RU2675871C1 - Способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента - Google Patents

Способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента Download PDF

Info

Publication number
RU2675871C1
RU2675871C1 RU2017136638A RU2017136638A RU2675871C1 RU 2675871 C1 RU2675871 C1 RU 2675871C1 RU 2017136638 A RU2017136638 A RU 2017136638A RU 2017136638 A RU2017136638 A RU 2017136638A RU 2675871 C1 RU2675871 C1 RU 2675871C1
Authority
RU
Russia
Prior art keywords
saponite
pulp
water
minutes
diluted
Prior art date
Application number
RU2017136638A
Other languages
English (en)
Inventor
Алексей Иванович Алексеев
Вячеслав Николаевич Бричкин
Ольга Сергеевна Зубкова
Ольга Олеговна Конончук
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет"
Priority to RU2017136638A priority Critical patent/RU2675871C1/ru
Application granted granted Critical
Publication of RU2675871C1 publication Critical patent/RU2675871C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

Изобретение может быть использовано в области горнорудной промышленности при обогащении алмазоносных кимберлитовых пород. Способ включает извлечение сапонитсодержащих веществ из оборотной воды методом отстаивания. Пульпу с классом крупности 71 мкм и содержанием взвешенных веществ 90 г/л разбавляют водой в соотношении 1:5, интенсивно перемешивают 5-7 мин. Полученную смесь осаждают 120 мин за счет ввода кальцийалюмосиликатного реагента состава, мас. %: СаО - 63-66; SiO- 21-24; AlO- 4-8% и FeO- 2-4% в количестве от 2 до 5 г на 400-500 мл разбавленной пульпы. Способ обеспечивает увеличение скорости сгущения пульпы при отстаивании, сокращение расхода свежей воды и исключение сброса производственных стоков. 4 ил., 3 пр.

Description

Изобретение относится к способам, используемым в области горнорудной промышленности при процессах обогащения алмазоносных кимберлитовых пород для получения оборотной воды, свободной от суспензии глинистых материалов, преимущественно сапонита, путем сгущения суспензии.
Известен способ уплотнения осадков в хвостохранилищах (патент РФ №2475454, опубл. 20.02.2013) позволяющий ускорить образование осадка сапонита NaMg3[AlSi3O10](OH)2⋅4H2O, обладающего заданной плотностью, из водной суспензии, с осветлением оборотной воды в хвостохранилищах для замкнутого процесса переработки руды.
Недостатком способа является полная зависимость технологического процесса от климатических, временных, температурных показателей и кроме того, требует значительного землеотвода.
Известен способ коагуляции, применяемый для очистки жидкости представляющей водную дисперсную систему (Запольский А.К., Коган А.А. Коагулянты и флокулянты в процессах очистки воды: свойства. Получение. Применение. - Л. Химия. 1987. - 208 с), состоящую из сапонитового глинистого минерала NaMg3[AlSi3O10](OH)2⋅4H2O в высокой степени раздробленности (дисперсная фаза 20…40 мкм) взвешенных частиц. Процесс коагуляции, осуществляют путем введение в пульпу раствора сульфата (хлорида) алюминия, который имеет своей целью дестабилизировать дисперсную систему (дисперсная среда-вода) и способствует соединению и слипанию сапонитового глинистого минерала NaMg3[AlSi3O10](OH)2⋅4H2O чтобы получить агрегацию частиц сапонит-гидрооксид алюминия.
Недостатком способа является высокая коррозионная химическая активности сульфата алюминия при гидролизе Al2(SO4)+6H2O=3Al(ОН)3твердое+3H2SO4 (ионов гидрооксония H3O+) по отношению к технологической аппаратуре, используемой для осадительных процессов (сапонита) осветления воды.
Известен способ обесшламливания оборотных сапонитсодержащих вод и устройство для его реализации (патент РФ №2529220, опубл. 27.09.2014). Объектом исследований являлись сапонитсодержащие водные системы хвостохранилища. Исследовательскими укрупненными испытаниями, выполненными с использованием разработанного электрохимического сепаратора, подтверждена возможность эффективного извлечения и осаждения тонкодисперсных шламов (сапонита), как из оборотной воды с содержанием шламов до 82 г/дм3, так и сливов классификатора с содержанием минерала сапонита 245…265 г/дм3. Удельный расход электроэнергии составил 4-7 кВт⋅ч на 1 м3 исходной или до 5-8,8 кВт⋅ч на 1 м3 осветленной воды. При этом электрохимическое воздействие позволяет получить, независимо от исходной концентрации шламов в пульпе, осветленные сливы с содержанием твердой фазы до 20 г/дм3 и сапонитсодержащий продукт с содержанием твердой фазы до 600 г/дм3 при извлечении более 80%. Доочистка слива в пакетном сгустителе обеспечивает содержание в нем твердой фазы 3-15 г/дм3.
Недостатком способа является очень большой расход электроэнергии: исходя из составленного материального баланса количество оборотной сточной воды составляет 2500 м3/час, которое необходимо очистить для того чтобы создать замкнутую систему вооборота для комплексной переработки сапонитовой руды. Даже при минимальной цене 5 кВт⋅ч на 1 м3 осветленной воды и часовом расходе 2500 м3/час. Расход электроэнергии составить 12500 кВт⋅ч. При годовом обороте воды, используемой в технологическом процесс 12500×8150=101875000 квт. При этом необходимо учесть, что очистке подвергнется только сапонитсодержащий продукт с содержанием твердой фазы до 600 г/дм3 при извлечении более 80%.
Известен способ сгущения сапонитовой суспензии (патент РФ №2448052, опубл. 20.04.2012), путем оседания сапонитовых частиц для последующего отделения образующегося осадка, с последующей обработкой углекислым газом под давлением до 2 кгс/см2. Количество углекислого газа вводят в количестве до 300 г на 1 кг сухого осадка.
Недостатком способа является большой расход углекислого газа, который не отвечает стехиометрическим соотношениям реакции и уже по этим показателям данный способ является экономически не выгодным и кроме того избыточная обработка карбонатов кальция и магния повышает их растворимость и общую минерализацию воды. Таким образом, введение углекислого газа в сапонитовую суспензию под давлением до 2 кгс/см2 в количестве до 300 г на 1 кг сухого осадка не увеличивает скорость ее сгущения при отстаивании, поскольку повышает растворимость карбонатов кальция и магния и ухудшает свойства воды, повышая ее минерализацию.
Известен способ сгущения суспензии методом отстаивания (Невзоров А.Л., Коршунов А.А. Исследование свойств хвостовых отложений как источника техногенной нагрузки на окружающую среду. «Лесной журнал». 2007. №4, стр. 140-144), принятый за прототип, при котором происходит отделение частиц водной суспензии под действием силы тяжести. Авторами были проведены лабораторно экспериментальные опыты в результате которых было выявлено, что процесс седиментации происходит очень медленно. Исследования показали, что через 50 суток, процесс осаждения не прекратился, донные отложения находятся в воде во взвешенном состоянии. В естественных условиях, когда надводные потоки гидросмеси падают в пруд-отстойник, вызывая вовлечение седиментирующих отложений, процесс осаждения твердой фракции хвостов происходит еще медленнее, процесса седиментации заканчивается через 1,5 года. Скорость оседания частиц зависит от их размера, плотности и от вязкости среды.
Основным недостатком данного способа является длительность процесса отстаивания суспензии с наличием таких мелкодисперсных частиц, как частицы сапонита, без ввода коагулянтов, имеющих свойство связывать частицы сапонита и увеличивать скорость отстаивания пульпы, процесс отстаивания может привести к увеличению занимаемых площадей, отведенных под хвостохранилище, а наличие в воде частиц сапонита во взвешенном состоянии ухудшит качество и увеличит расход оборотной воды для обогатительной фабрики.
Техническим результатом изобретения является получение очищенной воды в соответствии с СанПиН 2.1.5.980-00 с вовлечением в процесс очистки всех технологических вод после процесса обогащения, а это позволит организовать систему оборотного водоснабжения обогатительной фабрики, позволяющую сократить расход свежей воды, и исключить сброс производственных стоков, а использование натуральных минеральных неорганических веществ входящих в состав кальцийалюмосиликатного реагента позволит снизить нагрузку на окружающую среду региона добычи и увеличить скорость седиментации пульпы.
Технический результат достигается тем, что пульпу с классом крупности 71 мкм и содержанием взвешенных веществ 90 г/л разбавляют водой в соотношении 1:5, интенсивно перемешивают 5-7 мин, и затем полученную смесь осаждают 120 мин за счет ввода кальцийалюмосиликатного реагента составом в мас. %: СаО - 63-66; SiO2 - 21-24; Al2O3 - 4-8% и Fe2O3 - 2-4% в количестве от 2 до 5 г на 400-500 мл разбавленной пульпы.
Способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента поясняется следующими фигурами:
фиг. 1 - исходная сапонитовая пульпа, разбавленная водой в соотношении 1:5 в которую добавлен кальцийалюмосиликатный коагулянт и перемешена в течении 5-7 минут при комнатной температуре;
фиг. 2 - сапонитовая пульпа, подвергнутая отстаиванию в течении 30 минут при комнатной температуре;
фиг. 3 - сапонитовая пульпа, подвергнутая отстаиванию в течении 75 минут при комнатной температуре;
фиг. 4 - сапонитовая пульпа, подвергнутая отстаиванию в течении 120 минут при комнатной температуре;
Способ осуществляется следующим образом. Сапонитовую пульпу разбавляют в стакане водой (Фиг. 1) в соотношении 1:5 при комнатной температуре проводят процесс перемешивания в течении от 5 до 7 минут. Из полученного таким образом раствора сапонит, в течении 120 минут (Фиг. 2) осаждают методом коагуляции с введением кальцийалюмосиликатного реагента, в зависимости от консистенции пульпы (содержание взвешенных частиц варьирует в диапазоне 90 г/л класс крупности минерала -71 мкм), в количестве от 2 до 5 г. Осаждение сапонита происходит при комнатной температуре. Сапонит осаждается на дне стакана в виде суспензии (Фиг. 3), верхний слой чистой воды используется для промывки алмазоносной руды (Фиг. 4).
Пример 1
Образец оборотной воды слива со спиральных классификаторов после процесса обогащения алмазоносной сапонитовой глины представлен в объеме 250 мл класс крупности минерала - 71 мкм, содержание взвешенных веществ 90 г/л был разбавлен (в соотношении 1:1) до 250 мл чистой водой в мерных стаканах с применением 2 г кальцийалюмосиликатного реагента (состав коагулянта в мас. %: СаО - 63-66; SiO2 - 21-24; Al2O3 - 4-8% и Fe2O3 - 2-4%) после интенсивного перемешивания в течении 2 минут приводили в статистическое моделирование процесса осаждения. Через 2 ч наблюдается 10 мл чистой воды без взвесей, плотность осадка составила 14,4%) по твердому веществу.
Пример 2
Образец оборотной воды слива со спиральных классификаторов после процесса обогащения алмазоносной сапонитовой глины представлен в объеме 120 мл класс крупности минерала - 71 мкм, содержание взвешенных веществ 90 г/л был разбавлен (в соотношении 1:3) до 360 мл чистой водой в мерных стаканах с применением 3 г кальцийалюмосиликатного реагента (состав коагулянта в мас. %: СаО - 63-66; SiO2 - 21-24; Al2O3 - 4-8% и Fe2O3 - 2-4%) после интенсивного перемешивания в течении 5 минут приводили в статистическое моделирование процесса осаждения. Через 2 ч наблюдается 53 мл чистой воды без взвесей, плотность осадка составила 12,3%) по твердому веществу.
Пример 3
Образец оборотной воды слива со спиральных классификаторов после процесса обогащения алмазоносной сапонитовой глины представлен в объеме 80 мл класс крупности минерала - 71 мкм, содержание взвешенных веществ 90 г/л был разбавлен (в соотношении 1:5) до 400 мл чистой водой в мерных стаканах с применением 5 г кальцийалюмосиликатного реагента (состав коагулянта в мас. %: СаО - 63-66; SiO2 - 21-24; Al2O3 - 4-8% и Fe2O3 - 2-4%) после интенсивного перемешивания в течении 7 минут приводили в статистическое моделирование процесса осаждения. Через 2 ч наблюдается 120 мл чистой воды без взвесей, плотность осадка составила 10,4%) по твердому веществу.
Представленные примеры позволяют сделать вывод, что из-за обладания более высокой дисперсностью и соответственно емкостью обмена сапонит по сравнению с другими минеральными группами монтмориллонита, а также плотности 2,3-2,5 г/см3 и твердости по Моссу 2,5 и размера частиц в 40 микрон сапонит обладает исключительно высокой устойчивостью в водной среде.
Таким образом, интенсивное перемешивание в течении 5-7 мин пульпы с классом крупности 71 мкм и содержанием взвешенных веществ 90 г/л и разбавленной водой в соотношении 1:5 и введение кальцийалюмосиликатного реагента (состав коагулянта в мас. %: СаО - 63-66; SiO2 - 21-24; Al2O3 - 4-8% и Fe2O3 - 2-4%) в количестве от 2 до 5 г на 400-500 мл увеличивает скорость ее сгущения при отстаивании, за счет того, что полученный реагент обладает каогуляционными свойствами, который связывает частицы сапонита в укрупненные агрегаты, это обеспечивает возможность не только оседания частиц на дно и выталкивание на поверхность чистой воды, но и связывание сапонитового шлама дамбы хвостохранилища от дальнейшего разрушения.

Claims (1)

  1. Способ осаждения сапонитовой пульпы, включающий извлечение сапонитсодержащих веществ из оборотной воды методом отстаивания, отличающийся тем, что пульпу с классом крупности 71 мкм и содержанием взвешенных веществ 90 г/л разбавляют водой в соотношении 1:5, интенсивно перемешивают 5-7 мин и затем полученную смесь осаждают 120 мин за счет ввода кальцийалюмосиликатного реагента составом в мас. %: СаО - 63-66; SiO2 - 21-24; Al2O3 - 4-8% и Fe2O3 - 2-4% в количестве от 2 до 5 г на 400-500 мл разбавленной пульпы.
RU2017136638A 2017-10-17 2017-10-17 Способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента RU2675871C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017136638A RU2675871C1 (ru) 2017-10-17 2017-10-17 Способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017136638A RU2675871C1 (ru) 2017-10-17 2017-10-17 Способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента

Publications (1)

Publication Number Publication Date
RU2675871C1 true RU2675871C1 (ru) 2018-12-25

Family

ID=64753787

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017136638A RU2675871C1 (ru) 2017-10-17 2017-10-17 Способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента

Country Status (1)

Country Link
RU (1) RU2675871C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2743229C1 (ru) * 2020-05-13 2021-02-16 федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет» Способ осаждения сапонитовой пульпы с применением сульфатов щелочных металлов и двухкальциевого силиката
RU2810425C1 (ru) * 2023-08-16 2023-12-27 Акционерное общество "Севералмаз" (АО "Севералмаз") Способ осветления сапонитовой глинистой суспензии

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174403A2 (de) * 2000-07-20 2002-01-23 Kalksteinwerk Vilshofen GmbH Kalk-Ton-Suspension und ihre Verwendung
RU2247082C2 (ru) * 2003-04-14 2005-02-27 Кнатько Василий Михайлович Способ разделения твердой и жидкой фаз водонасыщенного техногенного шлама
RU2321553C2 (ru) * 2006-03-13 2008-04-10 Кармазинов Феликс Владимирович Способ удаления и обезвреживания иловых осадков сточных вод и технологическая линия для его осуществления
US7824570B2 (en) * 2003-07-29 2010-11-02 P & W Invest Vermogensverwaltungsgessellschaft Mnh Flocculating agent method for the production and use thereof
RU2448052C1 (ru) * 2010-11-08 2012-04-20 Александр Вадимович Утин Способ сгущения сапонитовой суспензии
RU2571116C2 (ru) * 2014-03-21 2015-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный машиностроительный университет (МАМИ)" Способ получения адсорбента-коагулянта на основе красного шлама

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174403A2 (de) * 2000-07-20 2002-01-23 Kalksteinwerk Vilshofen GmbH Kalk-Ton-Suspension und ihre Verwendung
RU2247082C2 (ru) * 2003-04-14 2005-02-27 Кнатько Василий Михайлович Способ разделения твердой и жидкой фаз водонасыщенного техногенного шлама
US7824570B2 (en) * 2003-07-29 2010-11-02 P & W Invest Vermogensverwaltungsgessellschaft Mnh Flocculating agent method for the production and use thereof
RU2321553C2 (ru) * 2006-03-13 2008-04-10 Кармазинов Феликс Владимирович Способ удаления и обезвреживания иловых осадков сточных вод и технологическая линия для его осуществления
RU2448052C1 (ru) * 2010-11-08 2012-04-20 Александр Вадимович Утин Способ сгущения сапонитовой суспензии
RU2571116C2 (ru) * 2014-03-21 2015-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный машиностроительный университет (МАМИ)" Способ получения адсорбента-коагулянта на основе красного шлама

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
НЕВЗОРОВ А.Л., КОРШУНОВ А.А. Исследование свойств хвостовых отложений как источника техногенной нагрузки на окружающую среду, Лесной журнал, 2007, N 4, с.140-144. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2743229C1 (ru) * 2020-05-13 2021-02-16 федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет» Способ осаждения сапонитовой пульпы с применением сульфатов щелочных металлов и двухкальциевого силиката
RU2810425C1 (ru) * 2023-08-16 2023-12-27 Акционерное общество "Севералмаз" (АО "Севералмаз") Способ осветления сапонитовой глинистой суспензии

Similar Documents

Publication Publication Date Title
CA2667933C (en) Method for dispersing and aggregating components of mineral slurries
CN107265600B (zh) 提高的用于使稠细粒尾矿脱水的技术
Sabah et al. Characterization and dewatering of fine coal tailings by dual-flocculant systems
EP0377603A1 (en) PURIFICATION PROCESS.
US20210292198A1 (en) Treatment of tailings streams with one or more dosages of lime, and associated systems and methods
WO2016081873A1 (en) Improved ballasted clarification system
Basaran et al. Determination of flocculation characteristics of natural stone powder suspensions in the presence of different polymers
RU2448052C1 (ru) Способ сгущения сапонитовой суспензии
CN108495821A (zh) 用于从废水中去除硫酸盐和金属的组合物和方法
RU2675871C1 (ru) Способ осаждения сапонитовой пульпы с применением кальцийалюмосиликатного реагента
Nguyen et al. Determination of the effect of cations and cationic polyelectrolytes on the characteristics and final properties of synthetic and activated sludge
US1619036A (en) Clarifying and purifying liquids and waste waters
US20120018383A1 (en) Method for dispersing and aggregating components of mineral slurries
JPH09276604A (ja) 凝塊剤
US5804077A (en) Increasing settling rate of fine solids in oil sand tailings
Olin et al. The use of bentonite as a coagulant in water treatment
RU2780569C1 (ru) Способ очистки оборотной воды горнодобывающей промышленности от сапонитсодержащего материала и песка
BR112021008028A2 (pt) Método e arranjo para tratamento de água de processo
ZA200603336B (en) Metals/minerals recovery and waste treatment process
US20090208750A1 (en) Treatment of Mineral Processing Waste Waters Using Disc-Nozzle Centrifuges
RU2669272C1 (ru) Способ сгущения сапонитовой суспензии
RU2743229C1 (ru) Способ осаждения сапонитовой пульпы с применением сульфатов щелочных металлов и двухкальциевого силиката
Moosavirad Increasing efficiency of thickener operation in concentrate plant of iron ore mine using coagulation-flocculation
RU2810425C1 (ru) Способ осветления сапонитовой глинистой суспензии
CA1110950A (en) Destabilization of sludge with hydrolyzed starch flocculants