymethylphenylmethyl (meth) acrylate, 2- (vinyloxyethoxy) ethyl (meth) acrylate, 2- (ethoxyoxyethoxyethoxy) ethyl (meth) propionic acid, 2- (meth) acrylic acid 2- ( Vinyloxyethoxyethoxyethoxy) ethyl ester and its oligomers. On the other hand, as a compound having an unsaturated 200524991 bond having no water-soluble or aqueous emulsion-forming properties, for example, vinyl acetate polymers, ethylene-vinyl ester polymers, acrylic polymers, vinyl chloride polymers, Vinyl chloride-based polymer, styrene-based polymer, polyurethane, polyester, epoxy resin, silicone resin, polybutene, polybutadiene, butadiene-based copolymer, polyisocyanate Pentadiene, polychloroprene, polysulfide rubber, etc. These may be used alone or in combination of two or more. It is preferably a polyurethane, an ethylene-vinyl ester copolymer, or an acrylic polymer. These water-soluble or aqueous emulsion-forming resins may also have a structure having a radiation-polymerizable unsaturated double bond. As the water-soluble or aqueous emulsion-forming resin, resins such as polypropylene amide, polyvinylpyrrolidone, and the like, water-soluble or water-dispersible copolymerized polyesters containing polyhydroxy groups or carboxylic acid groups, and polyacrylic acid may also be used. , Acrylic resins such as polymethacrylic acid, acrylic resins such as polyacrylates, polymethacrylates, ester resins such as polyethylene terephthalate, polybutylene terephthalate, polystyrene , Styrene resins such as poly-α-methylstyrene, polychloromethylstyrene, polystyrene sulfonic acid, polyvinyl phenol, vinyl ether resins such as polyvinyl methyl ether and polyvinyl ether, Polyvinyl alcohols such as polyvinyl alcohol, polyethylene polymers, polyvinyl butyral, phenol resins such as novolac, and resole resins, and the like. Further, in the radiation-curable conductive composition of the present invention, a water-soluble or aqueous emulsion-type (formable) epoxy or oxetane compound can be used. Examples of the epoxy or oxetane compound include methyl glycidyl ether, ethyl glycidyl ether, propyl glycidyl ether, butyl glycidyl ether, and 2-ethylhexyl glycidyl Ether, n-nonyl glycidyl ether, lauryl glycid 200524991 hydroglycidyl ether, cyclohexyl glycidyl ether, methoxyethyl glycidyl ether, ethoxyethyl glycidyl ether, methoxyethyl Monofunctional epoxy compounds such as oxyethyl glycidyl ether, ethoxy ethoxy ethyl glycidyl ether, and methoxy polyethylene glycol glycidyl ether; 3-methyl-3-hydroxy Methyloxetane, 3-ethyl-3-hydroxymethyloxetane, 3-methyl-3-phenoxymethyloxetane, 3-ethyl-3-benzene Oxymethyloxetane, 3-methyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) Group) Monofunctional alicyclic ether compounds such as oxetane. The amount of the epoxy or oxetane compound is 5 to 80% by weight, preferably 10 to 50% by weight, relative to the water-soluble or emulsion-forming compound. Furthermore, in the present invention, as the water-soluble or aqueous emulsion-type epoxy-group-containing compound, a polyfunctional epoxy compound, a bisphenol A type water-soluble epoxy compound, a novolak type water-soluble epoxy compound, and the like can be used. . Examples of the polyfunctional epoxide include diglycerol polyglycidyl ether. The content thereof is 5 to 50% by weight, preferably 10 to 30% by weight relative to the water-soluble or emulsion-forming compound. 0 The radiation-curable cationically polymerizable monomers, oligomers, and polymer compounds can react with cationic light. The polymerization initiator is used together, and the cationic photopolymerization initiator is preferably a photoacid generator that generates an acid by irradiation of radiation. Photoacid generators that can be used as cationic photopolymerization initiators are very different from ionic and nonionic compounds. As the ionic compound, an aryldiazonium key salt, a diaryl iodine key salt, a triarylsulfide key salt, and a triarylphosphonium key salt are used. As the counter ion, BF4 ·, PF6 ·, AsF6 ·, SbF6 · can be used. Wait. The 200524991 and other iron salt-based photoacid generators can be used with a photosensitizer such as anthracene or gurtanone if necessary. As the non-ionic photoacid generator, a carboxylic acid, sulfonic acid, phosphoric acid, hydrogen halide, etc., which is generated by light irradiation can be used. A specific photoacid generator is a 2-nitrobenzyl ester of a sulfonic acid or a sulfonic acid. Acid imide, 1-keto-2-diazonaphthoquinone-4-sulfonate derivative, N-hydroxyphosphonium imine sulfonate, tris (methanesulfonyloxy) benzene derivative, etc. O-nitrobenzyl carboxylate, 1-keto-2-diazonaphthoquinone-5-arylsulfonate, triaryl phosphate derivative, and the like are used. The cationic photopolymerization initiator is used in an amount of 1 to 10% by weight, and preferably 2 to 5% by weight, with respect to the water-soluble or emulsion-forming compound. In the composition of the present invention, in order to photopolymerize a compound having the aforementioned unsaturated double bond, a radical photopolymerization initiator may be used if necessary. As the free-radical photopolymerization initiator, any polymerization initiator that has been conventionally used for photopolymerizing a compound having an unsaturated double bond can be used in the present invention. Specific examples of the radical photopolymerization initiator include benzophenone, acetophenone, benzoin and benzoin methyl, ethyl, isopropyl, butyl or isobutyl ether, α- @ Or alpha-aminoaryl ketones and benzyl ketals. The radical photopolymerization initiator is 1 to 10% by weight, and preferably 2 to 5% by weight, relative to the water-soluble or emulsion-forming compound. When the above-mentioned compounds are mixed, in the case of high viscosity, a water-soluble organic solvent such as isopropyl alcohol (IPA) may be appropriately mixed to adjust the viscosity. In addition, when the emulsion is formed, a water-insoluble compound can be dissolved in a water-soluble organic solvent by a surfactant to emulsify it into an emulsion. Water-soluble organic solvents such as ketone-based water-soluble organic solvents are, for example, methyl ethyl ketone, methyl isobutyl ketone, methyl butyl ketone, ethyl-29-200524991 based butyl ketone, cyclohexanone, isophor Ketones, etc. Examples of other water-soluble organic solvents include ethyl acetate, butyl acetate, isobutyl acetate, isopropyl acetate, second butyl acetate, ethylene glycol monomethyl ether, and ethylene glycol monoethyl acetate. ; Acetate solvents such as ether, ethylene glycol monobutyl ether; ethanol, n-propanol, isopropanol, n-butanol, isobutanol, second butyl alcohol, third butyl alcohol, n-pentyl Alcohol solvents such as alcohol, isoamyl alcohol, second pentyl alcohol, third pentyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, butylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Glycol ether solvents such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol monomethyl ether, and diethylene glycol monobutyl ether; dioxane, dimethyl dioxane, etc. Ether-based solvents. In particular, glycol ether solvents are the most suitable solvents because they have good compatibility with water and other organic solvents and can dissolve organic solvent-soluble resins or other additives well. In the radiation-curable conductive composition of the present invention, a dispersant may be used in order to stabilize the emulsion. Dispersants include nonionic surfactants, cationic surfactants, anionic surfactants, etc., but for polyaniline and / or sulfonated polyaniline, they are bonded to a sulfonic acid group and / or its alkali metal salt group. Among the conjugated polyester φ resins or polythiophene aqueous solutions in the presence of polyanions, nonionic surfactants are particularly preferred. The amount of the dispersant used is 0.5 to 5% by weight, and preferably 1 to 3% by weight based on the radiation-curable conductive composition. However, due to the ionic nature of the organic conductive polymer used, when the photosensitizer or the like is ionic, the organic conductive polymer may aggregate, and may cause sinking. After careful research, the results clearly understood that by reducing the mixing ratio of the photosensitizer, no aggregation would occur. Ionic cationic light -30- 200524991 The mixing ratio of the polymerization initiator is 3% or less relative to other solid components. The radiation-curable conductive composition of the present invention is applied to a substrate in an emulsion type. The solid content concentration of the composition at the time of coating is not particularly limited, but is 0.5 to 50% by weight, preferably 1 to 30% by weight. The substrate required for coating is not particularly limited, but it is usually glass, film, or vinyl. In particular, films made of thermoplastic resins such as glass or polyester, nylon, polypropylene, polyethylene, etc., and organic solvents such as aromatic polyamines, polyimides, imines, and polyimides may be used. Films made of soluble resins are preferred. As a method for coating the conductive composition of the present invention on the surface of the substrate, for example, a grooved roll coating method, a reverse roll coating method, a knife coating method, a dip coating method, a spin coating method, and the like are known. The method of forming a coating film is not specifically limited. The formed coating film is heated and dried at a suitable temperature, and then irradiated with radiation, such as ultraviolet rays, to harden the coating film. Thereby, a conductive cured film is formed on the surface of the substrate. Heat drying is usually performed at a temperature of 50 to 200 ° C for about 10 to 300 seconds. In addition, the radiation system may be any of ultraviolet rays, far ultraviolet rays, X-rays, and electron rays. However, generally speaking, ultraviolet rays are preferable in terms of the versatility of the device. The amount of radiation exposure is not particularly limited as long as the coating film is hardened. When using ultraviolet rays as the radiation, although the amount varies depending on the composition and film thickness of the composition used, the irradiation dose is usually 1,000 to 20,000 mJ / cm2, preferably 5,000 to 5,000 mJ / cm2 about. ADVANTAGE OF THE INVENTION The conductive composition of the present invention can form a film having transparency, excellent solvent resistance, 200524991, high surface hardness, and high conductivity even at low humidity. For example, it is preferably used as an antistatic film. Best Mode for Carrying Out the Invention The following examples are used to explain the details in detail, but the present invention is not limited to the following examples. In the following, unless otherwise specified,% means% by weight. [Example 1] As a conductive material, an aqueous dispersion of polyethylene-dioxythiophene colloid (polyethylene-dioxythiophene) containing polystyrenesulfonic acid (solid content 1.2%) as a dopant was used Solid content of 2%). In addition, polypropylene glycol monomethyl ether was mixed with a urethane acrylate aqueous emulsion (EM90 manufactured by Arakawa Chemical Industries, Ltd., with a solid content of 40%) to prepare a 10% urethane acrylate emulsion solution. To this solution, a 10% polypropylene glycol monomethyl ether emulsion solution of a diglycerol polyglycidyl ether of a polyfunctional diol-based epoxy compound was added, and mixed to obtain a base solution having a solid content of 10%. Then, 2% of a cationic photopolymerization initiator (Irgacure 250, manufactured by Ciba-Geigy) and 3% of a radical photopolymerization initiator (Irgacure 184, manufactured by Ciba-Geigy) are added to the solid content of the base solution, and After mixing, the polythiophene colloidal solution was added with stirring of the disperser to adjust the solid content concentration of the organic conductive material to 10% of the solid content of the base solution. After the addition, the dispersion was stirred for 1.5 hours. The emulsion solution was cloudy and no separation of components was observed. This solution was coated on a PET (polyethylene terephthalate) film using a coater with a gap of 10 μm, dried at 10 ° C., and then irradiated with a UV irradiation device at 1,000 mJ in 200524991. The coating film is hardened to form a hardened film (hard coating). The surface resistance of the obtained hardened film is 0.2 to 0.5 megaohms, and the hardened film is transparent. The light transmittance of the obtained film is measured according to the following measurement method. Rate, heat resistance 'adhesiveness, surface hardness. The results are shown in Table 1. (Light transmittance) Measured with COH 3 00 A manufactured by Nippon Denshoku Co., Ltd. Hard coating made from PET' is regarded as PET-containing light transmission (Heat resistance test) After holding in an oven at 80 ° C for 1000 hours, measure the resistance of the film 値 'to investigate the change in resistance before the heat resistance test. (Adhesion test) Use a cutter on the surface of the hard coating to 100 squares with Inimx 1 mm flaws were obtained. The squares were affixed with Silo tape (registered trademark; manufactured by Nichiban Co., Ltd.) No. 405. The Silo tape was peeled off after 30 seconds. Observe the number of squares with defective edges. 100 squares The number is 0, the number of defective cells is △, and the number of peeled cells is X. (Surface hardness) The surface hardness test is performed by the field pencil hardness test (pencil scratch test). That is, the surface hardness system In order to produce the hard-coated film, the test pencil specified in JIS-S_6006 was used, and the pencil hardness evaluation method according to JIS-K-5400 according to JIS-K-5400 was not seen under a load of 9.7N. [Example 2] Instead of a polyfunctional diol-based epoxy compound, a diglycerin polyglycidyl ether-33-200524991 10% polypropylene glycol monomethyl ether solution was used, and a polyfunctional diol-based epoxy compound (Gongrong 80MF) 10% polypropylene glycol monomethyl ether solution was prepared in the same manner as in Example 1 to produce a radiation-curable conductive composition. In the same manner as in Example 1, the radiation-curable conductive composition was manufactured. The composition is coated on a PET film, dried at 100 ° C, and then irradiated with a UV irradiation device at an irradiation amount of 1,000 mJ to harden the coating film to form a hardened film. The surface resistance of the obtained film is 0 · 8 1.3MΩ, the hardened film is transparent. The light transmittance, heat resistance, adhesion, and surface hardness of the obtained film were measured in the same manner as in Example 1. The results are shown in Table 1. [Example 3] Except for use Centi? -Tri well (manufactured by Sanwa Chemical) instead of 11 ^ & € 11 ^ 250 as a cationic photopolymerization initiator, was carried out in the same manner as in Example 1 to produce a radiation-hardening conductive composition. Use and implementation In the same manner as in Example 1, a radiation-curable conductive composition was coated on a PET film, dried at 10 ° C., and then irradiated with an ultraviolet irradiation device at an irradiation amount of 1,000 mJ to harden the coating film. To form a hardened film. The obtained film had a surface resistance of 1.0 to 1.5 MΩ, and the cured film was transparent. In the same manner as in Example 1, the obtained film was measured for light transmittance, heat resistance, adhesion, and surface hardness. The results are shown in Table 1. [Example 4] WPAG-145 (manufactured by Wako Pure Chemical Industries; bis (cyclohexylsulfonyl) diazomethane) was used instead of Irgacure 250 as a cationic photopolymerization initiator. Radiation-curable conductive composition. The radiation-curable conductive composition was coated on a PET film-34-200524991 by the same method as in Example 1, and dried in a lotion, and then irradiated with an ultraviolet irradiation device at an irradiation amount of 1000 ^^ , And the coating film is hardened to form a hardened film. The obtained film had a surface resistance of 0.5 to 0.7 MΩ, and the cured film was transparent. The light transmittance, heat resistance, adhesiveness, and surface hardness of the obtained film were measured in the same manner as in Example 1. The results are shown in Table 1. [Example 5] A 10% solution of a urethane acrylate produced by mixing polypropylene glycol monomethyl ether instead of a urethane acrylate aqueous emulsion (EM90 manufactured by Arakawa Chemical Industries, Ltd., with a solid content of 40%) was used. Epoxy ester (80MFA manufactured by Kyoeisha Chemical Co., Ltd.) is a 10% epoxy ester solution prepared by mixing polypropylene glycol monomethyl ether, and WPAG-170 (manufactured by Wako Pure Chemical Industries; bis (third butylsulfonyl)) Diazomethane) This radiation-curable conductive composition was coated on a PET film in the same manner as in Example 1 except that Irgacure 250 was used as a cationic photopolymerization initiator, and dried at 100 ° C. The ultraviolet irradiation device irradiates at an irradiation amount of 100 mJ to harden the coating film to form a hardened film. The obtained film had a surface resistance of 0.3 to 0.8 MΩ, and the cured film was transparent. The light transmittance, heat resistance, adhesiveness, and surface hardness of the obtained film were measured in the same manner as in Example 1. The results are shown in Table 1. [Example 6] A 10% solution of a urethane acrylate produced by mixing polypropylene glycol monomethyl ether instead of a urethane acrylate aqueous emulsion (EM90 manufactured by Arakawa Chemical Industries, Ltd., with a solid content of 40%) was used. Epoxy ester (80MFA manufactured by Kyoeisha Chemical Co., Ltd.) was mixed with polypropylene glycol monomethyl ether to produce a 10% solution of an epoxy ester, and the same procedure was performed as in Example 1 of 200524991 to produce a radiation-hardening conductive composition. This radiation-curable conductive composition was coated on a PET film by the same method as in Example 1, and dried at 100 ° C, and then irradiated with an ultraviolet irradiation device at an irradiation amount of 1,000 mJ to harden the coating film. To form a hardened film. The obtained film had a surface resistance of 0.3 to 0.8 MΩ, and the cured film was transparent. The light transmittance, heat resistance, adhesion, and surface hardness of the obtained film were measured in the same manner as in Example 1. The results are shown in Table 1. [Example 7] As a conductive material, an aqueous dispersion of polyethylene-dioxythiophene colloid (polyethylene-dioxythiophene) containing polystyrenesulfonic acid (solid content 1.2%) as a dopant was used Solid content of 2%). In addition, IPA (isopropyl alcohol) was mixed with a urethane acrylate aqueous emulsion (EM90, 40% manufactured by Arakawa Chemical Industries) to prepare a 10% urethane acrylate emulsion solution. A 10% IPA (isopropyl alcohol) solution of a diglycerin polyglycidyl ether of a polyfunctional diol-based epoxy compound was mixed in this solution to obtain a basic solution having a solid content of 10%. Then, 2% of a photocationic polymerization agent WPAG-199 (manufactured by Wako Pure Chemical Industries; bis (p-toluenesulfonyl) diazomethane) and 3% of free radical light with respect to the solid content of the emulsion of the base solution were mixed. Polymerization initiator (11 ^ 3 ^ 1 ^ 184, manufactured by Ciba-Geigy), and the above polythiophene colloidal solution was added under stirring of a disperser to adjust the solid content concentration of the organic conductive material to the solid of the above-mentioned base solution After adding 10% of the ingredients, the mixture was stirred for 1.5 hours with a disperser. The emulsified solution was cloudy, and no separation of components was seen. This solution was coated on a PET (polyethylene terephthalate) 200524991 film using a coater with a gap of 10 μm, dried at 100 ° C, and then irradiated with an ultraviolet irradiation device at an irradiation amount of 1,000 mJ. , And the coating film is hardened to form a hardened film. The surface resistance of the obtained hardened film was 0.5 to 0.7 MQ, and the hardened film system was transparent. The light transmittance, heat resistance, adhesiveness, and surface hardness of the obtained film were measured in the same manner as in Example 1. The results are shown in Table 1. [Example 8] As a conductive material, an aqueous dispersion of polyethylene-dioxythiophene colloid (polyethylene-dioxythiophene) containing polystyrenesulfonic acid (solid content 1.2%) as a dopant was used Solid content of 2%). In addition, methyl ethyl ketone was mixed with a urethane acrylate aqueous emulsion (EM90, 40% manufactured by Arakawa Chemical Industries) to prepare a 10% urethane acrylate emulsion solution. To this solution, a 10% methyl ethyl ketone solution of diglycerin polyglycidyl ether of a polyfunctional diol-based epoxy compound was added and mixed to obtain a basic solution having a solid content of 10%. Then, 2% photocationic polymerization agent (WPAG-145, manufactured by Wako Pure Chemical Industries, Ltd.) and 3% radical photopolymerization initiator (Irgacure 184, Ciba-Geigy) are added and mixed with respect to the solid content of the base solution. Company), and added the polythiophene colloidal solution under stirring of the disperser to adjust the solid content concentration of the organic conductive material to 10% of the solid content of the above-mentioned base solution. After the addition, stir for 1.5 hours with the disperser . This solution was coated on a PET (polyethylene terephthalate) film using a coater with a gap of 10 μm, dried at 100 ° C, and then irradiated with an ultraviolet irradiation device at an irradiation amount of 1,000 mJ to make the coating film. Hardened to form a hardened film. The surface resistance of the obtained hardened film was 0.5 to 0.7MQ, and the hardened film system was transparent. In the same manner as in Example 1, the light transmittance, heat resistance, adhesion, and surface hardness of the film obtained in the amount of 200524991 were measured. The results are shown in Table 1. Table 1

透光率(%) 耐熱性 密接性 表面硬度 實施例1 85 電阻値無變化 〇 2H 實施例2 83 電阻値無變化 〇 2H 實施例3 84 電阻値無變化 〇 2H 實施例4 84 電阻値無變化 〇 2H 實施例5 84 電阻値無變化 〇 2H 實施例6 85 電阻値無變化 〇 2H 實施例7 85 電阻値無變化 〇 2H 實施例8 83 電阻値無變化 〇 2H 【實施例9】 代替含有聚苯乙烯磺酸當作摻雜物的聚乙烯-二氧基噻吩 膠體的水性分散液,使用就相對於100重量份的聚苯胺而言含 有3 00重量份經磺酸基及/或其之鹼金屬鹽基所鍵結的水溶性 或水分散性共聚合聚酯之聚苯胺及/或磺化聚苯胺乳液溶液當 作作爲導電性材料,以外係與實施例1同樣地作,以製造放射 線硬化型導電性組成物。使用間隙爲1 Ομιη的塗佈機將該溶液 塗佈在玻璃板上,於1 〇〇°C乾燥,然後以紫外線照射裝置在 1000mJ的照射量作照射,而使塗膜硬化,以形成硬化被膜。 所得到的硬化被膜之表面電阻爲1 · 0〜1 · 5MQ,硬化被膜皆爲透 明的。 【實施例1 0】 作爲導電性材料,使用含有聚苯乙烯磺酸(固體成分量 200524991 1.2%)當作摻雜物的聚乙烯-二氧基噻吩膠體的水性分散液(聚 乙烯-二氧基噻吩的固體成分量2%)。另外,於甲基丙烯酸聚 乙二醇單乙烯醚水性乳液中混合乙二醇二乙烯醚,以製作10% 溶液。於該溶液中混合乳液型多官能二醇系環氧化合物的二 甘油聚縮水甘油基醚之10%丙二醇單甲醚乳液溶液,以得到 具有10%固體成分的基礎溶液。然後,添加及混合就相於該基 礎溶液的固體成分量而言3 %光陽離子聚合劑(三和化學製, MP-三阱),再於分散機的攪拌下添加上述聚噻吩膠體溶液, 以將有機導電性材料的固體成分濃度調整成爲上述基礎溶液 之固體成分的10%,於添加後再以分散機攪拌1.5小時。其之 乳化溶液爲白濁狀,並沒有見到成分的分離。使用間隙爲1 〇μπι 的塗佈機將該溶液塗佈在玻璃板上,於1 〇〇°C乾燥,然後以紫 外線照射裝置在l〇〇〇mJ的照射量作照射,而使塗膜硬化’以 形成硬化被膜。所得到的硬化被膜之表面電阻爲OJd.OMQ ’ 硬化被膜係爲透明的。 【實施例11】 作爲導電性材料,使用含有聚苯乙烯磺酸(固體成分量 1.2%)當作摻雜物的聚乙烯-二氧基噻吩膠體的水性分散液(聚 乙烯-二氧基噻吩的固體成分量2%)。另外,以水稀釋聚乙烯 縮丁醛水性乳液,以製作固體成分10%的溶液。於該溶液中混 合多官能二醇系環氧化合物的二甘油聚縮水甘油基醚之10% 乳液型聚丙二醇單甲醚溶液,而得到具有10 %固體成分的基礎 溶液。然後,混合就相對於該基礎溶液的固體成分量而言3 % 200524991 光陽離子聚合劑(三和化學製,MP-三阱),再於分散機的攪拌 下添加上述聚噻吩膠體溶液,以將有機導電性材料的固體成 分濃度調整成爲上述基礎溶液之固體成分的1 0%,於添加後再 以分散機攬拌1.5小時。使用間隙爲ΐ〇μιη的塗佈機將該溶液塗 佈在玻璃板上,於100°C乾燥後,以紫外線照射裝置在1000mJ 的照射量作照射,而使塗膜硬化,以形成硬化被膜。所得到 的硬化被膜之表面電阻爲0.5〜1.0MQ。 比較例1 作爲導電性材料,使用含有聚苯乙烯磺酸(固體成分量 1.2%)當作摻雜物的聚乙烯-二氧基噻吩膠體的水性分散液(聚 乙烯-二氧基噻吩的固體成分量2%)。另外,將胺甲酸酯丙烯 酸酯溶解在IPA中,以製作非乳液型胺甲酸酯丙烯酸酯(共榮 社化學社製;3061(主成分;異戊四醇三丙烯酸酯異佛爾酮二 異氰酸酯胺甲酸酯預聚物))1 0%溶液。於該溶液中混合多官能 二醇系環氧化合物的二甘油聚縮水甘油基醚之10%聚丙二醇 單甲醚溶液,以得到具有固體成分1 0%的基礎溶液。然後, 混合就相對於基礎溶液的固體成分量而言3 %光陽離子聚合劑 (三和化學製,MP-三畊),再於分散機的攪拌下添加上述聚噻 吩膠體溶液,以將有機導電性材料的固體成分濃度調整成爲 上述基礎溶液之固體成分的10%,於添加後再以分散機攪拌 1· 5小時。使用間隙爲1〇μιη的塗佈機將該溶液塗佈在玻璃板 上,於1 〇〇°C乾燥,結果所形成的膜係白濁且發生龜裂。Light transmittance (%) Heat resistance Adhesive surface hardness Example 1 85 No change in resistance 0 2H Example 2 83 No change in resistance 0 2H Example 3 84 No change in resistance 0 2H Example 4 84 No change in resistance 〇2H Example 5 84 No change in resistance 〇2H Example 6 85 No change in resistance 〇2H Example 7 85 No change in resistance 〇2H Example 8 83 No change in resistance 〇2H [Example 9] Instead of containing polymer An aqueous dispersion of a polyethylene-dioxythiophene colloid with styrene sulfonic acid as a dopant, containing 300 parts by weight of a sulfonic acid group and / or its base with respect to 100 parts by weight of polyaniline. A polyaniline and / or sulfonated polyaniline emulsion solution of a water-soluble or water-dispersible copolymerized polyester bonded to a metal salt base was used as a conductive material, and the rest was made in the same manner as in Example 1 to produce radiation hardening. Type conductive composition. This solution was coated on a glass plate using a coater with a gap of 10 μm, dried at 1000 ° C, and then irradiated with an ultraviolet irradiation device at an irradiation amount of 1000 mJ to harden the coating film to form a hardened film. . The surface resistance of the obtained hardened film was 1 · 0 ~ 1 · 5MQ, and the hardened film was transparent. [Example 10] As a conductive material, an aqueous dispersion of polyethylene-dioxythiophene colloid (polyethylene-dioxygen) containing polystyrenesulfonic acid (solid content 200524991 1.2%) as a dopant was used The solid content of thiothiophene is 2%). In addition, ethylene glycol divinyl ether was mixed with a polyethylene glycol methacrylate aqueous emulsion to prepare a 10% solution. A 10% propylene glycol monomethyl ether emulsion solution of diglycerol polyglycidyl ether of an emulsion type multifunctional diol epoxy compound was mixed in this solution to obtain a base solution having a solid content of 10%. Then, a 3% photocationic polymerizer (manufactured by Sanwa Chemical Co., Ltd., MP-Tritrap) was added and mixed with respect to the solid content of the base solution, and the above polythiophene colloid solution was added with stirring of a disperser to The solid content concentration of the organic conductive material was adjusted to 10% of the solid content of the base solution, and the mixture was stirred for 1.5 hours with a disperser after the addition. The emulsified solution was cloudy, and no separation of components was observed. This solution was applied on a glass plate using a coater with a gap of 10 μm, dried at 1000 ° C, and then irradiated with an ultraviolet irradiation device at an irradiation amount of 1,000 mJ to harden the coating film. 'To form a hardened film. The surface resistance of the obtained hardened film was OJd.OMQ 'The hardened film was transparent. [Example 11] As a conductive material, an aqueous polyethylene-dioxythiophene colloid aqueous dispersion (polyethylene-dioxythiophene) containing polystyrenesulfonic acid (solid content 1.2%) as a dopant was used Solid content of 2%). In addition, an aqueous polyethylene butyral emulsion was diluted with water to prepare a 10% solids solution. A 10% emulsion type polypropylene glycol monomethyl ether solution of a diglycerol polyglycidyl ether of a polyfunctional diol-based epoxy compound was mixed with this solution to obtain a base solution having a solid content of 10%. Then, 3% of the solid content of the base solution was mixed. 200524991 Photocationic polymerizer (manufactured by Sanwa Chemical, MP-Tritrap), and the above polythiophene colloidal solution was added with stirring of a disperser, so that The solid content concentration of the organic conductive material was adjusted to 10% of the solid content of the above-mentioned base solution, and it was stirred for 1.5 hours with a disperser after the addition. This solution was coated on a glass plate using a coater with a gap of 100 μm, dried at 100 ° C, and irradiated with an ultraviolet irradiation device at an irradiation amount of 1000 mJ to harden the coating film to form a hardened film. The surface resistance of the obtained cured film was 0.5 to 1.0 MQ. Comparative Example 1 As a conductive material, an aqueous dispersion of polyethylene-dioxythiophene colloid containing polystyrenesulfonic acid (solid content of 1.2%) as a dopant (solid of polyethylene-dioxythiophene) was used. Ingredient content 2%). In addition, urethane acrylate was dissolved in IPA to produce a non-emulsion urethane acrylate (manufactured by Kyoeisha Chemical Co., Ltd .; 3061 (main component; isopentaerythritol triacrylate isophorone di) Isocyanate urethane prepolymer)) 10% solution. A 10% polypropylene glycol monomethyl ether solution of a diglycerol polyglycidyl ether of a polyfunctional diol-based epoxy compound was mixed in the solution to obtain a base solution having a solid content of 10%. Then, 3% of a photocationic polymerizer (manufactured by Sanwa Chemical Co., Ltd., MP-Sanken) relative to the solid content of the base solution was mixed, and the above polythiophene colloidal solution was added under stirring by a disperser to conduct organic conductivity The solid content concentration of the sexual material was adjusted to 10% of the solid content of the above-mentioned base solution, and the mixture was stirred for 1.5 hours with a disperser after the addition. This solution was applied to a glass plate using a coater with a gap of 10 μm, and dried at 1000 ° C. As a result, the formed film was cloudy and cracked.

Claims (1)

200524991 十、申請專利範圍: 1.一種放射線硬化型導電性組成物,包括有機導電性聚合物、 水溶性或水性乳液形成性化合物、水溶性或水性乳液形成性 的環氧或氧雜環丁烷化合物、感光劑、及水及/或水溶性有 機溶劑。 2 ·如申請專利範圍第1項之放射線硬化型導電性組成物,其中 該水溶性或水性乳液形成性化合物係胺甲酸酯丙烯酸酯化 合物。 3·如申請專利範圍第2項之放射線硬化型導電性組成物,其中 該胺甲酸酯丙烯酸酯化合物係爲具有丙烯醯基的水溶性或 水性乳液形成性多官能丙烯酸化合物。 4·如申請專利範圍第2項之放射線硬化型導電性組成物,其中 該胺甲酸酯丙烯酸酯化合物係(A)含羥基的丙烯酸酯、(B)有 機聚異氰酸酯類、(C)分子內含有至少1個羥基的聚乙二醇 類、及(D)分子內含有至少1個羥基的脂肪酸所成的反應生成 物經由(E)3級胺中和而成的該反應生成物之中和鹽的聚胺 甲酸酯丙烯酸酯。 5·如申請專利範圍第丨項之放射線硬化型導電性組成物,其中 水溶性或水性乳液形成性化合物係環氧丙烯酸酯化合物。 6·如申請專利範圍第5項之放射線硬化型導電性組成物,其中 環氧丙烯酸酯化合物係爲通式(I)所示的化合物, R R I I ch2=c~c-o-ch2-ch-ch2-o-x—CH2-CH-CH2-〇-C-C=CH2 II I I 0 OH OH 0 200524991 (式中’ R表示氫原子或甲基,X表示_CH2CH20-、 -[CH2CH(CH3)0]k- . -[CH2CH(OH)CH2〇]m- '200524991 10. Scope of patent application: 1. A radiation-hardening conductive composition, including an organic conductive polymer, a water-soluble or aqueous emulsion-forming compound, and a water-soluble or aqueous emulsion-forming epoxy or oxetane Compounds, sensitizers, and water and / or water-soluble organic solvents. 2. The radiation-curable conductive composition according to item 1 of the application, wherein the water-soluble or aqueous emulsion-forming compound is a urethane acrylate compound. 3. The radiation-curable conductive composition according to item 2 of the patent application, wherein the urethane acrylate compound is a water-soluble or aqueous emulsion-forming polyfunctional acrylic compound having an acrylamide group. 4. The radiation-curable conductive composition according to item 2 of the application, wherein the urethane acrylate compound is (A) a hydroxyl-containing acrylate, (B) an organic polyisocyanate, and (C) in the molecule. The reaction product formed by polyethylene glycols containing at least one hydroxyl group and (D) fatty acids containing at least one hydroxyl group in the molecule is neutralized by the reaction product neutralized by (E) a tertiary amine. Polyurethane acrylate of salt. 5. The radiation-curable conductive composition according to item 丨 of the application, wherein the water-soluble or aqueous emulsion-forming compound is an epoxy acrylate compound. 6. The radiation-curable conductive composition according to item 5 of the application, wherein the epoxy acrylate compound is a compound represented by the general formula (I), and RRII ch2 = c ~ co-ch2-ch-ch2-ox —CH2-CH-CH2-〇-CC = CH2 II II 0 OH OH 0 200524991 (where 'R represents a hydrogen atom or a methyl group, and X represents _CH2CH20-,-[CH2CH (CH3) 0] k-.-[ CH2CH (OH) CH2〇] m- ' ,k及m表示1〜4的整數)。 7·如申請專利範圍第6項之放射線硬化型導電性組成物,其中 通式(I)所表示的環氧丙烯酸酯化合物係爲通式(II)之化合 物: CH2=CH-C-O-CH2-CH-CH2-0-CH2-CH-CH2-0-CH2-CH-CH2-0-C-CH=:CH2 0 OH OH OH ο ——(II)。 8 ·如申請專利範圍第1項之放射線硬化型導電性組成物,其中 水溶性或水性乳液形成性化合物係含有乙烯醚基的丙烯酸 化合物。 9·如申請專利範圍第丨至8項中任一項之放射線硬化型導電性 組成物,其中有機導電性聚合物係選自於聚苯胺、聚苯胺衍 生物、聚噻吩及聚噻吩衍生物的至少一種。 -42- 200524991 10·如申請專利範圍第1至8項中任一項之放射線硬化型導電性 組成物,其中有機導電性聚合物係由聚噻吩或聚噻吩衍生 物及聚苯乙烯磺酸所構成。 1 1 ·如申請專利範圍第1至8項中任一項之放射線硬化型導電性 組成物,其中聚苯胺或磺化聚苯胺係爲由磺酸基及/或其之 鹼金屬鹽基所鍵結的聚酯樹脂,或是聚噻吩或聚噻吩衍生 物在聚陰離子的存在下,所水溶性或水性分散化的有機導 電性聚合物。 12.如申請專利範圍第1至1 1項中任一項之放射線硬化型導電 性組成物,其中感光劑係自由基聚合感光劑及/或光陽離子 聚合感光劑。 13·如申請專利範圍第1至12項中任一項之放射線硬化型導電 性組成物,其中水溶性或水性乳液形成性的環氧化合物係 含有多官能的縮水甘油基化合物。, K and m represent integers from 1 to 4). 7. The radiation-curable conductive composition according to item 6 of the application, wherein the epoxy acrylate compound represented by the general formula (I) is a compound of the general formula (II): CH2 = CH-CO-CH2- CH-CH2-0-CH2-CH-CH2-0-CH2-CH-CH2-0-C-CH =: CH2 0 OH OH OH ο (II). 8. The radiation-curable conductive composition according to item 1 of the application, wherein the water-soluble or aqueous emulsion-forming compound is an acrylic compound containing a vinyl ether group. 9. The radiation-hardenable conductive composition according to any one of claims 1 to 8, wherein the organic conductive polymer is selected from the group consisting of polyaniline, polyaniline derivatives, polythiophenes, and polythiophene derivatives. At least one. -42- 200524991 10 · The radiation-hardenable conductive composition according to any one of claims 1 to 8, wherein the organic conductive polymer is made of polythiophene or a polythiophene derivative and polystyrenesulfonic acid. Make up. 1 1 · The radiation-curable conductive composition according to any one of claims 1 to 8 in which the polyaniline or sulfonated polyaniline is bonded by a sulfonic acid group and / or an alkali metal salt thereof The bound polyester resin or polythiophene or polythiophene derivative is a water-soluble or water-dispersible organic conductive polymer in the presence of a polyanion. 12. The radiation-curable conductive composition according to any one of claims 1 to 11 of the scope of application for a patent, wherein the photosensitizer is a radical polymerization photosensitizer and / or a photocationic polymerization photosensitizer. 13. The radiation-curable conductive composition according to any one of claims 1 to 12, wherein the water-soluble or aqueous emulsion-forming epoxy compound contains a polyfunctional glycidyl compound. -43- 200524991 七、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: 〇 J \ \\ 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:-43- 200524991 VII. Designated Representative Map: (1) The designated representative map in this case is: None. (2) Brief description of the component symbols of this representative figure: 〇 J \ \\ 8. If there is a chemical formula in this case, please disclose the chemical formula that can best show the characteristics of the invention:
TW93137936A 2003-12-09 2004-12-08 Radiation-curing conductive composition TW200524991A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003409803A JP2005170996A (en) 2003-12-09 2003-12-09 Radiation curable conductive composition

Publications (1)

Publication Number Publication Date
TW200524991A true TW200524991A (en) 2005-08-01

Family

ID=34674911

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93137936A TW200524991A (en) 2003-12-09 2004-12-08 Radiation-curing conductive composition

Country Status (3)

Country Link
JP (1) JP2005170996A (en)
TW (1) TW200524991A (en)
WO (1) WO2005056686A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507448B (en) * 2012-12-12 2015-11-11 可隆股份有限公司 Transparent polyimide substrate and method for producing the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4689222B2 (en) * 2004-09-22 2011-05-25 信越ポリマー株式会社 Conductive coating film and method for producing the same
JP5457181B2 (en) 2006-08-21 2014-04-02 アグフア−ゲヴエルト UV-photopolymerizable composition for the production of organic conductive layers, patterns or prints
JP5210545B2 (en) * 2007-05-21 2013-06-12 日東電工株式会社 Water-insoluble conductive polyaniline composition and film thereof
US20110065852A1 (en) * 2008-06-18 2011-03-17 Nippon Carbide Industries Co., Inc. Polyfunctional vinyl ether and resin composition containing same
JP5460008B2 (en) * 2008-09-24 2014-04-02 信越ポリマー株式会社 Conductive polymer solution, conductive coating film and input device
JP5460007B2 (en) * 2008-09-24 2014-04-02 信越ポリマー株式会社 Conductive polymer solution, conductive coating film and input device
US20100270055A1 (en) * 2009-04-27 2010-10-28 Air Products And Chemicals, Inc. Electrically Conductive Films Formed From Dispersions Comprising Conductive Polymers and Polyurethanes
CN108841097A (en) 2013-02-15 2018-11-20 信越聚合物株式会社 Electroconductive polymer dispersion liquid and conductive film
TWI512046B (en) * 2013-02-15 2015-12-11 Shinetsu Polymer Co Hardened anti-charged organic polysiloxane composition and anti-charged polysiloxane film
JP6268026B2 (en) * 2014-03-31 2018-01-24 国立大学法人名古屋大学 Conductive polymer composition, conductive layer and conductor
CN103992728A (en) 2014-04-17 2014-08-20 京东方科技集团股份有限公司 Conductive material and preparation method thereof, color filter and making method thereof, and display device.
CN104263229B (en) * 2014-09-09 2016-05-18 广州申威新材料科技有限公司 The film build method of a kind of preparation method of antistatic UV coating and this antistatic UV coating
JP7269845B2 (en) * 2019-09-05 2023-05-09 信越ポリマー株式会社 Method for producing organic solvent dispersion of highly conductive composite, method for producing conductive film
TW202210542A (en) * 2020-09-02 2022-03-16 日商荒川化學工業股份有限公司 Active energy ray curable resin composition, cured film and film excellent in storage stability and can form a cured film having excellent antistatic properties, solvent resistance, and adhesion to a plastic substrate
JP7323947B2 (en) * 2021-06-11 2023-08-09 聚紡股▲ふん▼有限公司 Functional cloth and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19524132A1 (en) * 1995-07-03 1997-01-09 Bayer Ag Scratch-resistant conductive coatings
KR19990036323A (en) * 1995-08-11 1999-05-25 가따오까 료오 Crosslinkable Conductive Composition, Conductor and Formation Method Thereof
JP4003090B2 (en) * 1996-04-11 2007-11-07 東洋紡績株式会社 Conductive composition
JPH10176123A (en) * 1996-10-15 1998-06-30 Nitto Chem Ind Co Ltd Corrosuion-preventing composition containing soluble conductive polymer and method for preventing corrosion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507448B (en) * 2012-12-12 2015-11-11 可隆股份有限公司 Transparent polyimide substrate and method for producing the same

Also Published As

Publication number Publication date
JP2005170996A (en) 2005-06-30
WO2005056686A1 (en) 2005-06-23

Similar Documents

Publication Publication Date Title
TW200524991A (en) Radiation-curing conductive composition
KR101542634B1 (en) Adhesive, adhesive for optical member, and optical member with adhesive layer
TWI494403B (en) Adhesive, adhesive for optical component, optical component with adhesive layer, image display, active energy ray and/or heat hardening adhesive composite, adhesive composite
JP5298855B2 (en) Photosensitive resin composition and cured product thereof, and method for producing photosensitive resin
US8217096B2 (en) Photocurable pressure-sensitive adhesive composition
TWI419924B (en) An organic solvent dispersion of a conductive polymer / dopant, and a composition containing the dispersion
JP5808177B2 (en) Adhesive for optical member, optical part with adhesive layer, and image display device
JP5393393B2 (en) Adhesive composition and pressure-sensitive adhesive, and pressure-sensitive adhesive for optical members, and optical member with a pressure-sensitive adhesive layer obtained using the same
KR20100100778A (en) Pressure-sensitive adhesive, pressure-sensitive adhesive for optical member, optical member, and perssure-sensitive adhesive for temporary surface protection
TWI613282B (en) Sealant for liquid crystal display element, upper and lower conductive material, liquid crystal display element, and method for producing liquid crystal display element sealing agent
JP2010065217A (en) Self-adhesive composition for optical member, self-adhesive for optical member, and optical member with self-adhesive layer obtained by using the same
JP6793474B2 (en) Sealing material for liquid crystal dripping method, liquid crystal display panel and manufacturing method of liquid crystal display panel
WO2010113287A1 (en) Photosensitive electrically conductive paste and electrode pattern
JP5525147B2 (en) Adhesive composition, adhesive layer and adhesive sheet
TW201502189A (en) Solvent-free photocurable resin composition
JP2009173877A (en) Adhesive for optical member and optical member with adhesive layer
JP2011012240A (en) Quaternary cationic antistatic agent, antistatic composition and molded product containing the same
JP2016172796A (en) Active energy ray-polymerizable resin composition for stereolithography, and three-dimensional molded object
TW201728662A (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP7070839B2 (en) Hardened film forming composition, alignment material and retardation material
JP2005298624A (en) Conductive hard coat composition
KR102481090B1 (en) Resin composition for forming high refractive index cured film
KR20150052080A (en) Curable film-forming composition
KR20220105322A (en) Resin for photosensitive composition
TWI490248B (en) Radical polymerizable resin, radical polymerizable resin composition and cured article thereof