RU2728708C1 - Способ ультрафиолетового кросслинкинга у пациентов с прогрессирующим кератоконусом при исходно тонкой роговице с использованием защитного лоскута донорской роговицы (варианты) - Google Patents

Способ ультрафиолетового кросслинкинга у пациентов с прогрессирующим кератоконусом при исходно тонкой роговице с использованием защитного лоскута донорской роговицы (варианты) Download PDF

Info

Publication number
RU2728708C1
RU2728708C1 RU2019123624A RU2019123624A RU2728708C1 RU 2728708 C1 RU2728708 C1 RU 2728708C1 RU 2019123624 A RU2019123624 A RU 2019123624A RU 2019123624 A RU2019123624 A RU 2019123624A RU 2728708 C1 RU2728708 C1 RU 2728708C1
Authority
RU
Russia
Prior art keywords
cornea
donor
patient
thickness
protective flap
Prior art date
Application number
RU2019123624A
Other languages
English (en)
Inventor
Александр Владимирович Терещенко
Сергей Константинович Демьянченко
Екатерина Николаевна Вишнякова
Юлия Юрьевна Голубева
Original Assignee
Федеральное государственное автономное учреждение "Национальный медицинский исследовательский центр "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова Министерства здравоохранения Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное учреждение "Национальный медицинский исследовательский центр "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова Министерства здравоохранения Российской Федерации filed Critical Федеральное государственное автономное учреждение "Национальный медицинский исследовательский центр "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова Министерства здравоохранения Российской Федерации
Priority to RU2019123624A priority Critical patent/RU2728708C1/ru
Application granted granted Critical
Publication of RU2728708C1 publication Critical patent/RU2728708C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/525Isoalloxazines, e.g. riboflavins, vitamin B2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Vascular Medicine (AREA)
  • Organic Chemistry (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Группа изобретений относится к области медицины, а именно к офтальмологии. Для проведения ультрафиолетового кросслинкинга при прогрессирующем кератоконусе у пациентов с исходной толщиной роговицы на вершине конуса ≤400 мкм после деэпителизации измеряют толщину роговицы пациента. В качестве раствора протектора роговицы используют декстралинк, после чего повторно определяют пахиметрию роговицы в тончайшем месте и рассчитывают толщину защитного лоскута донорской роговицы оригинальным способом. Получают защитный лоскут из резецированного фемтолазером слоя передней стромы консервированной донорской роговицы необходимой толщины диаметром 9,4 мм, который укладывают на поверхность роговицы пациента и центрируют. После получения необходимой суммарной толщины «роговица пациента - лоскут стромы донорской роговицы» проводят процедуру ультрафиолетового облучения роговицы пациента через защитный лоскут стромы донорской роговицы длиной волны 370 нм мощностью 9 мВт/см2 в течение 10 мин с параллельными инсталляциями декстралинка каждые 2 мин. После окончания облучения удаляют защитный лоскут стромы донорской роговицы. Группа изобретений обеспечивает безопасное проведение процедуры ультрафиолетового кросслинкинга путем восполнения дефицита толщины роговицы пациента до требуемого значения с учетом индивидуальных значений пахиметрии тонкой роговицы пациента, отсутствие интра- и послеоперационных осложнений, усиление прочностных свойств роговицы, остановку прогрессирования кератоконуса в отдаленном послеоперационном периоде. 2 н.п. ф-лы, 2 пр.

Description

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для проведения ультрафиолетового кросслинкинга при прогрессирующем кератоконусе у пациентов с исходной толщиной роговицы на вершине конуса ≤400 мкм.
Кератоконус - это прогрессирующее дегенеративное невоспалительное заболевание роговицы, характеризующееся истончением, ослаблением и эктазией ее параксиальных зон, что приводит к неравномерности роговичной поверхности и, как следствие, грубым нарушениям зрительных функций.
Актуальность проблемы лечения кератоконуса связана с распространенностью болезни, ранним дебютом заболевания, а также прогрессирующим характером течения, приводящим к значительной потере зрительных функций и инвалидизации по зрению (Золоторевский А.В., Золоторевский К.А., Абдуллаев Э.Э. Опыт лечения больных с кератоконусом и кератэктазиями // Клиническая медицина. - 2013. - Т. 5. - №1. - С. 40-44).
Следует отметить, что ежегодно увеличивается количество пациентов с тонкой роговицей и адекватными зрительными функциями.
В настоящее время достигнут значительный прогресс в лечении ранних стадий заболевания. Применение ультрафиолетового кросслинкинга изолированно (Kymionis G.D. Long-term follow-up of corneal collagen cross-linking for keratoconus - the Cretan study // Cornea. - 2014. - Vol. 33 (10). - P. 1071-1079) или в сочетании с другими методиками, например, имплантацией различных моделей интрастромальных сегментов и колец, позволяет улучшить зрение и стабилизировать течение патологического процесса.
Стандартом процедуры ультрафиолетового кросслинкинга является Дрезденский протокол, предполагающий ультрафиолетовое облучение роговицы (3 мВт/см2) длинной волны 370 нм в течение 30 минут (Wollensak G., Spoerl Е., Seiler Т. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus // Am. J. Ophthalmol, 2003, v. 135(5), p. 620-627).
Доказано, что акселирированный кросслинкинг с интенсивностью ультрафиолетового облучения роговицы 9 мВт/см2 в течение 10 минут обладает сопоставимой эффективностью и безопасностью (Макаров Р.А., Мушкова И.А., Стройко М.С., Костенев СВ. Клинический опыт применения акселерированного кросслинкинга у пациентов с кератоконусом // Практическая медицина. - 2017. - Т. 102. - №1. - С. 145-147).
Согласно проведенным исследованиям, для исключения риска повреждения эндотелия роговицы, ее толщина должна быть не менее 400 мкм (Wollensak G, Spoerl Е, Wilsch М, Seiler Т. Endothelial cell damage after riboflavin-ultraviolet-A treatment in the rabbit. J Cataract Refract Surg. 2003; 29(9):1786-1790. doi: 10.1016/S0886- 3350(03)00343-2, Spoerl E, Hoyer A, Pillunat LE, Raiskup F. Corneal cross-linking and safety issues. Open Ophthalmol J. 2011; 5:14-16. doi: 10.2174/1874364101105010014.)
Известны несколько методов, позволяющих проводить кросслинкинг у пациентов с пахиметрией роговицы на вершине конуса менее 400 мкм.
Так, известен способ ультрафиолетового кросслинкинга с использованием мягкой контактной линзы без ультрафиолетового фильтра (Искаков И.А., Костенев СВ., Черных В.В. Новый метод выполнения кросслинкинга роговичного коллагена у пациентов с тонкой роговицей // Сборник XIV Научно-практической конференции «Современные технологии катарактальной и рефракционной хирургии». - М., 2013. - С. 228-232). Недостатками данного способа являются: сложность выбора линзы необходимой толщины (отсутствие информации о толщине на упаковке) и отсутствие ультрафиолетового фильтра у контактной линзы, что повышает риск ультрафиолетового повреждения эндотелия роговицы.
Наиболее близким к предлагаемому является способ ультрафиолетового кросслинкинга с использованием роговичной лентикулы после проведения рефракционной операции ReLEx SMILE (Васильева И.В., Егоров В.В., Васильев А.В. Анализ эффективности и безопасности кросслинкинга роговичного коллагена у пациентов с толщиной роговицы менее 400 мкм после деэпителизации с применением донорской роговичной лентикулы // Практическая медицина. - 2017. - Т. 1, №9 (110). - С. 25-28. Заявка на изобретение №2016134712 от 25.08.2016), включающий деэпитализацию роговицы, пропитывание ее раствором протектора роговицы для проведения ультрафиолетового кросслинкинга, наложение защитного лоскута, воздействие через защитный лоскут на роговицу ультрафиолетовым излучением длиной волны 370 нм, удаление защитного лоскута. Недостатком данного способа с использованием в качестве защитного лоскута полученной от другого пациента при параллельном проведении операции ReLex SMILE лентикулы является неравномерная толщина лентикулы в центре и на периферии (толстая в центре, тонкая на периферии), ограниченный диаметр, что снижает безопасность процедуры кросслинкинга на тонкой роговице. Кроме этого, выбор лентикулы нужной толщины в течение одного операционного дня представляется затруднительным.
Задачей изобретения является создание эффективного и безопасного способа ультрафиолетового кросслинкинга у пациентов с прогрессирующим кератоконусом при исходно тонкой роговице с использованием защитного лоскута донорской роговицы.
Техническим результатом заявляемого способа является обеспечение возможности безопасного проведения процедуры ультрафиолетового кросслинкинга путем восполнения дефицита толщины роговицы пациента до требуемого значения с учетом индивидуальных значений пахиметрии тонкой роговицы пациента, отсутствие интра- и послеоперационных осложнений, усиление прочностных свойств роговицы, остановка и отсутствие прогрессирования кератоконуса в отдаленном послеоперационном периоде.
Технический результат достигается тем, что в способе ультрафиолетового кросслинкинга у пациентов с прогрессирующим кератоконусом при исходно тонкой роговице с использованием защитного лоскута донорской роговицы, включающем деэпитализацию роговицы, пропитывание ее раствором протектора роговицы для проведения ультрафиолетового кросслинкинга, наложение защитного лоскута, воздействие через защитный лоскут на роговицу ультрафиолетовым излучением длиной волны 370 нм, удаление защитного лоскута, согласно изобретению:
- после деэпителизации измеряют толщину роговицы пациента посредством интраоперационной оптической когерентной томографии (ОКТ), в качестве раствора протектора роговицы используют декстралинк, который инстиллируют на роговицу пациента в течение 30 минут, после чего в ходе повторной ОКТ определяют пахиметрию роговицы в тончайшем месте и рассчитывают толщину защитного лоскута донорской роговицы как умноженную на поправочный коэффициент разницу между 400 мкм и минимальным значением пахиметрии роговицы пациента, по данным повторной ОКТ; при этом в случае использования донорской роговицы после проведения трансплантации десцеметовой мембраны поправочный коэффициент вычисляют как отношение фактической толщины донорской роговицы к 500 мкм; для получения защитного лоскута из резецированного фемтолазером слоя передней стромы консервированной донорской роговицы необходимой толщины диаметром 9,4 мм используют остаточную переднюю строму роговицы донорского корнеосклерального диска, извлеченного из контейнера со средой для консервации, который был помещен в контейнер и законсервирован не более, чем 14 суток назад после выделения десцеметовой мембраны с донорского корнеосклерального диска при проведении трансплантации десцеметовой мембраны; после резекции фемтолазером слоя стромы консервированной донорской роговицы и получения защитного лоскута, его отсепаровывают от подлежащих тканей, укладывают на поверхность роговицы пациента и центрируют; далее проводят контрольную интраоперацинную ОКТ комплекса «роговица пациента - лоскут стромы донорской роговицы» для подтверждения наличия суммарной толщины согласно предварительным расчетам; после чего проводят процедуру ультрафиолетового облучения роговицы пациента через защитный лоскут стромы донорской роговицы длиной волны 370 нм мощностью 9 мВт/см2 в течение 10 мин с параллельными инсталляциями декстралинка каждые 2 мин; после окончания облучения удаляют защитный лоскут стромы донорской роговицы;
- после деэпителизации измеряют толщину роговицы пациента посредством интраоперационной оптической когерентной томографии (ОКТ), в качестве раствора протектора роговицы используют декстралинк, который инсталлируют на роговицу пациента в течение 30 минут, после чего в ходе повторной ОКТ определяют пахиметрию роговицы в тончайшем месте и рассчитывают толщину защитного лоскута донорской роговицы как умноженную на поправочный коэффициент разницу между 400 мкм и минимальным значением пахиметрии роговицы пациента, по данным повторной ОКТ; при этом в случае использования донорской роговицы после задней послойной кератопластики к значению фактической толщины донорской роговицы прибавляется толщина резецированного заднего слоя роговицы, которая заведомо известна после ранее проведенной кератопластики, после чего вычисляется отношение полученной суммы значений к толщине нативной роговицы в центре, принимаемой за 500 мкм; для получения защитного лоскута из резецированного фемтолазером слоя передней стромы консервированной донорской роговицы необходимой толщины диаметром 9,4 мм используют остаточную переднюю строму роговицы донорского корнеосклерального диска, извлеченного из контейнера со средой для консервации, который был помещен в контейнер и законсервирован не более, чем 14 суток назад после фемторезекции задних слоев в ходе задней послойной кератопласткии с использованием фемтосекундного лазера; после резекции фемтолазером слоя стромы консервированной донорской роговицы и получения защитного лоскута, его отсепаровывают от подлежащих тканей, укладывают на поверхность роговицы пациента и центрируют; далее проводят контрольную интраоперацинную ОКТ комплекса «роговица пациента - лоскут стромы донорской роговицы» для подтверждения наличия суммарной толщины согласно предварительным расчетам; после чего проводят процедуру ультрафиолетового облучения роговицы пациента через защитный лоскут стромы донорской роговицы длиной волны 370 нм мощностью 9 мВт/см2 в течение 10 мин с параллельными инстилляциями декстралинка каждые 2 мин; после окончания облучения удаляют защитный лоскут стромы донорской роговицы.
Технический результат достигается за счет того, что:
1) защитный лоскут передней стромы консервированной донорской роговицы кадаверного глаза восполняет толщину роговицы пациента до значений, принятых за безопасные для проведения процедуры ультрафиолетового кросслинкинга (не менее 400 мкм);
2) диаметр защитного лоскута передней стромы консервированной донорской роговицы кадаверного глаза 9,4 мм обеспечивает плотную адгезию защитного донорского лоскута с поверхностью роговицы пациента и его стабильное положение;
3) резекция слоя передней стромы консервированной донорской роговицы фемтолазером позволяет сформировать защитный лоскут равномерной толщины, соответствующей расчетному значению (с учетом минимального значения пахиметрии роговицы конкретного пациента, по данным ОКТ, выполняемой после инсталляций раствора декстаралинка на роговицу пациента в течение 30 минут), необходимому для восполнения толщины роговицы пациента до значений, принятых за безопасные для проведения процедуры ультрафиолетового кросслинкинга (не менее 400 мкм), что, в свою очередь, обеспечивает равномерное облучение передней стромы роговицы пациента на одинаковую глубину, как в центре, так и на периферии;
4) ультрафиолетовое облучение длиной волны 370 нм мощностью 9 мВт/см2 в течение 10 мин позволяет сократить продолжительность процедуры, уменьшить психо-эмоциональную нагрузку на пациента и обладает сопоставимой эффективностью (Макаров Р.А., Мушкова И.А., Стройко М.С., Костенев СВ. Клинический опыт применения акселерированного кросслинкинга у пациентов с кератоконусом // Практическая медицина. - 2017. - Т. 102. - №1. - С. 145-147) с процедурой ультрафиолетового кросслинкинга по Дрезденскому протоколу: 3 мВт/см2 в течение 30 мин (Wollensak G., Spoerl Е., Seiler Т. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus // Am J Ophthalmol. 2003 May; 135(5):620-627);
5) использование для получения защитного лоскута остаточной передней стромы роговицы извлеченного из контейнера со стерильной средой для консервации донорского корнеосклерального диска, помещенного в контейнер не более, чем 14 суток назад, после фемторезекции задних слоев в ходе задней послойной кератопласткии с применением фемтосекундного лазера или после выделения десцеметовой мембраны с донорского корнеосклерального диска при проведении трансплантации десцеметовой мембраны, обеспечивает возможность дополнительного использования донорского материала.
Способ осуществляют следующим образом.
Проводится механическая скарификация эпителия роговицы в оптической зоне на поверхности диаметром 5-7 мм в зависимости от наличия или отсутствия интрастромального сегмента / сегментов или колец. При наличии интрастромальных имплантов деэпителизация роговицы проводится на поверхности диаметром 5 мм, при отсутствии - на поверхности диаметром 7 мм. После деэпителизации измеряют толщину роговицы пациента при помощи интраоперационной оптической когерентной томографии (ОКТ), например, посредством операционного микроскопа OPMI LUMERA® 700 с интегрированным оптическим когерентным томографом высокого разрешения RESCAN™ 700 (Carl Zeiss Meditec OPMI LUMERA® 700 with the integrated SD-OCT camera RESCAN™ 700). Инсталлируют раствор декстаралинка на роговицу пациента в течение 30 минут, после чего в ходе повторной ОКТ определяют пахиметрию роговицы пациента в тончайшем месте. Полученное значение минимальной толщины роговицы пациента используется для расчета толщины защитного лоскута донорской роговицы с учетом поправочного коэффициента.
Для получения защитного лоскута из резецированного фемтолазером слоя передней стромы консервированной донорской роговицы необходимой толщины диаметром 9,4 мм используют остаточную переднюю строму роговицы донорского корнеосклерального диска, извлеченного из контейнера, например, стеклянного флакона 20 мл со стерильной средой для консервации, например, «Борзенка-Мороз», который был помещен в контейнер и законсервирован не более, чем 14 суток назад после фемторезекции задних слоев в ходе задней послойной кератопласткии с использованием фемтосекундного лазера или после выделения десцеметовой мембраны с донорского корнеосклерального диска при проведении трансплантации десцеметовой мембраны
Толщина защитного лоскута определяется следующим образом: вычисляется разница между 400 мкм (толщина роговицы, необходимая для безопасного проведения кросслинкинга) и минимальным значением пахиметрии роговицы пациента по данным повторного ОКТ, полученное значение умножается на поправочный коэффициент. Использование поправочного коэффициента необходимо для обеспечения безопасности процедуры ультрафиолетового облучения, так как имеющийся отек стромы консервированной роговицы будет резорбирован непосредственно в процессе ультрафиолетового облучения и продолжающихся инстиляций раствора декстралинка. Поправочный коэффициент определяется как отношение толщины в центре донорской роговицы к толщине центральной зоны нативной роговицы. Считается, что толщина нативной роговицы в центре, после удаления эпителия, в среднем составляет 500 мкм. Интраоперационная ОКТ фемтосекундного лазера Femto LDV Z8 позволяет оценить реальную толщину центральной зоны консервированной донорской роговицы. В случае использования донорской роговицы после проведения трансплантации десцеметовой мембраны поправочный коэффициент вычисляют как отношение фактической толщины донорской роговицы к 500 мкм, так как толщиной удаленной десцеметовой мембраны со слоем эндотелиальных клеток можно пренебречь. В случае использования донорской роговицы после задней послойной кератопластики к полученному значению фактической толщины донорской роговицы прибавляется толщина резецированного заднего слоя роговицы, которая заведомо известна, после чего вычисляется отношение суммарной толщины консервированной роговицы к толщине нативной роговицы в центре, принимаемой за 500 мкм.
После расчета требуемой толщины защитного лоскута роговицы с учетом поправочного коэффициента проводят фемтолазерную резекцию передних слоев стромы консервированной донорской роговицы. Донорский склеророговичный диск, устанавливается в штатную для фемтосекундного лазера Femto LDV Z8 искусственную переднюю камеру глаза таким образом, чтобы сохранные наружные слои роговицы были ориентированы вверх. Далее при помощи фемтолазера выкраивают защитный лоскут передней стромы донорской роговицы необходимой толщины. Диаметр защитного лоскута - 9,4 мм (максимальный диаметр, предусмотренный в программе фемтосекундного лазера Femto LDV Z8).
После фемтолазерного этапа полученный защитный лоскут в виде резецированного слоя стромы консервированной донорской роговицы необходимой толщины отсепаровывают от подлежащих тканей при помощи микрохирургического шпателя, укладывают на поверхность роговицы пациента и центрируют. Далее проводят контрольную интраоперацинную ОКТ комплекса «роговица пациента - лоскут стромы донорской роговицы» для подтверждения наличия суммарной толщины согласно предварительным расчетам. После этого проводят процедуру ультрафиолетового облучения длиной волны 370 нм мощностью 9 мВт/см2 в течение 10 мин с параллельными инсталляциями декстралинка каждые 2 мин. После окончания облучения удаляют защитный лоскут стромы донорской роговицы. Закапывают антисептик Витабакт и накладывают на роговицу пациента мягкую лечебную контактную линзу до наступления полной эпителизации.
По предложенному способу были пролечены 9 пациентов с прогрессирующим кератоконусом 2-3 стадии.
Во всех случаях после деэпителизации измеряли толщину роговицы посредством интраоперационной ОКТ, например, посредством операционного микроскопа OPMI LUMERA® 700 с интегрированным оптическим когерентным томографом высокого разрешения RESCAN™ 700 (Carl Zeiss Meditec OPMI LUMERA® 700 with the integrated SD-OCT camera RESCAN™ 700), в качестве раствора протектора роговицы использовали декстралинк, который инсталлировали на роговицу в течение 30 минут, после чего в ходе повторной ОКТ определяли пахиметрию роговицы в тончайшем месте и рассчитывали толщину защитного лоскута донорской роговицы как умноженную на поправочный коэффициент разницу между 400 мкм и минимальным значением пахиметрии роговицы пациента, по данным повторной ОКТ.
Поправочный коэффициент определяли как отношение толщины в центре донорской роговицы к толщине центральной зоны нативной роговицы, принятой за постоянную величину 500 мкм. При этом в случаях использования донорской роговицы после проведения трансплантации десцеметовой мембраны (у 4-х пациентов) поправочный коэффициент вычисляли как отношение фактической толщины донорской роговицы к 500 мкм. В случаях использования донорской роговицы после задней послойной кератопластики (у 5-ти пациентов) к полученному значению фактической толщины донорской роговицы прибавляли толщину резецированного заднего слоя роговицы, которая была заведомо известна после ранее проведенной кератопластики. После чего вычисляли отношение суммарной толщины консервированной роговицы к толщине нативной роговицы в центре, принимаемой за 500 мкм. Для получения защитного лоскута из резецированного фемтолазером слоя передней стромы консервированной донорской роговицы необходимой толщины диаметром 9,4 мм использовали остаточную переднюю строму роговицы донорского корнеосклерального диска, извлеченного из контейнера, например, стеклянного флакона 20 мл со стерильной консервационной средой «Борзенка-Мороз», который был помещен в контейнер и законсервирован не более, чем 14 суток назад после фемторезекции задних слоев в ходе задней послойной кератопласткии с использованием фемтосекундного лазера или после выделения десцеметовой мембраны с донорского корнеосклерального диска при проведении трансплантации десцеметовой мембраны. После резекции фемтолазером слоя стромы консервированной донорской роговицы и получения защитного лоскута, его отсепаровывали от подлежащих тканей, укладывали на поверхность роговицы пациента и центрировали; далее проводили контрольную интраоперацинную ОКТ комплекса «роговица пациента - лоскут стромы донорской роговицы» для подтверждения наличия суммарной толщины согласно предварительным расчетам. Затем проводили процедуру ультрафиолетового облучения роговицы пациента через защитный лоскут стромы донорской роговицы длиной волны 370 нм мощностью 9 мВт/см2 в течение 10 мин с параллельными инсталляциями декстралинка каждые 2 мин; после окончания облучения удаляли защитный лоскут стромы донорской роговицы.
У всех 12 пациентов удалось безопасно выполнить процедуру ультрафиолетового кросслинкинга путем восполнения дефицита толщины роговицы пациента до требуемого значения с учетом индивидуальных значений пахиметрии тонкой роговицы пациента, без интра- и послеоперационных осложнений. В ходе послеоперационного наблюдения в течение 18 месяцев констатировали усиление прочностных свойств роговицы, остановку и отсутствие прогрессирования кератоконуса во всех случаях.
Изобретение поясняется следующими клиническими примерами.
Клинический пример 1.
Пациент З., 26 лет, обратился в клинику с диагнозом прогрессирующий кератоконус 3 стадии. По данным дооперационной диагностики: острота зрения без коррекции - 0,01, с максимальной коррекцией - 0,15, пахиметрия в самом тонком месте - 379 мкм, кератометрия К1 - 51,9 дптр и К2 - 59,6 дптр. Элевация передней поверхности - 32 мкм, задней - 51 мкм. Плотность эндотелиальных клеток - 2521 /мм2.
Пациент был пролечен по предложенному способу.
Интраоперационно, после скарификации эпителия и 30 минут инстиляции препарата рибофлавина «декстралинк», при помощи инраоперационного ОКТ определена минимальная толщина роговицы значением 295 мкм. Дефицит толщины роговицы составил 105 мкм. Для формирования защитного лоскута использовалась роговица после проведения трансплантации десцеметовой мембраны. По данным интраоперационной ОКТ фемтосекундного лазера Femto LDV Z8, толщина донорской роговицы в центре составила 850 мкм. Поправочный коэффициент равен 1,7 (850/500). Таким образом, толщина резецируемого посредством фемтосекундного лазера защитного лоскута консервированной донорской роговицы составила 178,5 мкм. Защитный лоскут был отсепарован от подлежащей стромы и уложен на роговицу пациента. Далее проведено облучение ультрафиолетом длиной волны 370 нм мощностью 9 мВт/см2 в течение 10 мин.
Интраоперационный контроль толщины комплекса «роговица пациента - лоскут стромы донорской роговицы» показал наличие 474 мкм непосредственно перед ультрафиолетовым облучением, 436 мкм через 5 минут и 401 мкм через 10 минут, на момент окончания процедуры ультрафиолетового крослинкинга.
Через месяц на ОКТ роговицы хорошо визуализировалась демаркационная линия, залегающая примерно на глубине 147 микрон, отмечалось снижение кератометрии К1 до 51,0 и К2 до 57,8 дптр. Элевация передней поверхности снизилась до 28 мкм, а элевация задней поверхности составила 54 мкм. Острота зрения без коррекции была на уровне 0,01, с максимальной коррекцией - 0,2. Плотность эндотелиальных клеток оставалась на уровне дооперационных значений (2520 /мм2).
Через 6 месяцев после операции острота зрения без коррекции составила 0,05, с максимальной коррекцией - 0,2. Данные кератомертии снизились до следующих значений: К1 49,7 дптр, К2 56,5 дптр. Элевация передней поверхности составила 26 мкм, элевация задней поверхности - 53 мкм. Плотность эндотелиальных клеток оставалась на уровне предоперационных значений 2520 /мм2. Демаркационная линия, по данным ОКТ роговицы, определялась на глубине 95-100 мкм со значительным снижением рефлективности.
Клинический пример 2.
Пациент X., 29 лет, обратился в клинику с диагнозом прогрессирующий кератоконус 2 стадии. По данным дооперационной диагностики: острота зрения без коррекции - 0,1, с максимальной коррекцией - 0,3, пахиметрия в самом тонком месте - 399 мкм, кератометрия: К1 - 46,5 дптр и К2 - 54,6 дптр. Элевация передней поверхности - 29 мкм, задней - 45 мкм. Плотность эндотелиальных клеток - 2845 /мм2.
Пациент был пролечен по предложенному способу.
Интраоперационно, после скарификации эпителия и 30 минут инстиляции препарата рибофлавина «декстралинк», при помощи инраоперационной ОКТ определена минимальная толщина роговицы значением 315 мкм. Дефицит толщины роговицы составил 85 мкм. Для формирования защитного лоскута использовалась консервированная роговица после проведения задней послойной кератопластики с использованием фемтосекундного лазера. Известно, что интраоперационно в ходе задней послойной кератопластики, 3 дня назад, был резецирован задний слой толщиной 120 мкм. По данным интраоперационной ОКТ фемтосекундного лазера толщина донорской роговицы в центре составила 800 мкм. Поправочный коэффициент равен 1,84 (920/500). Таким образом, толщина резецируемого защитного лоскута роговицы составила 156,4 мкм (85×1,84). Защитный слой роговицы отсепарован от подлежащей стромы и уложен на роговицу пациента. Далее проведено облучение ультрафиолетом длиной волны 370 нм мощностью 9 мВт/см2 в течение 10 мин.
Интраоперационный контроль толщины комплекса «роговица пациента - лоскут стромы донорской роговицы» показал наличие 472 мкм непосредственно перед ультрафиолетовым облучением, 433 мкм через 5 минут и 402 мкм через 10 минут, на момент окончания процедуры ультрафиолетового крослинкинга.
Через месяц на ОКТ роговицы хорошо визуализировалась демаркационная линия, залегающая примерно на глубине 137 микрон, отмечалось снижение кератометрии: К1 до 46,0 и К2 до 53,2 дптр. Элевация передней поверхности снизилась до 25 мкм, а элевация задней поверхности составила 43 мкм. Острота зрения без коррекции была на уровне 0,1, с максимальной коррекцией - 0,3. Плотность эндотелиальных клеток оставалась на уровне дооперационных значений (2844 /мм2).
Через 6 месяцев после операции острота зрения без коррекции составила 0,1, с максимальной коррекцией - 0,3. Данные кератомертии снизились до следующих значений: К1 - 45,7 дптр, К2 - 52,4 дптр, элевация передней поверхности составила 26 мкм, элевация задней поверхности - 53 мкм. Плотность эндотелиальных клеток оставалась на уровне предоперационных значений (2840 /мм2). Демаркационная линия, по данным ОКТ роговицы, определялась на глубине 90-100 мкм со значительным снижением рефлективности.
Таким образом, заявляемый способ обеспечивает безопасное проведение процедуры ультрафиолетового кросслинкинга путем восполнения дефицита толщины роговицы пациента до требуемого значения с учетом индивидуальных значений пахиметрии тонкой роговицы пациента, отсутствие интра- и послеоперационных осложнений, усиление прочностных свойств роговицы, остановку и отсутствие прогрессирования кератоконуса в отдаленном послеоперационном периоде.

Claims (2)

1. Способ ультрафиолетового кросслинкинга у пациентов с прогрессирующим кератоконусом при исходно тонкой роговице с использованием защитного лоскута донорской роговицы, включающий деэпитализацию роговицы, пропитывание ее раствором протектора роговицы для проведения ультрафиолетового кросслинкинга, наложение защитного лоскута, воздействие через защитный лоскут на роговицу ультрафиолетовым излучением длиной волны 370 нм, удаление защитного лоскута, отличающийся тем, что после деэпителизации измеряют толщину роговицы пациента посредством интраоперационной оптической когерентной томографии (ОКТ), в качестве раствора протектора роговицы используют декстралинк, который инсталлируют на роговицу пациента в течение 30 минут, после чего в ходе повторной ОКТ определяют пахиметрию роговицы в тончайшем месте и рассчитывают толщину защитного лоскута донорской роговицы как умноженную на поправочный коэффициент разницу между 400 мкм и минимальным значением пахиметрии роговицы пациента, по данным повторной ОКТ; при этом в случае использования донорской роговицы после проведения трансплантации десцеметовой мембраны поправочный коэффициент вычисляют как отношение фактической толщины в центре донорской роговицы к 500 мкм; для получения защитного лоскута из резецированного фемтолазером слоя передней стромы консервированной донорской роговицы необходимой толщины диаметром 9,4 мм используют остаточную переднюю строму роговицы донорского корнеосклерального диска, извлеченного из контейнера со средой для консервации, который был помещен в контейнер и законсервирован не более чем 14 суток назад после выделения десцеметовой мембраны с донорского корнеосклерального диска при проведении трансплантации десцеметовой мембраны; после резекции фемтолазером слоя стромы консервированной донорской роговицы и получения защитного лоскута его отсепаровывают от подлежащих тканей, укладывают на поверхность роговицы пациента и центрируют; далее проводят контрольную интраоперацинную ОКТ комплекса «роговица пациента - лоскут стромы донорской роговицы» для подтверждения наличия суммарной толщины согласно предварительным расчетам; после чего проводят процедуру ультрафиолетового облучения роговицы пациента через защитный лоскут стромы донорской роговицы длиной волны 370 нм мощностью 9 мВт/см2 в течение 10 мин с параллельными инсталляциями декстралинка каждые 2 мин; после окончания облучения удаляют защитный лоскут стромы донорской роговицы.
2. Способ ультрафиолетового кросслинкинга у пациентов с прогрессирующим кератоконусом при исходно тонкой роговице с использованием защитного лоскута донорской роговицы, включающий деэпитализацию роговицы, пропитывание ее раствором протектора роговицы для проведения ультрафиолетового кросслинкинга, наложение защитного лоскута, воздействие через защитный лоскут на роговицу ультрафиолетовым излучением длиной волны 370 нм, удаление защитного лоскута, отличающийся тем, что после деэпителизации измеряют толщину роговицы пациента посредством интраоперационной оптической когерентной томографии (ОКТ), в качестве раствора протектора роговицы используют декстралинк, который инсталлируют на роговицу пациента в течение 30 минут, после чего в ходе повторной ОКТ определяют пахиметрию роговицы в тончайшем месте и рассчитывают толщину защитного лоскута донорской роговицы как умноженную на поправочный коэффициент разницу между 400 мкм и минимальным значением пахиметрии роговицы пациента, по данным повторной ОКТ; при этом в случае использования донорской роговицы после задней послойной кератопластики к значению фактической толщины в центре донорской роговицы прибавляется толщина резецированного заднего слоя роговицы, которая заведомо известна после ранее проведенной кератопластики, после чего вычисляется отношение полученной суммы значений к толщине нативной роговицы в центре, принимаемой за 500 мкм; для получения защитного лоскута из резецированного фемтолазером слоя передней стромы консервированной донорской роговицы необходимой толщины диаметром 9,4 мм используют остаточную переднюю строму роговицы донорского корнеосклерального диска, извлеченного из контейнера со средой для консервации, который был помещен в контейнер и законсервирован не более чем 14 суток назад после фемторезекции задних слоев в ходе задней послойной кератопласткии с использованием фемтосекундного лазера; после резекции фемтолазером слоя стромы консервированной донорской роговицы и получения защитного лоскута его отсепаровывают от подлежащих тканей, укладывают на поверхность роговицы пациента и центрируют; далее проводят контрольную интраоперацинную ОКТ комплекса «роговица пациента - лоскут стромы донорской роговицы» для подтверждения наличия суммарной толщины согласно предварительным расчетам; после чего проводят процедуру ультрафиолетового облучения роговицы пациента через защитный лоскут стромы донорской роговицы длиной волны 370 нм мощностью 9 мВт/см2 в течение 10 мин с параллельными инсталляциями декстралинка каждые 2 мин; после окончания облучения удаляют защитный лоскут стромы донорской роговицы.
RU2019123624A 2019-07-26 2019-07-26 Способ ультрафиолетового кросслинкинга у пациентов с прогрессирующим кератоконусом при исходно тонкой роговице с использованием защитного лоскута донорской роговицы (варианты) RU2728708C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019123624A RU2728708C1 (ru) 2019-07-26 2019-07-26 Способ ультрафиолетового кросслинкинга у пациентов с прогрессирующим кератоконусом при исходно тонкой роговице с использованием защитного лоскута донорской роговицы (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019123624A RU2728708C1 (ru) 2019-07-26 2019-07-26 Способ ультрафиолетового кросслинкинга у пациентов с прогрессирующим кератоконусом при исходно тонкой роговице с использованием защитного лоскута донорской роговицы (варианты)

Publications (1)

Publication Number Publication Date
RU2728708C1 true RU2728708C1 (ru) 2020-07-30

Family

ID=72085537

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019123624A RU2728708C1 (ru) 2019-07-26 2019-07-26 Способ ультрафиолетового кросслинкинга у пациентов с прогрессирующим кератоконусом при исходно тонкой роговице с использованием защитного лоскута донорской роговицы (варианты)

Country Status (1)

Country Link
RU (1) RU2728708C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2768181C1 (ru) * 2021-08-12 2022-03-23 федеральное государственное автономное учреждение "Национальный медицинский исследовательский центр "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения Российской Федерации Способ проведения кросслинкинга роговичного коллагена
RU2794587C1 (ru) * 2023-01-17 2023-04-21 федеральное государственное автономное учреждение "Национальный медицинский исследовательский центр "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения Российской Федерации Способ проведения ультрафиолетового кросслинкинга роговицы при тонких роговицах

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468772C1 (ru) * 2011-09-27 2012-12-10 Федеральное государственное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова Федерального агентства по высокотехнологичной медицинской помощи" Способ заготовки донорских роговичных трансплантатов с помощью фемтосекундного лазера для задней послойной кератопластики

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468772C1 (ru) * 2011-09-27 2012-12-10 Федеральное государственное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова Федерального агентства по высокотехнологичной медицинской помощи" Способ заготовки донорских роговичных трансплантатов с помощью фемтосекундного лазера для задней послойной кератопластики

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Mahipal S. Sachdev et al. Tailored stromal expansion with a refractive lenticule for crosslinking the ultrathin cornea, J CATARACT REFRACT SURG, Vol.41, 2015, p.918-923. *
Roizenblatt R. et al. Comparison Study of Ultraviolet a Irradiance of 3mw/Cm2 Versus 9 Mw/Cm2 with Riboflavin on Corneal Collagen Cross-Linking Efficacy in Rabbit Eyes. Invest Ophthalmol Vis Sci. 2010;51:4979. *
Vajpayee R.B. et al. One donor cornea for 3 recipients: a new concept for corneal transplantation surgery. Arch Ophthalmol. 2007 Apr;125(4):552-4. *
Васильева И.В. и др. Анализ эффективности и безопасности кросслинкинга роговичного коллагена у пациентов с толщиной роговицы менее 400 мкм после деэпителизации с применением донорской роговичной лентикулы, Практическая медицина, 9(110), Т.1, 2017, с.25-28. *
Ракова А.В. Передняя послойная фемтолазерная кератопластика при помутнениях роговицы различной этиологии, Автореферат дисс. на соискан. учен. степен. канд. мед. наук, Москва, 2013, 24 с. *
Ракова А.В. Передняя послойная фемтолазерная кератопластика при помутнениях роговицы различной этиологии, Автореферат дисс. на соискан. учен. степен. канд. мед. наук, Москва, 2013, 24 с. Mahipal S. Sachdev et al. Tailored stromal expansion with a refractive lenticule for crosslinking the ultrathin cornea, J CATARACT REFRACT SURG, Vol.41, 2015, p.918-923. Roizenblatt R. et al. Comparison Study of Ultraviolet a Irradiance of 3mw/Cm2 Versus 9 Mw/Cm2 with Riboflavin on Corneal Collagen Cross-Linking Efficacy in Rabbit Eyes. Invest Ophthalmol Vis Sci. 2010;51:4979. Vajpayee R.B. et al. One donor cornea for 3 recipients: a new concept for corneal transplantation surgery. Arch Ophthalmol. 2007 Apr;125(4):552-4. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2768181C1 (ru) * 2021-08-12 2022-03-23 федеральное государственное автономное учреждение "Национальный медицинский исследовательский центр "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения Российской Федерации Способ проведения кросслинкинга роговичного коллагена
RU2794587C1 (ru) * 2023-01-17 2023-04-21 федеральное государственное автономное учреждение "Национальный медицинский исследовательский центр "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения Российской Федерации Способ проведения ультрафиолетового кросслинкинга роговицы при тонких роговицах

Similar Documents

Publication Publication Date Title
Jacob et al. Corneal allogenic intrastromal ring segments (CAIRS) combined with corneal cross-linking for keratoconus
Arnalich-Montiel et al. Corneal surgery in keratoconus: which type, which technique, which outcomes?
Jacob et al. Preliminary evidence of successful near vision enhancement with a new technique: PrEsbyopic Allogenic Refractive Lenticule (PEARL) corneal inlay using a SMILE lenticule
Ganesh et al. Femtosecond intrastromal lenticular implantation combined with accelerated collagen cross-linking for the treatment of keratoconus—initial clinical result in 6 eyes
Angunawela et al. Refractive lenticule re-implantation after myopic ReLEx: a feasibility study of stromal restoration after refractive surgery in a rabbit model
Knorz et al. Laser in situ keratomileusis to correct myopia of-6.00 to-29.00 diopters
Riau et al. Stromal keratophakia: corneal inlay implantation
Bhandari et al. Application of the SMILE-derived glued lenticule patch graft in microperforations and partial-thickness corneal defects
Chen et al. Comparison of femtosecond laser-assisted deep anterior lamellar keratoplasty and penetrating keratoplasty for keratoconus
Mazzotta et al. In vivo confocal microscopy after contact lens-assisted corneal collagen cross-linking for thin keratoconic corneas
Lazaridis et al. Refractive lenticule transplantation for correction of iatrogenic hyperopia and high astigmatism after LASIK
RU2645931C1 (ru) Способ лечения кератэктазий
RU2676434C1 (ru) Комбинированный способ лечения заболеваний роговицы с применением кератопластики и кросслинкинга
Sioufi et al. Femtosecond lasers in cornea & refractive surgery
Zhang et al. Femtosecond laser-assisted endokeratophakia using allogeneic corneal lenticule in a rabbit model
Spadea et al. Current techniques of lamellar keratoplasty for keratoconus
Yang et al. Application of the SMILE-derived lenticule in therapeutic keratoplasty
RU2728708C1 (ru) Способ ультрафиолетового кросслинкинга у пациентов с прогрессирующим кератоконусом при исходно тонкой роговице с использованием защитного лоскута донорской роговицы (варианты)
RU2728707C1 (ru) Способ ультрафиолетового кросслинкинга у пациентов с прогрессирующим кератоконусом при исходно тонкой роговице с использованием защитного лоскута донорской роговицы
RU2723135C1 (ru) Способ получения роговичного трансплантата для послойной кератопластики
RU2302844C1 (ru) Способ лазерной коррекции миопии средней и высокой степени при недостаточной толщине роговицы
RU2424786C1 (ru) Способ формирования роговичного диска при сквозной кератопластике
Hosny et al. Results of Femtosecond Laser‐Assisted Descemet Stripping Automated Endothelial Keratoplasty
RU2647828C1 (ru) Способ задней послойно-сквозной кератопластики при буллезной кератопатии
Tong et al. SMILE rescue: delayed lenticule removal in a patient with high myopia