SE1400002A1 - Pressure vessels and ways to heat a gas in a pressure conduit - Google Patents

Pressure vessels and ways to heat a gas in a pressure conduit Download PDF

Info

Publication number
SE1400002A1
SE1400002A1 SE1400002A SE1400002A SE1400002A1 SE 1400002 A1 SE1400002 A1 SE 1400002A1 SE 1400002 A SE1400002 A SE 1400002A SE 1400002 A SE1400002 A SE 1400002A SE 1400002 A1 SE1400002 A1 SE 1400002A1
Authority
SE
Sweden
Prior art keywords
pressure vessel
gas
inner tube
tube
gap
Prior art date
Application number
SE1400002A
Other languages
Swedish (sv)
Inventor
Thomas Olsson
Original Assignee
Swerea Mefos Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swerea Mefos Ab filed Critical Swerea Mefos Ab
Priority to SE1400002A priority Critical patent/SE1400002A1/en
Publication of SE1400002A1 publication Critical patent/SE1400002A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/06Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
    • F24H3/08Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes
    • F24H3/081Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes using electric energy supply
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2250/00Electrical heat generating means
    • F24H2250/02Resistances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0052Details for air heaters
    • F24H9/0057Guiding means
    • F24H9/0063Guiding means in air channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/014Heaters using resistive wires or cables not provided for in H05B3/54
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Resistance Heating (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Man värmer strömmande trycksatt gas genom att leda den genom en spalt (18) mellan två koncentriska rör (16,17) i ett tryckkärl (11,12,13). Man värmer inre röret (17) med strålningsvärme inifrån och håller röret öppet mot gasens strömningsväg i tryckkärlet så att man får tryckutjämning mellan inre rörets insida och utsida utan att rörets är del av gasens strömningsväg.Flowing pressurized gas is heated by passing it through a gap (18) between two concentric tubes (16,17) in a pressure vessel (11,12,13). The inner tube (17) is heated with radiant heat from the inside and the tube is kept open against the gas flow path in the pressure vessel so that pressure equalization is obtained between the inside and outside of the inner tube without the tube being part of the gas flow path.

Description

och exv.få kolutfällning om gasen är en reducerande gas innehållande en H2 och/eller CO. Sandvik Kanthal APM rör (Ferritic iron-chromium-aluminium rör) är exempel på rör som kan användas. Uppfinningen definieras av patentkraven. and eg obtain carbon precipitation if the gas is a reducing gas containing an H2 and / or CO. Sandvik Kanthal APM pipes (Ferritic iron-chromium-aluminum pipes) are examples of pipes that can be used. The invention is defined by the claims.

Kort beskrivning av ritningarna Figur 1 visar i sektion en gasvärmare som exempel på uppfinningen.Brief description of the drawings Figure 1 shows in section a gas heater as an example of the invention.

Figur 2 visar förstorat inloppsdelen av värmaren visad i figur 1.Figure 2 shows an enlarged inlet part of the heater shown in figure 1.

Figur 3 visar förstorat utloppsdelen av värmaren visad i figur 1.Figure 3 shows an enlarged outlet part of the heater shown in figure 1.

Figur 4 motsvarar figur 2, men visar ett alternativt utförande.Figure 4 corresponds to figure 2, but shows an alternative embodiment.

Figur 5 motsvarar figur 2 och visar ett annat alternativt utförande.Figure 5 corresponds to Figure 2 and shows another alternative embodiment.

Beskrivning av visat exempel på uppfinningen Figurerna 1-3 visar en gasvärmare i form av ett tryckkärl vars yttermantel består av ett rör 11 med gavlar 12,13. Gaveln 12 kan bultas fast exempelvis mot en ledning eller direkt till ett reaktorkärl i en processindustri för att tillföra upphettad gas av högt tryck. Ingående processgas med högt tryck, exv. 100 bar, som ska värmas till hög temperatur, exv. 1000 grader Celsius, tillförs genom gaveln 13. Röret 11 är invändigt isolerat med en isolering 14 som är anpassad för den höga temperatur som ska uppnås. isoleringen kan exv. vara en keramisk isolering eller en fiberisolering. Olika avsnitt av röret 11 kan ha olika isolering anpassad efter temperaturen som ökar mot utloppet. isoleringen kan göras i skikt med olika egenskaper.Description of the example shown in the invention Figures 1-3 show a gas heater in the form of a pressure vessel whose outer jacket consists of a pipe 11 with ends 12,13. The end 12 can be bolted, for example, to a pipe or directly to a reactor vessel in a process industry to supply heated gas of high pressure. Incoming process gas with high pressure, e.g. 100 bar, which is to be heated to a high temperature, e.g. 1000 degrees Celsius, supplied through the end 13. The pipe 11 is internally insulated with an insulation 14 that is adapted for the high temperature to be achieved. the insulation can e.g. be a ceramic insulation or a fiber insulation. Different sections of the pipe 11 may have different insulation adapted to the temperature which increases towards the outlet. the insulation can be made in layers with different properties.

Inuti isoleringens hålrum 15 är två koncentriska rör 16,17 instuckna såsom bäst framgår av figurerna 2 och 3. Rörens övre ändar är tätande hopfogade , exv hopsvetsade eller hopbultade, och den bildade spalten 18 mellan rören har ett inlopp 19 genom gaveln 13 för gasen som ska värmas och, vilket bäst framgår av figur 2.Inside the insulation cavity 15, two concentric pipes 16, 17 are inserted as best seen in Figures 2 and 3. The upper ends of the pipes are sealingly joined, eg welded or bolted together, and the formed gap 18 between the pipes has an inlet 19 through the gas end 13 which should be heated and, as best shown in Figure 2.

Spalten 18 upprätthålls med ej visade styrklackar på inre röret. Spalten är öppen mot isoleringens hålrum 15 och mot det avsmalnande utloppet 20 från tryckkärlet som bildas av detta hålrum, vilket bäst framgår av figur 3. Det inre röret 17 har sluten ände 21 vid spaltens 18 utlopp 22. Rören 16,17 hålls på plats vid inloppet 19 och rören kan fritt expandera i längdled vid uppvärmning.The gap 18 is maintained with guide lugs (not shown) on the inner tube. The gap is open towards the cavity 15 of the insulation and towards the tapered outlet 20 from the pressure vessel formed by this cavity, which is best seen in figure 3. The inner pipe 17 has a closed end 21 at the outlet 22 of the gap 18. The pipes 16,17 are held in place at the inlet 19 and the pipes can freely expand longitudinally when heated.

Det inre röret 17 är öppet mot gaveln 13 och har elektriska element i form av värmespiraler 23,24 utmed sin längd. Elektriska elementen har sina elledningar 25- 28 tätande genomförda genom gaveln 13. Inre röret 17 värms således enbart med strålningsvärme inifrån och inre röret deltar inte i flödet genom gasvärmaren, vilket medför att elspiralerna inte utsätts för kemiska eller katalytiska reaktioner i så stor omfattning. Man kan minska reaktionsrisken ytterligare genom att ha en liten kontinuerlig tillförsel av skyddsgas till inre rörets insida. I figurerna 2 och 3 visas en tillförselledning 30 för skyddsgas som når ner mot inre rörets 17 slutna ände 21.The inner tube 17 is open to the end wall 13 and has electrical elements in the form of heating coils 23,24 along its length. The electrical elements have their electrical lines 25-28 sealed through the end 13. The inner tube 17 is thus heated only with radiant heat from inside and the inner tube does not participate in the flow through the gas heater, which means that the electrical coils are not exposed to chemical or catalytic reactions to such an extent. The risk of reaction can be further reduced by having a small continuous supply of shielding gas to the inside of the inner tube. Figures 2 and 3 show a supply line 30 for shielding gas which reaches down to the closed end 21 of the inner tube 17.

Mellan isoleringen 14 och yttre röret 16 finns en spalt 31 som ger tryckutjämning mellan inre rörets 17 insida och utsida eftersom inre rörets insida då blir öppen mot spaltutloppet 22 och därmed mot delen 32 av isoleringens hålrum 15, dvs öppet mot tryckkärlets utlopp 20. Delen 32 tar upp rörens 16,17 längdexpansion.Between the insulation 14 and the outer tube 16 there is a gap 31 which provides pressure equalization between the inside and outside of the inner tube 17 since the inside of the inner tube then becomes open towards the gap outlet 22 and thus towards the part 32 of the insulation cavity 15, i.e. open towards the pressure vessel outlet 20. Part 32 addresses the longitudinal expansion of the tubes 16.17.

Den första spiralen 23 sett i flödesriktningen har tätare lindning och större effekt än den andra spiralen 24 och spiralernas effekt kan varieras var för sig så att tillförda effekten per längdenhet rör minskar när gasen blir varmare Första delen av strömningsvägen kan exempelvis ha tre gånger så stor effekt per längdenhet som sista delen. Därigenom begränsas elspiralernas temperatur. Man kan ha fler än två zoner med olika effekt. Gasen som strömmar genom spalten 18 får genom uppvärmningen och tryckminskningen en stor volymökning. Man kan optimera tryckfallet och värmeöverföringen genom att ha varierande spalt utmed rörens längd.The first coil 23 seen in the flow direction has denser winding and greater power than the second coil 24 and the power of the coils can be varied individually so that the applied power per unit length of pipe decreases when the gas gets hotter. per unit of length as the last part. This limits the temperature of the electrical coils. You can have more than two zones with different effects. The gas flowing through the gap 18 has a large increase in volume due to the heating and pressure reduction. You can optimize the pressure drop and heat transfer by having varying gaps along the length of the pipes.

Figur 4 visar en alternativ utföringsform där en skiljevägg 34 tätar mellan tryckkärlsröret 11 och röret 16. I stället för att det inre röret 17 är i kommunikation med utloppssidan av gasens strömningsväg i tryckkärlet har det kommunikation med inloppssidan genom en öppning 35. l övrigt är utföringsformerna lika.Figure 4 shows an alternative embodiment where a partition wall 34 seals between the pressure vessel pipe 11 and the pipe 16. Instead of the inner pipe 17 being in communication with the outlet side of the gas flow path in the pressure vessel, it communicates with the inlet side through an opening 35. Otherwise, the embodiments are equal.

Figur 5 visar en annan alternativ utföringsform där tryckkärlsröret 11 har en fläns 36 som är direkt hopbultad med en fläns 37 på inloppsröret 38 för trycksatta gasen som ska värmas. Inre röret 17 är således öppet mot trycksatta inloppssidan av gasens strömningsväg i tryckkärlet. Spalten 18 har sitt inlopp 39. Endast en, 25, av elanslutningarna visas.Figure 5 shows another alternative embodiment where the pressure vessel pipe 11 has a flange 36 which is directly bolted together with a flange 37 on the inlet pipe 38 for the pressurized gas to be heated. The inner tube 17 is thus open towards the pressurized inlet side of the gas flow path in the pressure vessel. Column 18 has its inlet 39. Only one, 25, of the electrical connections is shown.

Tryckkärlet/gasvärmaren kan tillverkas i olika storlekar och som exempel på en typisk storlek kan nämnas att yttre röret 16 kan ha en längd av 3,5 m och en diameter på 140 mm och tryckkärlsröret 11 kan ha en ytterdiameter på 600 mm.The pressure vessel / gas heater can be manufactured in different sizes and as an example of a typical size it can be mentioned that the outer tube 16 can have a length of 3.5 m and a diameter of 140 mm and the pressure vessel tube 11 can have an outer diameter of 600 mm.

Claims (9)

PatentkravPatent claims 1. Sätt att värma en strömmande trycksatt gas i en ledning till hög temperatur genom att leda gasen genom en smal spalt (18) mellan två rör (16,17) monterade i ett tryckkärl (11,12,13), varvid man värmer det inre av rören (17) från insidan samt låter den uppvärmda gasen från spalten fritt strömma uti tryckkärlet och vidare till tryckkärlets utlopp (20) , kännetecknat av att man värmer det inre röret (17) inifrån med strålningsvärme från ett elektriskt element (23,24) och håller detta inre rör öppet mot gasens strömningsväg för tryckutjämning mellan röret insida och utsida utan att röret är del av gasens strömningsväg.A method of heating a flowing pressurized gas in a line to a high temperature by passing the gas through a narrow gap (18) between two pipes (16,17) mounted in a pressure vessel (11,12,13), heating it interior of the pipes (17) from the inside and allows the heated gas from the gap to flow freely out of the pressure vessel and further to the outlet of the pressure vessel (20), characterized in that the inner pipe (17) is heated from the inside with radiant heat from an electrical element (23,24 ) and keeps this inner tube open to the gas flow path for pressure equalization between the inside and outside of the tube without the tube being part of the gas flow path. 2. Sätt enligt patentkrav 1, kännetecknat av att man, sett i strömningsriktningen, värmer en första del av inre röret med högre effekt per längdenhet än man värmer en efterföljande del av röret.Method according to claim 1, characterized in that, seen in the flow direction, a first part of the inner tube is heated with a higher power per unit length than a subsequent part of the tube is heated. 3. Sätt enligt patentkrav 1 eller 2, kännetecknat av att man håller inre rörets ena ände (21) försluten och leder in skyddsgas mot den förslutna änden.Method according to Claim 1 or 2, characterized in that one end (21) of the inner tube is kept closed and protective gas is introduced towards the closed end. 4. Tryckkärl avsett att monteras som del i en trycksatt gasledning och anordnat för värmning av trycksatta strömmande gasen, innefattande två koncentriska rör (16,17) inuti tryckkärlet (11,12,13), ett inlopp (19,39) för trycksatt gas till spalten (18) bildad mellan rören, och ett utlopp (20) från tryckkärlet, varvid spalten (18) mellan rören har sitt utlopp (22) i tryckkärlet och inre röret (17 har en värmeenhet för att värma röret inifrån kännetecknat av att det inre av de koncentriska rören (17) är öppet mot gasens strömningsväg i tryckkärlet för tryckutjämning mellan inre rörets insida och utsida utan att röret är del av gasens strömningsväg och har ett elektriskt element (23,24) för värmning av röret med strålningsvärme inifrån.Pressure vessel intended to be mounted as part of a pressurized gas line and arranged for heating the pressurized flowing gas, comprising two concentric pipes (16,17) inside the pressure vessel (11,12,13), an inlet (19,39) for pressurized gas to the gap (18) formed between the tubes, and an outlet (20) from the pressure vessel, the gap (18) between the tubes having its outlet (22) in the pressure vessel and the inner tube (17 having a heating unit for heating the tube from the inside characterized in that it interior of the concentric pipes (17) is open to the gas flow path in the pressure vessel for pressure equalization between the inside and outside of the inner pipe without the pipe being part of the gas flow path and has an electrical element (23,24) for heating the pipe with radiant heat from inside. 5. Tryckkärl enligt patentkrav 4, kännetecknat av isoleringsmaterial (14) i tryckkärlet för att skydda tryckkärlsväggarna (11) mot hög temperatur.Pressure vessel according to claim 4, characterized by insulating material (14) in the pressure vessel to protect the pressure vessel walls (11) against high temperature. 6. Tryckkärl enligt patentkrav 4 eller 5, kännetecknat av inre rörets (17) ände (21) mot utloppet (20) itryckkärlet är försluten och dess ände mot inloppet är öppen.Pressure vessel according to claim 4 or 5, characterized by the end (21) of the inner tube (17) towards the outlet (20) in which the pressure vessel is closed and its end towards the inlet is open. 7. Tryckkärl enligt patentkrav 6; kännetecknat av en ledning (30) för skyddsgas som leder in i inre röret (17).Pressure vessel according to claim 6; characterized by a shielding gas conduit (30) leading into the inner tube (17). 8. Tryckkärl enligt patentkrav 5,kännetecknat av att en passage (31) längs det yttre av de koncentriska rören (16) håller inre röret (17) öppet mot utloppet (20) i tryckkärlet.Pressure vessel according to claim 5, characterized in that a passage (31) along the exterior of the concentric tubes (16) keeps the inner tube (17) open towards the outlet (20) in the pressure vessel. 9. Tryckkärl enligt patentkrav 5, kännetecknat av att passagen är en spalt (31) mellan isoleringen (14) och yttre röret (16).Pressure vessel according to Claim 5, characterized in that the passage is a gap (31) between the insulation (14) and the outer pipe (16).
SE1400002A 2013-01-02 2013-12-27 Pressure vessels and ways to heat a gas in a pressure conduit SE1400002A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE1400002A SE1400002A1 (en) 2013-01-02 2013-12-27 Pressure vessels and ways to heat a gas in a pressure conduit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE1300001 2013-01-02
SE1400002A SE1400002A1 (en) 2013-01-02 2013-12-27 Pressure vessels and ways to heat a gas in a pressure conduit
PCT/SE2013/051622 WO2014107132A1 (en) 2013-01-02 2013-12-27 Pressure vessel and method of heating a gas in a pressurised pipe

Publications (1)

Publication Number Publication Date
SE1400002A1 true SE1400002A1 (en) 2014-07-03

Family

ID=51062375

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1400002A SE1400002A1 (en) 2013-01-02 2013-12-27 Pressure vessels and ways to heat a gas in a pressure conduit

Country Status (6)

Country Link
US (1) US20150338126A1 (en)
EP (1) EP2941600B1 (en)
DK (1) DK2941600T3 (en)
ES (1) ES2672730T3 (en)
SE (1) SE1400002A1 (en)
WO (1) WO2014107132A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110966766A (en) * 2018-09-30 2020-04-07 青岛经济技术开发区海尔热水器有限公司 Control method of supercharged gas water heater and gas water heater
CN111121279B (en) * 2018-10-30 2021-11-02 宁波方太厨具有限公司 Heat exchanger for gas water heater
EP4038324A4 (en) * 2019-10-01 2023-10-25 Kanthal AB An electric gas heater device and a system of electric gas heater devices
SE546054C2 (en) * 2020-06-11 2024-04-30 Kanthal Ab Electric Gas Heater and a Method for Heating a gas

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1727584A (en) * 1927-08-23 1929-09-10 Robert A Carleton High-temperature fluid-heating apparatus
US1985280A (en) * 1931-09-12 1934-12-25 Nat Electric Heating Company I Electric fluid heater
US2026809A (en) * 1933-11-20 1936-01-07 Sperry H Winn Electric water heater
US2462746A (en) * 1947-05-12 1949-02-22 Inman Hollis Chubbuck Electric fluid heater
US2527013A (en) * 1947-10-17 1950-10-24 Bayard L Kjelgaard Infrared heater
FR1011445A (en) * 1949-02-10 1952-06-23 Basf Ag Electric resistance heater for the gases and vapors circulating therein
US2797297A (en) 1954-11-18 1957-06-25 Brown Fintube Co High pressure heaters
DE1615278C3 (en) * 1967-06-30 1979-06-21 Gefi Gesellschaft F. Industriewaerme Mbh, 4150 Krefeld Electric resistance furnace, especially for heating gaseous media
US3968346A (en) * 1973-06-01 1976-07-06 Cooksley Ralph D Method and apparatus for electrically heating a fluid
SE8105923L (en) 1981-10-07 1983-04-08 Boliden Ab SET TO INDICATE HIDDEN SKILLS
US5054108A (en) * 1987-03-30 1991-10-01 Arnold Gustin Heater and method for deionized water and other liquids
DE19610593A1 (en) * 1996-03-18 1997-09-25 Wastec Ag Heat exchanger for immersion heater
US6327427B1 (en) * 2000-06-16 2001-12-04 Mhe Corp. Space heater and enclosure
US8119954B2 (en) * 2003-01-07 2012-02-21 Micropyretics Heaters International, Inc. Convective heating system for industrial applications
US8260126B2 (en) * 2009-12-17 2012-09-04 Lord Ltd., Lp Dual wall axial flow electric heater for leak sensitive applications
KR200459178Y1 (en) * 2011-07-26 2012-03-22 최건식 Double tube type heat exchange pipe

Also Published As

Publication number Publication date
EP2941600A4 (en) 2016-08-31
US20150338126A1 (en) 2015-11-26
WO2014107132A1 (en) 2014-07-10
DK2941600T3 (en) 2018-06-25
EP2941600A1 (en) 2015-11-11
ES2672730T3 (en) 2018-06-15
EP2941600B1 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
KR101212406B1 (en) A dual wall axial flow electric heater for leak sensitive applications
SE1400002A1 (en) Pressure vessels and ways to heat a gas in a pressure conduit
US20160304343A1 (en) System and combustion reaction holder configured to transfer heat from a combustion reaction to a fluid
JP2013514628A5 (en)
US20130213487A1 (en) Pipeline heating technology
CN106369819A (en) Casing pipe type gas electric heating device
JP2009041885A (en) Fluid heating device
CA2668468C (en) Collecting main for tubular cracking furnaces
CN108469414A (en) A kind of Portable visual heater and cooler device suitable for high-temperature high-voltage reaction
CN210861685U (en) Multi-pipeline rapid heating device
KR20010049342A (en) A method for transporting at least one vapour substance through a vacuum chamber wall in a vacuum chamber and an apparatus for performing the method and the use thereof
GB2089951A (en) Heat Exchanger for the Generation of Steam
CN202598859U (en) Internal radiation isothermal electric heater of thermal field
JP4637882B2 (en) Conduit device
CN203824761U (en) Water-cooled high-temperature combustion gas guiding apparatus for engine thermal environment test
JP2008238039A (en) Heating apparatus and process-gas treatment system
JP2017009255A (en) Fluid heater
KR101809169B1 (en) Apparatus for Heating Fluid
KR101432896B1 (en) Fluidized Bed Reactor for production of a polysilicon
CN103302767A (en) Pipeline for conveying plastic melt
CN202649088U (en) Supercritical water oxidation test reaction container
KR101838000B1 (en) Support apparatus capable of producing steam and furnace having the same
CN206094988U (en) Heating bath adds heat channel
JP2007198482A (en) High-temperature fluid heating valve
CN203657181U (en) High temperature, high pressure and high corrosion resistant radiation heating device

Legal Events

Date Code Title Description
NAV Patent application has lapsed