RU2701020C1 - Способ подготовки углеводородного газа к транспорту - Google Patents

Способ подготовки углеводородного газа к транспорту Download PDF

Info

Publication number
RU2701020C1
RU2701020C1 RU2018145868A RU2018145868A RU2701020C1 RU 2701020 C1 RU2701020 C1 RU 2701020C1 RU 2018145868 A RU2018145868 A RU 2018145868A RU 2018145868 A RU2018145868 A RU 2018145868A RU 2701020 C1 RU2701020 C1 RU 2701020C1
Authority
RU
Russia
Prior art keywords
gas
methanol
gas stream
separation
pressure
Prior art date
Application number
RU2018145868A
Other languages
English (en)
Inventor
Александр Юрьевич Корякин
Дмитрий Владимирович Дикамов
Владимир Федорович Кобычев
Рустям Альфридович Мухетдинов
Антон Александрович Типугин
Айдар Ильдусович Кагарманов
Original Assignee
Общество с ограниченной ответственностью "Газпром добыча Уренгой"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Газпром добыча Уренгой" filed Critical Общество с ограниченной ответственностью "Газпром добыча Уренгой"
Priority to RU2018145868A priority Critical patent/RU2701020C1/ru
Application granted granted Critical
Publication of RU2701020C1 publication Critical patent/RU2701020C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к газовой промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений. В способе подготовки углеводородного газа к транспорту газовый поток от кустов скважин подают на первичную сепарацию, десорбируют газовым потоком метанол из водометанольного раствора высокой концентрации, вводят в газовый поток метанол, охлаждают газовый поток на первом этапе воздухом, на втором этапе легким углеводородным конденсатом, на третьем этапе дважды отсепарированным газом. Затем проводят вторичную сепарацию газового потока, вводят в газовый поток метанол, охлаждают газовый поток отсепарированным газом и за счет понижения давления, проводят окончательную сепарацию газового потока, в три ступени нагревают отсепарированный газ газовым потоком и выводят отсепарированный газ из установки. Жидкую фазу после окончательной сепарации газового потока направляют для разделения на легкий углеводородный конденсат, газ дегазации среднего давления и водометанольный раствор высокой концентрации. Возвращают газ дегазации среднего давления на повторную окончательную сепарацию совместно с газовым потоком, повышают давление водометанольного раствора высокой концентрации и направляют его для десорбции метанола, легкий углеводородный конденсат нагревают газовым потоком. В жидкую фазу после первичной сепарации газового потока вводят водный раствор после десорбции метанола, направляют газожидкостную смесь для разделения на тяжелый углеводородный конденсат, газ дегазации высокого давления и водный раствор, газ дегазации высокого давления вводят в газовый поток после понижения давления газового потока, отделяют от легкого углеводородного конденсата газ дегазации низкого давления и водометанольный раствор средней концентрации, вводят водометанольный раствор средней концентрации в водометанольный раствор высокой концентрации перед повышением давления, вводят в тяжелый углеводородный конденсат легкий углеводородный конденсат, направляют углеводородный конденсат для отделения газа выветривания низкого давления, выводят углеводородный конденсат из установки, направляют на эжекцию газ выветривания низкого давления, вводят в газ выветривания низкого давления жидкую фазу после вторичной сепарации газового потока. Водный раствор после десорбции метанола делят на две части, первую часть водного раствора после десорбции метанола вводят в жидкую фазу после первичной сепарации газового потока, вторую часть водного раствора после десорбции метанола вводят в легкий углеводородный конденсат после окончательной сепарации газового потока для сорбции метанола. Технический результат заключается в увеличении срока эксплуатации насосов подачи водометанольного раствора, уменьшении расхода метанола во время простоя насосов. 1 ил.

Description

Изобретение относится к газовой промышленности, в частности, к обработке углеводородного газа с использованием низкотемпературного процесса и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений.
Известен способ подготовки углеводородного газа к транспорту методом низкотемпературной сепарации (НТС) газа в три ступени (Совершенствование технологии ингибирования гидратообразования установки низкотемпературной сепарации ачимовских залежей А.Ю. Корякин, А.Ю. Неудахин, Р.А. Мухетдинов и др. / Перспективные направления развития Уренгойского комплекса: Сборник научных трудов / ООО «Газпром добыча Уренгой». - М.: ООО «Издательский дом Недра», 2018. С. 166-171, рисунок 1), в котором газовый поток от кустов скважин подают на первичную сепарацию, вводят водометанольный раствор высокой концентрации в газовый поток, выводят из газового потока водный раствор после десорбции метанола, вводят в газовый поток метанол, охлаждают газовый поток на первом этапе воздухом, на втором этапе легким углеводородным конденсатом, на третьем этапе дважды отсепарированным газом, проводят вторичную сепарацию газового потока, вводят в газовый поток метанол, охлаждают газовый поток отсепарированным газом и за счет понижения давления, проводят окончательную сепарацию газового потока, нагревают в три ступени отсепарированный газ газовым потоком и выводят отсепарированный газ из установки, жидкую фазу после окончательной сепарации газового потока направляют для разделения на легкий углеводородный конденсат, газ дегазации среднего давления и водометанольный раствор высокой концентрации, возвращают газ дегазации среднего давления на повторную окончательную сепарацию совместно с газовым потоком, повышают давление водометанольного раствора высокой концентрации и направляют его для десорбции метанола, легкий углеводородный конденсат нагревают газовым потоком, в жидкую фазу после первичной сепарации газового потока вводят водный раствор после десорбции метанола, жидкую фазу после первичной сепарации газового потока и водный раствор после десорбции метанола смешивают с жидкой фазой после вторичной сепарации газового потока, направляют смешенный поток для отделения от тяжелого углеводородного конденсата, газа дегазации высокого давления и водометанольного раствора низкой концентрации, газ дегазации высокого давления вводят в газовый поток после понижения давления газового потока, водометанольный раствор низкой концентрации выводят из установки, тяжелый углеводородный конденсат смешивают с легким углеводородным конденсатом, углеводородный конденсат направляют для отделения газа выветривания, повторно направляют углеводородный конденсат для отделения газа выветривания низкого давления, выводят углеводородный конденсат из установки, смешивают газ выветривания и газ выветривания низкого давления, эжектируют смешанный газ выветривания в газовый поток при понижении давления.
Недостатком этого способа является ввод жидкой фазы после вторичной сепарации газового потока в жидкую фазу после первичной сепарации газового потока и водный раствор метанола после десорбции метанола, что приводит к поглощению тяжелым углеводородным конденсатом метанола из водометанольного раствора, получаемого при вторичной сепарации газового потока. В результате этого увеличиваются потери растворенного в конденсате метанола, а извлечение метанола из конденсата схемой не предусмотрено.
Снижение потерь метанола с конденсатом предусмотрены в схеме подготовки углеводородного газа к транспорту (Совершенствование технологии ингибирования гидратообразования установки низкотемпературной сепарации ачимовских залежей А.Ю. Корякин, А.Ю. Неудахин, Р.А. Мухетдинов и др. / Перспективные направления развития Уренгойского комплекса: Сборник научных трудов / ООО «Газпром добыча Уренгой». - М.: ООО «Издательский дом Недра», 2018. С. 166-171, рисунок 2), в котором газовый поток от кустов скважин подают на первичную сепарацию, десорбируют газовым потоком метанол из смесевого водометанольного раствора, вводят в газовый поток метанол, охлаждают газовый поток на первом этапе воздухом, на втором этапе легким углеводородным конденсатом, на третьем этапе дважды отсепарированным газом, проводят вторичную сепарацию газового потока, вводят в газовый поток метанол, охлаждают газовый поток отсепарированным газом и за счет понижения давления, проводят окончательную сепарацию газового потока, нагревают в три ступени отсепарированный газ газовым потоком и выводят отсепарированный газ из установки, жидкую фазу после окончательной сепарации газового потока направляют для разделения на легкий углеводородный конденсат, газ дегазации среднего давления и водометанольный раствор высокой концентрации, возвращают газ дегазации среднего давления на повторную окончательную сепарацию совместно с газовым потоком, повышают давление водометанольного раствора высокой концентрации и направляют его для десорбции метанола, легкий углеводородный конденсат нагревают газовым потоком, в жидкую фазу после первичной сепарации газового потока вводят водный раствор после десорбции метанола, направляют газожидкостную смесь для разделения на тяжелый углеводородный конденсат, газ дегазации высокого давления и водный раствор, газ дегазации высокого давления вводят в газовый поток после понижения давления газового потока, водный раствор делят на две части, первую часть водного раствора выводят из установки, вводят в нагретый легкий углеводородный конденсат вторую часть водного раствора для сорбции метанола, отделяют от легкого углеводородного конденсата газ дегазации низкого давления и водометанольный раствор средней концентрации, вводят водометанольный раствор средней концентрации в водометанольный раствор высокой концентрации перед повышением давления, вводят в тяжелый углеводородный конденсат легкий углеводородный конденсат, направляют углеводородный конденсат для отделения газа выветривания низкого давления, выводят углеводородный конденсат из установки, направляют на эжекцию газ выветривания низкого давления, вводят в газ дегазации низкого давления жидкую фазу после вторичной сепарации газового потока, вводят в газ выветривания низкого давления газ дегазации низкого давления с жидкой фазой после вторичной сепарации газового потока.
В этом способе за счет снижения концентрации водометанольного раствора при низкотемпературной сепарации при подаче жидкой фазы после вторичной сепарации газового потока на окончательную сепарацию газового потока и сорбции метанола потоком воды после первой ступени сепарации из легкого углеводородного конденсата снижается количество растворенного в углеводородном конденсате метанола. Как следствие уменьшается расход метанола при подготовке пластового флюида.
Недостатком этого способа является то, что в жидкой фазе после первичной сепарации, содержатся механические примеси, поступившие со скважин и состоящие из твердых веществ горной породы и продуктов гидроразрыва пласта (проппанта). Эти механические примеси содержатся в водном растворе, применяемом для сорбции метанола из легкого углеводородного конденсата. Из поступления механических примесей происходит сокращение межремонтного периода эксплуатации насосов, которыми подается водометанольный раствор. При выходе из строя насосов прекращается процесс десорбции метанола газовым потоком и увеличивается расход метанола.
Технический результат достигается за счет использования для сорбции метанола водного раствора после десорбции метанола, полученного в результате конденсации влаги при низкотемпературной сепарации газового потока.
Поставленная цель достигается следующим образом. В способе подготовки углеводородного газа к транспорту, в котором газовый поток от кустов скважин подают на первичную сепарацию, десорбируют газовым потоком метанол из смесевого водометанольного раствора, вводят в газовый поток метанол, охлаждают газовый поток на первом этапе воздухом, на втором этапе легким углеводородным конденсатом, на третьем этапе дважды отсепарированным газом, проводят вторичную сепарацию газового потока, вводят в газовый поток метанол, охлаждают газовый поток газом и за счет понижения давления, проводят окончательную сепарацию газового потока, нагревают отсепарированный газ в три ступени газовым потоком и выводят отсепарированный газ из установки, жидкую фазу после окончательной сепарации газового потока направляют для разделения на легкий углеводородный конденсат, газ дегазации среднего давления и водометанольный раствор высокой концентрации, возвращают газ дегазации среднего давления на повторную окончательную сепарацию совместно с газовым потоком, повышают давление водометанольного раствора высокой концентрации и направляют его для десорбции метанола, легкий углеводородный конденсат нагревают газовым потоком, в жидкую фазу после первичной сепарации газового потока вводят водный раствор после десорбции метанола, направляют газожидкостную смесь для разделения на тяжелый углеводородный конденсат, газ дегазации высокого давления и водный раствор, газ дегазации высокого давления вводят в газовый поток после понижения давления газового потока, водный раствор делят на две части, первую часть водного раствора выводят из установки, вводят в нагретый легкий углеводородный конденсат для сорбции метанола вторую часть водного раствора, отделяют от легкого углеводородного конденсата газ дегазации низкого давления и водометанольный раствор средней концентрации, вводят водометанольный раствор средней концентрации в водометанольный раствор высокой концентрации перед повышением давления, вводят в тяжелый углеводородный конденсат легкий углеводородный конденсат, направляют углеводородный конденсат для отделения газа выветривания низкого давления, выводят углеводородный конденсат из установки, направляют на эжекцию газ выветривания низкого давления, вводят в газ дегазации низкого давления жидкую фазу после вторичной сепарации газового потока, вводят в газ выветривания низкого давления газ дегазации низкого давления с жидкой фазой после вторичной сепарации газового потока, в отличие от прототипа водный раствор выводят из установки, водный раствор после десорбции метанола делят на две части, первую часть водного раствора после десорбции метанола вводят в жидкую фазу после первичной сепарации газового потока, вторую часть водного раствора после десорбции метанола вводят в легкий углеводородный конденсата для сорбции метанола.
Предлагаемое изобретение поясняется чертежом фиг. 1.
На иллюстрации обозначены следующие элементы:
1 - трубопровод;
2 - сепаратор первой ступени;
3 - трубопровод;
4 - трубопровод;
5 - колонна-десорбер;
6 - трубопровод;
7 - трубопровод;
8 - воздушный охладитель;
9 - трубопровод;
10 - теплообменник «газ-конденсат»;
11 -трубопровод;
12 - теплообменник «газ-газ»;
13 - трубопровод;
14 - теплообменник «газ-газ»;
15 - трубопровод;
16 - сепаратор второй ступени;
17 - трубопровод;
18 - трубопровод;
19 - теплообменник «газ-газ»;
20 - трубопровод;
21 - редуцирующее устройство (эжектор);
22 - трубопровод;
23 - сепаратор третьей ступени;
24 - трубопровод;
25 - трубопровод;
26 - трубопровод;
27 - трубопровод;
28 - трубопровод;
29 - трубопровод;
30 - трехфазный разделитель;
31 - трубопровод;
32 - трубопровод;
33 - трехфазный разделитель;
34 - трубопровод;
35 - трубопровод;
36 - трубопровод;
37 - трубопровод;
38 - трубопровод;
39 - буферная емкость;
40 - трубопровод;
41 - трубопровод;
42 - насос;
43 - трубопровод;
44 - трубопровод;
45 - трубопровод;
46 - трубопровод;
47 - трехфазный разделитель;
48 - трубопровод;
49 - трубопровод.
Газовый поток от кустов скважин по трубопроводу 1 подают в сепаратор первой ступени 2, где от него отделяют жидкую фазу после первичной сепарации газового потока, которую по трубопроводу 3 отводят для разделения на газ дегазации высокого давления, тяжелый углеводородный конденсат и водный раствор в трехфазный разделитель 47.
Газовый поток по трубопроводу 4 отводят из сепаратора первой ступени 2 и подают в колонну-десорбер 5 для сорбции метанола из водометанольного раствора высокой концентрации. Направляют газовый поток по трубопроводу 6 в воздушный охладитель 8. Вводят метанол по трубопроводу 7 в газовый поток, транспортируемый по трубопроводу 6. Подают газовый поток для охлаждения по трубопроводу 9 в теплообменник «газ-конденсат» 10. Далее газовый поток подают для дополнительного охлаждения дважды отсепарированным газом по трубопроводу 11 в теплообменник «газ-газ» 12 и по трубопроводу 13 в теплообменник «газ-газ» 14.
Из теплообменника 14 газовый поток подают по трубопроводу 15 в сепаратор второй ступени 16 для отделения от газового потока жидкой фазы после вторичной сепарации газового потока. Направляют газовый поток для охлаждения по трубопроводу 17 в теплообменник «газ-газ» 19. Вводят метанол по трубопроводу 18 в газовый поток, транспортируемый по трубопроводу 17. Далее подают газовый поток по трубопроводу 20 для охлаждения за счет понижения давления в редуцирующее устройство (эжектор) 21. Далее газовый поток по трубопроводу 22 подают в сепаратор третьей ступени 23.
Отсепарированный газ из сепаратора 23 подают для нагревания в три ступени по трубопроводу 24 в теплообменник «газ-газ» 19, по трубопроводу 25 в теплообменник «газ-газ» 14 и по трубопроводу 26 в теплообменник «газ-газ» 12. Нагретый отсепарированный газ по трубопроводу 27 выводят из установки.
Жидкую фазу после окончательной сепарации газового потока из сепаратора 23 по трубопроводу 29 направляют в трехфазный разделитель 30 для разделения на газ дегазации среднего давления, легкий углеводородный конденсат и водометанольный раствор высокой концентрации. Газ дегазации среднего давления из разделителя 30 по трубопроводу 28 направляют в сепаратор 23. Легкий углеводородный конденсат из разделителя 30 подают для нагревания по трубопроводу 31 в теплообменник «газ-конденсат» 10. Нагретый легкий углеводородный конденсат из теплообменника 10 по трубопроводу 32 подают в трехфазный разделитель 33 для разделения на газ выветривания, легкий углеводородный конденсат и водометанольный раствор средней концентрации. Газ выветривания из трехфазного разделителя 33 по трубопроводу 34 направляют в эжектор 21.
Газ дегазации высокого давления из трехфазного разделителя 47 по трубопроводу 35 поступает в газовый поток трубопровода 22, направляемого в сепаратор 23. Тяжелый углеводородный конденсат по трубопроводу 48 направляется в буферную емкость 39. Водный раствор из трехфазного разделителя 47 по трубопроводу 49 выводится из установки.
Высоконцентрированный водометанольный раствор из разделителя 30 по трубопроводу 41 транспортируют в насос 42. Подают по трубопроводу 37 из разделителя 33 водометанольный раствор средней концентрации в высоконцентрированный водометанольный раствор, транспортируемый по трубопроводу 41. Повышают давление смесевого водометанольного раствора с помощью насоса 42 и подают его по трубопроводу 43 в колонну-десорбер 5.
Водный раствор после десорбции метанола по трубопроводу 45 вводят в жидкую фазу после первичной сепарации, транспортируемую по трубопроводу 3. Отводят из трубопровода 45 по трубопроводу 46 часть водного раствора после десорбции метанола в легкий углеводородный конденсат, транспортируемый по трубопроводу 32 для сорбции метанола из легкого углеводородного конденсата.
Легкий углеводородный конденсат из трехфазного разделителя 33 по трубопроводу 38 вводят в поток тяжелого углеводородного конденсата 48 из разделителя 47 для подачи в буферную емкость 39. Из буферной емкости 39 по трубопроводу 44 нестабильный конденсат выводится из установки. Газ выветривания низкого давления из буферной емкости 39 по трубопроводу 40 вводят в поток газа выветривания 34 для подачи в эжектор 21.
Жидкую фазу после вторичной сепарации газового потока из промежуточного сепаратора 16 по трубопроводу 36 вводят в газ выветривания низкого давления, который транспортируется по трубопроводу 34 для смешения с газовым потоком в эжекторе 21.
Проведенными испытаниями на ГКП-22 Уренгойского месторождения установлено, что реализация предложенного способа подготовки газа позволяет увеличить срок эксплуатации насосов НДГ-2,5-Э-500/160 с 1720 часов до 4320 часов и предотвратить увеличение расхода метанола во время простоя насосов на 48%.

Claims (1)

  1. Способ подготовки углеводородного газа к транспорту, в котором газовый поток от кустов скважин подают на первичную сепарацию, десорбируют газовым потоком метанол из водометанольного раствора высокой концентрации, вводят в газовый поток метанол, охлаждают газовый поток на первом этапе воздухом, на втором этапе легким углеводородным конденсатом, на третьем этапе дважды отсепарированным газом, проводят вторичную сепарацию газового потока, вводят в газовый поток метанол, охлаждают газовый поток отсепарированным газом и за счет понижения давления, проводят окончательную сепарацию газового потока, в три ступени нагревают отсепарированный газ газовым потоком и выводят отсепарированный газ из установки, жидкую фазу после окончательной сепарации газового потока направляют для разделения на легкий углеводородный конденсат, газ дегазации среднего давления и водометанольный раствор высокой концентрации, возвращают газ дегазации среднего давления на повторную окончательную сепарацию совместно с газовым потоком, повышают давление водометанольного раствора высокой концентрации и направляют его для десорбции метанола, легкий углеводородный конденсат нагревают газовым потоком, в жидкую фазу после первичной сепарации газового потока вводят водный раствор после десорбции метанола, направляют газожидкостную смесь для разделения на тяжелый углеводородный конденсат, газ дегазации высокого давления и водный раствор, газ дегазации высокого давления вводят в газовый поток после понижения давления газового потока, отделяют от легкого углеводородного конденсата газ дегазации низкого давления и водометанольный раствор средней концентрации, вводят водометанольный раствор средней концентрации в водометанольный раствор высокой концентрации перед повышением давления, вводят в тяжелый углеводородный конденсат легкий углеводородный конденсат, направляют углеводородный конденсат для отделения газа выветривания низкого давления, выводят углеводородный конденсат из установки, направляют на эжекцию газ выветривания низкого давления, вводят в газ выветривания низкого давления жидкую фазу после вторичной сепарации газового потока, отличающийся тем, водный раствор после десорбции метанола делят на две части, первую часть водного раствора после десорбции метанола вводят в жидкую фазу после первичной сепарации газового потока, вторую часть водного раствора после десорбции метанола вводят в легкий углеводородный конденсат после окончательной сепарации газового потока для сорбции метанола.
RU2018145868A 2018-12-24 2018-12-24 Способ подготовки углеводородного газа к транспорту RU2701020C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018145868A RU2701020C1 (ru) 2018-12-24 2018-12-24 Способ подготовки углеводородного газа к транспорту

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018145868A RU2701020C1 (ru) 2018-12-24 2018-12-24 Способ подготовки углеводородного газа к транспорту

Publications (1)

Publication Number Publication Date
RU2701020C1 true RU2701020C1 (ru) 2019-09-24

Family

ID=68063232

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018145868A RU2701020C1 (ru) 2018-12-24 2018-12-24 Способ подготовки углеводородного газа к транспорту

Country Status (1)

Country Link
RU (1) RU2701020C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2725320C1 (ru) * 2019-12-25 2020-07-02 Общество с ограниченной ответственностью "Газпром добыча Иркутск" (ООО "Газпром добыча Иркутск") Способ подготовки углеводородного газа к транспорту
RU2754978C1 (ru) * 2020-11-16 2021-09-08 Общество с ограниченной ответственностью "Газпром добыча Иркутск" (ООО "Газпром добыча Иркутск") Способ подготовки углеводородного газа к транспорту
RU2765440C1 (ru) * 2021-01-11 2022-01-31 Общество с ограниченной ответственностью "Газпром добыча Уренгой" Способ оптимизации процесса подготовки товарного конденсата и устройство для его осуществления
RU2799882C1 (ru) * 2022-12-26 2023-07-13 Общество с ограниченной ответственностью "Газпром добыча Уренгой" Способ группового децентрализованного сбора газа

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454914A (en) * 1982-05-03 1984-06-19 Union Oil Company Of California Method for conditioning geothermal brine to reduce scale formation
SU1606827A1 (ru) * 1988-11-29 1990-11-15 Уренгойское Производственное Объединение Им.С.А.Оруджева Способ подготовки углеводородного газа к транспорту
RU2161526C1 (ru) * 2000-06-06 2001-01-10 Ананенков Александр Георгиевич Способ подготовки природного газа
RU2451538C1 (ru) * 2010-11-15 2012-05-27 Открытое акционерное общество "НОВАТЭК" Способ очистки сжиженных углеводородных газов и установка для ее осуществления
RU2646899C1 (ru) * 2017-01-09 2018-03-12 Общество с ограниченной ответственностью "Газпром добыча Уренгой" Способ подготовки углеводородного газа к транспорту

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454914A (en) * 1982-05-03 1984-06-19 Union Oil Company Of California Method for conditioning geothermal brine to reduce scale formation
SU1606827A1 (ru) * 1988-11-29 1990-11-15 Уренгойское Производственное Объединение Им.С.А.Оруджева Способ подготовки углеводородного газа к транспорту
RU2161526C1 (ru) * 2000-06-06 2001-01-10 Ананенков Александр Георгиевич Способ подготовки природного газа
RU2451538C1 (ru) * 2010-11-15 2012-05-27 Открытое акционерное общество "НОВАТЭК" Способ очистки сжиженных углеводородных газов и установка для ее осуществления
RU2646899C1 (ru) * 2017-01-09 2018-03-12 Общество с ограниченной ответственностью "Газпром добыча Уренгой" Способ подготовки углеводородного газа к транспорту

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ПРОКОПОВ А.В. и др. Специфика промысловой подготовки газов ачимовских залежей. Научно-технический сборник "Вести газовой науки", N1(33), 2018, с.227. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2725320C1 (ru) * 2019-12-25 2020-07-02 Общество с ограниченной ответственностью "Газпром добыча Иркутск" (ООО "Газпром добыча Иркутск") Способ подготовки углеводородного газа к транспорту
RU2754978C1 (ru) * 2020-11-16 2021-09-08 Общество с ограниченной ответственностью "Газпром добыча Иркутск" (ООО "Газпром добыча Иркутск") Способ подготовки углеводородного газа к транспорту
RU2765440C1 (ru) * 2021-01-11 2022-01-31 Общество с ограниченной ответственностью "Газпром добыча Уренгой" Способ оптимизации процесса подготовки товарного конденсата и устройство для его осуществления
RU2799882C1 (ru) * 2022-12-26 2023-07-13 Общество с ограниченной ответственностью "Газпром добыча Уренгой" Способ группового децентрализованного сбора газа
RU2799881C1 (ru) * 2022-12-26 2023-07-13 Общество с ограниченной ответственностью "Газпром добыча Уренгой" Способ группового децентрализованного сбора газа

Similar Documents

Publication Publication Date Title
RU2701020C1 (ru) Способ подготовки углеводородного газа к транспорту
US9638019B2 (en) Offshore processing method and system
AU2013224145B2 (en) Gas treatment system using supersonic separators
CN102740951B (zh) 高压高co2去除构造和方法
EP1970428A2 (en) Method and apparatus for separating gases
RU2689452C2 (ru) Модульная установка для обработки потока композиции обратного притока и способы его обработки
CN105013296A (zh) 一种耦合酸气提浓的天然气脱硫脱碳***及方法
RU2297520C2 (ru) Способ утилизации низконапорного газа
CN110093197B (zh) 一种用于油田伴生气的脱氮方法和脱氮***
CN104403710A (zh) 一种提高油田伴生气分离效率并回收二氧化碳的方法
CN109370641B (zh) 一种重油高效处理***及工艺
CN109569253B (zh) 稠油火驱采出气全密闭流程环保处理方法及装置
CN113482586A (zh) 一种海上热采稠油集输处理工艺包
CN112080321A (zh) 一种燃料油加氢注氨裂解装置及其工艺
CN104556281B (zh) 一种脱除水中含有的二氧化碳的方法
RU2599157C1 (ru) Способ подготовки углеводородного газа к транспорту
CN112031717A (zh) 开采石油的方法及具有其的采油***
CN212669616U (zh) 一种燃料油加氢注氨裂解装置
RU2175882C2 (ru) Способ подготовки углеводородного газа к транспорту "оптимет"
CN102464999A (zh) 一种油气吸收回收方法
CN216008468U (zh) 海上热采稠油集输处理工艺包
RU2365835C1 (ru) Способ подготовки углеводородного газа к транспорту с северных морских месторождений
RU2600141C1 (ru) Способ подготовки углеводородного газа к транспорту
RU2725320C1 (ru) Способ подготовки углеводородного газа к транспорту
CN210736676U (zh) 橇装式二氧化碳驱返排气脱硫脱水与二氧化碳回收***