RU2743229C1 - Способ осаждения сапонитовой пульпы с применением сульфатов щелочных металлов и двухкальциевого силиката - Google Patents

Способ осаждения сапонитовой пульпы с применением сульфатов щелочных металлов и двухкальциевого силиката Download PDF

Info

Publication number
RU2743229C1
RU2743229C1 RU2020115724A RU2020115724A RU2743229C1 RU 2743229 C1 RU2743229 C1 RU 2743229C1 RU 2020115724 A RU2020115724 A RU 2020115724A RU 2020115724 A RU2020115724 A RU 2020115724A RU 2743229 C1 RU2743229 C1 RU 2743229C1
Authority
RU
Russia
Prior art keywords
saponite
pulp
suspension
water
alkali metals
Prior art date
Application number
RU2020115724A
Other languages
English (en)
Inventor
Алексей Иванович Алексеев
Ольга Сергеевна Зубкова
Арсений Станиславович Полянский
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет»
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет» filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет»
Priority to RU2020115724A priority Critical patent/RU2743229C1/ru
Application granted granted Critical
Publication of RU2743229C1 publication Critical patent/RU2743229C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

Изобретение относится к способам, используемым в области горнорудной промышленности при процессах обогащения алмазоносных кимберлитовых пород для получения оборотной воды, свободной от суспензии глинистых материалов, преимущественно сапонита, путем сгущения суспензии. Предложен способ осаждения сапонитовой пульпы, включающий извлечение сапонитсодержащих веществ из оборотной воды методом отстаивания суспензии с использованием минерального неорганического коагулянта, в качестве которого используются сернокислые соли щелочных металлов. Пульпу с содержанием взвешенных веществ не менее 120 г/л разбавляют до содержания взвешенных веществ от 5 до 60 г/л, далее при постоянном перемешивании вводят сернокислую соль щелочных металлов, а затем в предварительно осветленную пульпу вводят силикатно-кальциевый утяжелитель, представляющий собой двухкальциевый силикат, и непрерывно перемешивают, затем производится повторное осаждение, верхний слой осветленной воды используют в процессе обогащения, осадок отправляют на утилизацию либо на складирование. Технический результат – ускорение процесса седиментации сапонитовой пульпы и получение осветленной воды для процесса обогащения руды. 4 ил., 1 табл., 9 пр.

Description

Изобретение относится к способам, используемым в области горнорудной промышленности при процессах обогащения алмазоносных кимберлитовых пород для получения оборотной воды, свободной от суспензии глинистых материалов, преимущественно сапонита, путем сгущения суспензии.
Известен способ осаждения сапонитовой пульпы с применением оксихлоридного коагулянта (патент РФ № 2669272, опубл. 2018.10.09). Способ позволяет очищать разбавленные растворы классификатора с плотностью 1250-1350 кг/м3 в сгустителях с мешалкой, куда вводится коагулянт. Очищенная вода отделяется от сгущенной суспензии и используется повторно в обогащении, уплотненная суспензия поступает в хвостохранилище.
Недостатком данного способа является необходимость подщелачивания пульпы для эффективного гидролиза оксихлоридного коагулянта и малый объем получаемой осветленной воды.
Известен способ сгущения сапонитовой суспензии (патент РФ № 2448052, опубл. 20.04.2012) с использованием обработки взвеси углекислым газом под давлением до 2 кгс/см2, и дальнейшей обработкой раствором сернокислого алюминия. Количество углекислого газа на 1 кг сухого сапонитового осадка для обеспечения работоспособности способа составляет 300 г.
Недостатками данного способа является высокий расход газообразного углекислого газа и раствора сернокислого алюминия, использованного в качестве коагулянта, для получения осветленной воды. При использовании данного способа очистки повышается минерализация воды за счет выделения карбонатов магния и кальция из сапонитовой взвеси.
Известен способ сгущения сапонитовой пульпы с использованием акустических волн (патент РФ № 2618007 опубл. 02.05.2017). Суспензии, содержащие взвешенные частицы различной степени дисперсности, которые предварительно обрабатываются в отстойнике акустическими волнами в определенном диапазоне, для осаждения крупных и средних частиц (более 5 мкм). Затем суспензия поступает в сгуститель, где совместно реагентным и акустическим методом осаждаются мелкодисперсные частицы. Далее осадки высушиваются акустическим методом и могут быть утилизированы или использованы повторно.
Недостатком способа является неэффективность способа акустической коагуляции для очистки воды от мелкодисперсных взвешенных частиц, которые составляют значительную часть суспензии минерала. Для очистки оборотной воды до норм по твердым веществам в данном способе применяются два этапа: в первом этапе применяется акустическая очистка, которая, как подмечает сам автор, не дает необходимый эффект и требует дополнительной реагентной обработки. Однако реагентная методика очистки не конкретизирована и данная технология может применяться как усовершенствование основной технологии очистки.
Известен способ уплотнения осадков в хвостохранилищах (Патент РФ № 2475454 опубл. 20.02.2013), который позволяет отделить сапонит от воды. Сапонит обладает заданной плотностью, извлечение сапонита производится из его водной суспензии, путем замораживания осадка в зимний период, и раздельное оттаивание и сгущенного осадка в летний период.
Основным недостатком способа является зависимость сгущения от погодно-климатических условий в регионе добычи т.е. температуры окружающей среды, распределения в течение года осадков. Данный метод обладает огромным временем цикла очистки, и при несоответствии погодных условий (аномально теплой зимы) возможно возникновение условий, при которых процесс произвести невозможно. Также существенным недостатком является длительность цикла очистки воды от минерала, и необходимость отведения большой площади на реализацию данного способа очистки.
Известен способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента (патент РФ № 2675871, опубл. 25.12.2018), принятый за прототип, пульпу с классом крупности 71 мкм и содержанием взвешенных веществ 90 г/л разбавляют водой в соотношении 1:5, интенсивно перемешивают 5-7 мин и затем полученную смесь осаждают 120 мин за счет ввода кальцийалюмосиликатного реагента составом в (масс.%): СаО-63-66; SiO2-21-24; Al2O3-4-8 и Fe2O3-2-4 в количестве от 2 до 5 г на 400- 500 мл разбавленной пульпы.
Недостатком способа является низкая скорость коагуляции суспензии, особенно при высокой концентрации взвешенных частиц, более 40 г/л не происходит реакции коагулянта с частицами и слой чистой воды не образуется. Эти факторы приводят к неполной отдаче суспензией осветленной воды в промышленных временных рамках проведения процесса коагуляции и не уплотнению сгущённой части, а также перерасходу технически чистой воды для процесса разбавления пульпы.
Техническим результатом изобретения является ускорение процесса седиментации сапонитовой пульпы и получение осветлённой воды для процесса обогащения руды.
Технический результат достигается тем, что пульпу с содержанием взвешенных веществ не менее 120 г/л разбавляют до содержания взвешенных веществ от 5 до 60 г/л, далее при постоянном перемешивании вводят минеральный неорганический коагулянт, в качестве которого используют сернокислую соль щелочных металлов, а затем в предварительно осветленную пульпу вводят силикатно-кальциевый утяжелитель и непрерывно перемешивают, затем производится повторное осаждение, верхний слой осветленной воды используют в процессе обогащения руды, осадок отправляют на утилизацию либо на складирование.
Способ осаждения сапонитовой пульпы с помощью неорганического коагулянта, содержащего катионы щелочных металлов, поясняется следующими фигурами:
фиг. 1 – сгущение сапонитовой суспензии неорганическими коагулянтами без утяжелителя.
фиг. 2 – сгущение сапонитовой суспензии неорганическими коагулянтами с применением утяжелителя.
фиг. 3 – график зависимости уровня очищенной воды от времени осаждения за 4 часа.
фиг. 4 – график зависимости уровня очищенной воды от времени осаждения за сутки.
Способ осуществляется следующим образом. Сапонитовую пульпу с содержанием глинистых веществ с классом крупности 71 мкм и менее и содержанием взвешенных веществ не менее 120 г/л, в мерных цилиндрах разбавляют водой до содержания твердых частиц в пределах от 5 до 60 г/л. Далее в разбавленную пульпу вводится сернокислая соль щелочных металлов, например K2SO4, Na2SO4 (Фиг. 1) и в течение от 3 до 7 минут происходит процесс перемешивания. Из полученного раствора под действием силы тяжести в течение не менее 180 мин. (Фиг. 2) осаждается сапонит. Под влиянием ионов щелочных металлов происходит сгущение суспензии при комнатной температуре. Частицы минерала сапонита оседают на дне емкости. Далее в предварительно осветленную пульпу вводится утяжелитель при перемешивании от 2 до 5 минут, в качестве которого используется двухкальциевый силикат, в количестве от 5 до 25 г на 1 л, при комнатной температуре и перемешивании в течение от 3 до 10 минут (Фиг. 3). Затем производится повторное осаждение в течение от 60 до 120 мин. (Фиг. 4). Верхний слой осветленной воды используется на фабрике для процесса обогащения, осадок может быть утилизирован в качестве вторичного продукта либо отправлен на складирование.
Способ поясняется следующими примерами.
Пример 1. Образец оборотной воды, слива со спиральных классификаторов после процесса обогащения алмазоносной сапонитовой руды в объеме 185 мл, класс крупности минерала 71 мкм и содержание взвешенных веществ 120 г/л, был разбавлен, в соотношении 1:2, до объема 1 л путем добавления 815 мл чистой воды в мерных цилиндрах объемом 1 л. Далее были добавлены кальцийалюмосиликатный реагент и сернокислые соли щелочных металлов (K2SO4, Na2SO4) в каждый цилиндр соответственно в количестве не менее 2 г, при интенсивном перемешивании в течение не менее 2 минут. После завершения процесса перемешивания проводилось статистическое моделирование процесса седиментации. Через 4 часа наблюдается слой объемом порядка 70 мл кальцийалюмосиликатный реагент, 110 мл сернокислый калий, 45 мл сернокислый натрий чистой воды без взвешенных частиц. Через сутки наблюдается слой объемом порядка 135 мл кальцийалюмосиликатный реагент, 175 мл сернокислый калий, 80 мл сернокислый натрий чистой воды без взвешенных частиц. Затем вводился силикатно-кальциевый утяжелитель в количестве не менее 5 г при не прерывном перемешивании, и производится повторное моделирование процесса седиментации. Через сутки наблюдается слой жидкости объемом порядка 140 мл кальцийалюмосиликатный реагент, 245 мл сернокислый калий, 220 мл сернокислый натрий чистой воды без взвешенных частиц.
Пример 2. Образец оборотной воды, слива со спиральных классификаторов после процесса обогащения алмазоносной сапонитовой руды представлен в объеме 185 мл, класс крупности минерала 71 мкм и содержание взвешенных веществ 120 г/л, был разбавлен, в соотношении 1:2, до объема 1 л путем добавления 815 мл чистой воды в мерных цилиндрах объемом 1 л. Далее был добавлен кальцийалюмосиликатный реагент и сернокислые соли щелочных металлов (K2SO4; Na2SO4) в каждый цилиндр соответственно в количестве 3 г, при интенсивном перемешивании в течение 5 минут. После завершения процесса перемешивания проводилось статистическое моделирование процесса седиментации. Через 4 часа наблюдается слой объемом порядка 105 мл (кальцийалюмосиликатный реагент), 135 мл (сернокислый калий), 90 мл (сернокислый натрий) чистой воды без взвешенных частиц. Через сутки наблюдается слой объемом порядка 145 мл (кальцийалюмосиликатный реагент), 250 мл (сернокислый калий), 135 мл (сернокислый натрий) чистой воды без взвешенных частиц. Затем вводилась добавка содержащая силикат кальция в количестве 10 г, и производилось повторное моделирование процесса седиментации. Через сутки наблюдается слой жидкости объемом порядка 180 мл (кальцийалюмосиликатный реагент), 445 мл (сернокислый калий), 415 мл (сернокислый натрий) чистой воды без взвешенных частиц.
Пример 3. Образец оборотной воды, слива со спиральных классификаторов после процесса обогащения алмазоносной сапонитовой руды представлен в объеме 185 мл, класс крупности минерала 71 мкм и содержание взвешенных веществ 120 г/л, был разбавлен (в соотношении 1:2) до объема 1 л путем добавления 815 мл чистой воды в мерных цилиндрах объемом 1 л. Далее был добавлен кальцийалюмосиликатный реагент и сернокислые соли щелочных металлов (K2SO4; Na2SO4) в каждый цилиндр соответственно в количестве 5 г, при интенсивном перемешивании в течение 10 минут. После завершения процесса перемешивания проводилось статистическое моделирование процесса седиментации. Через 4 часа наблюдается слой объемом порядка 130 мл (кальцийалюмосиликатный реагент), 155 мл (сернокислый калий), 120 мл (сернокислый натрий) чистой воды без взвешенных частиц. Через сутки наблюдается слой объемом порядка 210 мл (кальцийалюмосиликатный реагент), 410 мл (сернокислый калий), 155 мл (сернокислый натрий) чистой воды без взвешенных частиц. Затем вводилась добавка содержащая силикат кальция в количестве 20 г, и производилось повторное моделирование процесса седиментации. Через сутки наблюдается слой жидкости объемом порядка 350 мл (кальцийалюмосиликатный реагент), 580 мл (сернокислый калий), 570 мл (сернокислый натрий) чистой воды без взвешенных частиц.
Представленные примеры позволяют сделать вывод, что существует влияние активности иона щелочного металла и его радиуса при осаждении сапонитовой суспензии, непосредственно на глинистые твердые частицы. Получаемое количество очищенной воды значительно возрастает, относительно способа очистки с применением кальцийалюмосиликата. Применение утяжелителя позволяет получить дополнительный объем чистой воды и получить приемлемое уплотнение осадка (таблица 1).
Таблица 1 - Плотности осадков при применении различных неорганических коагулянтов и добавок-утяжелителей.
№ пробы Коагулянт Добавка Плотность
г/см3
pH
1 K2SO4 Без добавки 1,079 12,31
2 K2SO4 Белитовый шлам 1,079 12,31
3 K2SO4 Нефелиновый концентрат 1,095 8,62
4 Na2SO4 Без добавки 1,086 8,97
5 Na2SO4 Белитовый шлам 1,094 12,04
6 Na2SO4 Нефелиновый концентрат 1,100 8,7
7 Кальцийалюмосиликатный реагент (АСК) Без утяжелителя 1,018 14,24
8 Кальцийалюмосиликатный реагент (АСК) Белитовый шлам 1,036 13,54
9 Кальцийалюмосиликатный реагент (АСК) Нефелиновый концентрат 1,029 14,34
В результате введения сульфата щелочного металла, который обладает большей электрохимической активностью и лучшими стерическими характеристиками иона, растёт слипание частиц сапонита в укрупненные агрегаты с большим выходом чистой воды, а введение кальцийсодержащего утяжелителя придает осадку устойчивость и увеличивает освобождение воды из межплоскостного пространства глинистого минерала сапонита.
Таким образом, способ позволяет увеличивает скорость и степень сгущения сапонитовой пульпы при отстаивании на 75%.

Claims (1)

  1. Способ осаждения сапонитовой пульпы, включающий извлечение сапонитсодержащих веществ из оборотной воды методом отстаивания суспензии с использованием минерального неорганического коагулянта, отличающийся тем, что пульпу с содержанием взвешенных веществ не менее 120 г/л разбавляют водой до содержания взвешенных веществ от 5 до 60 г/л, далее при постоянном перемешивании вводят минеральный неорганический коагулянт, в качестве которого используют сернокислую соль щелочных металлов, а затем в предварительно осветленную пульпу вводят силикатно-кальциевый утяжелитель, представляющий собой двухкальциевый силикат, и непрерывно перемешивают, затем производится повторное осаждение, верхний слой осветленной воды используют в процессе обогащения руды, осадок отправляют на утилизацию либо на складирование.
RU2020115724A 2020-05-13 2020-05-13 Способ осаждения сапонитовой пульпы с применением сульфатов щелочных металлов и двухкальциевого силиката RU2743229C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020115724A RU2743229C1 (ru) 2020-05-13 2020-05-13 Способ осаждения сапонитовой пульпы с применением сульфатов щелочных металлов и двухкальциевого силиката

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020115724A RU2743229C1 (ru) 2020-05-13 2020-05-13 Способ осаждения сапонитовой пульпы с применением сульфатов щелочных металлов и двухкальциевого силиката

Publications (1)

Publication Number Publication Date
RU2743229C1 true RU2743229C1 (ru) 2021-02-16

Family

ID=74666161

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020115724A RU2743229C1 (ru) 2020-05-13 2020-05-13 Способ осаждения сапонитовой пульпы с применением сульфатов щелочных металлов и двухкальциевого силиката

Country Status (1)

Country Link
RU (1) RU2743229C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2780569C1 (ru) * 2021-11-19 2022-09-27 Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М. В. Ломоносова" Способ очистки оборотной воды горнодобывающей промышленности от сапонитсодержащего материала и песка

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012064225A1 (ru) * 2010-11-08 2012-05-18 Utin Alexander Vadimovich Способ сгущения сапонитовой суспензии
RU2675871C1 (ru) * 2017-10-17 2018-12-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента
RU2683082C1 (ru) * 2018-05-31 2019-03-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ получения кальцийалюмосиликатного неорганического коагулянта

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012064225A1 (ru) * 2010-11-08 2012-05-18 Utin Alexander Vadimovich Способ сгущения сапонитовой суспензии
RU2675871C1 (ru) * 2017-10-17 2018-12-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента
RU2683082C1 (ru) * 2018-05-31 2019-03-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ получения кальцийалюмосиликатного неорганического коагулянта

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2780569C1 (ru) * 2021-11-19 2022-09-27 Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М. В. Ломоносова" Способ очистки оборотной воды горнодобывающей промышленности от сапонитсодержащего материала и песка
RU2800757C1 (ru) * 2022-12-19 2023-07-27 Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М. В. Ломоносова" Способ осветления сапонитовой глинистой суспензии
RU2810425C1 (ru) * 2023-08-16 2023-12-27 Акционерное общество "Севералмаз" (АО "Севералмаз") Способ осветления сапонитовой глинистой суспензии

Similar Documents

Publication Publication Date Title
CN107344141B (zh) 一种煤泥提取精煤的工艺
US3981686A (en) Clarifier process for producing sodium carbonate
CN110860367A (zh) 一种三水铝石型铝土矿重选分离的方法
CN115418498B (zh) 一种碳酸盐锂黏土的处理方法
RU2448052C1 (ru) Способ сгущения сапонитовой суспензии
RU2743229C1 (ru) Способ осаждения сапонитовой пульпы с применением сульфатов щелочных металлов и двухкальциевого силиката
JPS59156499A (ja) 廃棄スライム懸濁液を凝固する方法
CN106477775A (zh) 一种无机高盐工业废水深度处理并实现零液排放的方法
CN114226413A (zh) 一种锂渣的综合处理工艺
RU2675871C1 (ru) Способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента
CN110482920B (zh) 一种浮选磷尾矿净化及制备混凝土砌块的方法
CN112830505B (zh) 一种烟道气法净化制盐母液浆的方法
RU2669272C1 (ru) Способ сгущения сапонитовой суспензии
RU2780569C1 (ru) Способ очистки оборотной воды горнодобывающей промышленности от сапонитсодержащего материала и песка
RU2800757C1 (ru) Способ осветления сапонитовой глинистой суспензии
CA1110950A (en) Destabilization of sludge with hydrolyzed starch flocculants
CN206298470U (zh) 一种脱硫废水的零排放设备
CN105923707B (zh) 一种脱硫废水震动膜处理方法及装置
RU2810425C1 (ru) Способ осветления сапонитовой глинистой суспензии
CN86104039A (zh) 制取氧化铝过程中的赤泥分离技术
CN111167610A (zh) 一种硅钙质胶磷矿反正浮选方法
CN220564391U (zh) 用于从矿物加工设备的含水流中去除可溶性和/或胶体状硅化合物的装置
US20230321596A1 (en) Method for wet removal of sulfur dioxide by silicate bacteria-enhanced pulp
CN113044866B (zh) 一种从含铝的酸处理液制备硫酸铝的方法
CN115428801A (zh) 超声强化壳聚糖改性凹凸棒土的制备方法