RU2686481C1 - Адаптивный способ пространственного отождествления пеленгов с наземными источниками радиоизлучения и система для его реализации - Google Patents

Адаптивный способ пространственного отождествления пеленгов с наземными источниками радиоизлучения и система для его реализации Download PDF

Info

Publication number
RU2686481C1
RU2686481C1 RU2018109250A RU2018109250A RU2686481C1 RU 2686481 C1 RU2686481 C1 RU 2686481C1 RU 2018109250 A RU2018109250 A RU 2018109250A RU 2018109250 A RU2018109250 A RU 2018109250A RU 2686481 C1 RU2686481 C1 RU 2686481C1
Authority
RU
Russia
Prior art keywords
bearings
direction finding
iri
input
bearing
Prior art date
Application number
RU2018109250A
Other languages
English (en)
Inventor
Вячеслав Алексеевич Михеев
Александр Владимирович Васильев
Александр Григорьевич Тетеруков
Павел Алексеевич Кашевский
Иван Николаевич Тупчиенко
Original Assignee
Акционерное общество "Концерн радиостроения "Вега"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Концерн радиостроения "Вега" filed Critical Акционерное общество "Концерн радиостроения "Вега"
Priority to RU2018109250A priority Critical patent/RU2686481C1/ru
Application granted granted Critical
Publication of RU2686481C1 publication Critical patent/RU2686481C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S13/48Indirect determination of position data using multiple beams at emission or reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/418Theoretical aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к пассивной радиолокации и может использоваться в одно- и многопозиционных системах воздушного радиомониторинга для повышения эффективности отождествления пеленгов с наземными источниками радиоизлучения (ИРИ). Достигаемый технический результат – повышение вероятности правильного отождествления пеленгов и точность определения местоположения ИРИ. Указанный результат в способе адаптивного пространственного отождествления пеленгов с наземными ИРИ достигается за счет того, что бортовой станцией радиомониторинга в процессе полета летательного аппарата определяют пеленги αна ИРИ из точек x, y(i-я точка). Первый пеленг из полученной группы последовательно сравнивают с другими до тех пор, пока угол их пересечения не превзойдет заданную величину. Два пеленга, отвечающих указанному условию, считают опорными и находят координатыточки их пересечения. Относительно опорной точки строят доверительную область (ДО); отождествляют попадающие в ДО пеленги с ИРИ. Для каждой текущей (i-й) точки пеленгования вычисляют адаптированные к ней радиус и угловой размер ДО ИРИ; отождествляют попадающие в адаптированную ДО пеленги с ИРИ. Операции по обработке и отождествлению пеленгов с ИРИ выполняют в реальном масштабе времени. Система, реализующая способ, содержит бортовой пеленгатор, навигационную систему, устройство запоминания, два устройства сравнения, два устройства вычисления, определенным образом выполненные и соединенные между собой. Система пространственного отождествления пеленгов с наземными источниками радиоизлучения может быть реализована в рамках бортовой вычислительной системы. 2 н.п. ф-лы, 10 ил., 8 табл.

Description

Изобретение относится к пассивной радиолокации. Преимущественно может использоваться в одно- и многопозиционных системах воздушного радиомониторинга для повышения эффективности отождествления пеленгов с наземными источниками радиоизлучения (ИРИ).
Современные наземные ИРИ используют радиосигналы с псевдослучайно изменяемыми параметрами (несущая частота, длительность и период повторения импульсов, параметры модуляции и др.). Это обстоятельство затрудняет, а в ряде случаев исключает возможность использования указанных данных для идентификации с ними пеленгов, измеряемых воздушными однопозиционными угломерными системами при решении задач радиомониторинга.
В этой связи возникает объективная необходимость использования для отождествления пеленгов с ИРИ координатной информации, инвариантной к изменению радиотехнических параметров сигналов.
Задача отождествления пеленгов с наземными ИРИ по координатной информации может быть решена способами, приведенными в [1] (выбран в качестве прототипа), а также в [2, 3].
Основные недостатки прототипа:
- радиус доверительной области (ДО) ИРИ в процессе обработки пеленгов не адаптируют к текущей точке пеленгования, а используют вычисленный применительно к точке пеленгования на траверзе радиус для отождествления пеленгов, измеренных из других точек. При этом значительное количество пеленгов, в первую очередь полученных в точках измерения, дальность до ИРИ из которых существенно больше расстояния до источников радиоизлучения по линии траверза, с ними не отождествляется;
- построение ДО ИРИ и отождествление пеленгов выполняют не в реальном масштабе времени, а после получения группы пеленгов.
Заявляемый способ обладает следующими основными преимуществами:
- адаптацией радиуса ДО ИРИ применительно к текущей точке пеленгования с учетом взаимного пространственного положения точек пеленгования и координат центра ДО, благодаря которой (адаптации) обеспечивается заданная достоверность (доверительная вероятность) попадания истинного пеленга в соответствующую ДО;
- последовательной обработкой измеренных пеленгов в реальном масштабе времени;
- более высокой вероятностью правильного отождествления пеленгов и оперативностью решения воздушными одно- и многопозиционными угломерными системами задач радиомониторинга.
Предлагаемый способ может использоваться как на этапе первичного (при отсутствии данных о местоположении (МП) ИРИ), так и вторичного (при наличии оценочных значений МП ИРИ или предварительно сгруппированных пеленгов) отождествления пеленгов.
Одновременно предлагается система пространственного отождествления пеленгов (в горизонтальной плоскости) с наземными источниками радиоизлучения, реализующая этот способ.
Сущность заявляемого способа поясняется на примере пеленгования однопозиционной воздушной системой радиомониторинга одного ИРИ (фигура 1).
Летательный аппарат (ЛА), оснащенный станцией радиомониторинга (СРМ), осуществляет прямолинейный полет по заданному маршруту. В процессе полета бортовая СРМ последовательно осуществляет пеленгование наземного неподвижного ИРИ из точек xi для определения пеленгов по азимуту αi, где
Figure 00000001
L - база пеленгования.
После измерения первого пеленга производится запоминание его значения и координат точки пеленгования (координат xi, yi ЛА в момент измерения первого пеленга).
При поступлении второго пеленга его значение и координаты соответствующей ему точки пеленгования также запоминаются. Затем выполняется вычисление угла пересечения первого и второго пеленгов γ=|α12| и проверка удовлетворения значения данного угла условию 30°<γ=γоп<120°, где γоп - угол пересечения опорных пеленгов.
Если параметры первого и второго пеленгов не соответствуют данному условию, то этой же процедуре подвергаются очередные (вновь полученные) пеленги до тех пор, пока угол пересечения текущего пеленга с первым не попадет в указанный диапазон. Применительно к фигуре 1, (i-1)-й пеленг пересекается с первым, но не удовлетворяет заданному условию и поэтому не становится вторым опорным.
После попадания угла γ в указанный диапазон углов пересечения, оба пеленга (на фиг. 1 это 1-й и i-й пеленги для заявляемого способа, 1-й и (i+1)-й пеленги для способа-прототипа) считаются опорными, и производится оценка опорных координат ИРИ как точки их пересечения по формулам
Figure 00000002
Figure 00000003
где L12 - расстояние между 1-й и 2-й опорными точками нахождения ЛА в момент пеленгования, α1оп и α2оп - опорные пеленги на ИРИ из 1-й и 2-й опорных точек измерения соответственно.
Оцениваемые по двум опорным пеленгам координаты ИРИ используются для определения (задания) центра и радиуса ДО, а также вычисления оценочных значений дальностей до ИРИ из текущих точек пеленгования.
Радиус доверительной области Rдо, в которую попадают с заданной доверительной вероятностью (достоверностью) Рдов мп координаты истинного местоположения (МП) ИРИ (истинные пеленги), рассчитывается с использованием формулы [4]
Figure 00000004
где ρ - расстояние от центра ДО до точки истинного МП ИРИ,
σα - среднеквадратическая ошибка измерения пеленгов, D - дальность до ИРИ из точки пеленгования.
Задавая Рдов мп, например, для Рдов мп=0,9, получаем выражение для расчета Rдоi применительно к каждой текущей (i-й) точке пеленгования
Figure 00000005
где Di - дальность до ИРИ из текущей (i-й) точки пеленгования,
Figure 00000006
Радиус Rдо ДОдля всех точек пеленгования в способе-прототипе вычисляется по формуле
Figure 00000007
где Dт - дальность до ИРИ по линии траверза.
Из выражений (4) и (5) следует, что радиус ДО в заявляемом способе изменяется в зависимости от точки пеленгования: Rдоi=var, а в способе-прототипе остается одним и тем же для всех точек пеленгования: Rдoi=Rдо=const.
Далее реализуется алгоритм отождествления ранее поступивших и очередных (вновь полученных) пеленгов с ИРИ, включающий следующие операции:
- вычисление по известным координатам точки измерения пеленга, оценочным (опорным) значениям МП ИРИ и σ а по формуле (4) радиуса доверительной области Rдоi для текущей точки пеленгования;
- определение по известным координатам точки измерения пеленга, вычисленному Rдоi и оценочным значениям координат ИРИ углового размера ДО (сектора) Δβi=|βi1i2|, где βi1, (βi2) - угол наклона первой (второй) касательной к ДО из i-й точки пеленгования, в пределах которого происходит попадание в нее пеленга, измеренного из текущей точки пеленгования;
- проверку условия попадания пеленга на ИРИ из текущей точки пеленгования в пределы сектора βi1≤αi≤βi2;
- отождествление пеленга, удовлетворяющего указанному условию, с ИРИ.
Проверка работоспособности и оценка эффективности предлагаемого технического решения проводились путем статистического имитационного моделирования на ЭВМ применительно к пеленгованию одного ИРИ.
Моделирование осуществлялось путем задания координат точек пеленгования и наземного ИРИ, по которым рассчитывались пеленги на него. К вычисленным пеленгам добавлялись ошибки их измерения. Отождествление пеленгов, имитирующих измеренные, проводилось заявляемым способом и способом - прототипом для восемнадцати вариантов исходных данных:
- СКО измерения пеленгов σ а =0,3°:
1) значение отношения дальности до ИРИ по линии траверза к базе Dт/L=0,1 и количество пеленгов I=5, 15, 31 шт.;
2) Dт/L=0,3 и I=5, 15, 31 шт.;
3) Dт/L=0,6 и I=5, 15, 31 шт.;
- СКО измерения пеленгов σa=3,0°:
1) Dт/L=0,1 и I=5, 15, 31 шт.;
2) Dт/L=0,3 и I=5, 15, 31 шт.;
3) Dт/L=0,6 и I=5, 15, 31 шт.
Качество отождествления пеленгов оценивалось вероятностью их правильного отождествления
Figure 00000008
равной относительной частоте (отношение числа пеленгов, попадающих в ДО ИРИ, к общему числу измеренных на него пеленгов), а эффективность Э - отношением
Figure 00000009
где
Figure 00000010
вероятность правильного отождествления заявляемым способом,
Figure 00000011
вероятность правильного отождествления способом - прототипом.
Результаты оценки
Figure 00000012
и сравнительной эффективности Э предлагаемого способа и способа-прототипа, полученные путем статистического имитационного моделирования на ЭВМ в 100 опытах, а также данные по их надежности (достоверности) и точности приведены на фигурах 2-9 (сплошная линия относится к заявляемому способу, пунктирная - к способу-прототипу, а графики 1, 2, 3 - к значениям количества пеленгов I=5, 15, 31 шт. соответственно) и в таблицах 1-8.
На фигурах 2, 3 и в таблицах 1, 2 приведены результаты оценки вероятности правильного отождествления пеленгов заявляемым способом и прототипом для значений σа=0,3°; 3,0°, Dт/L=0,1 и I=5, 15, 31 шт.
Figure 00000013
Figure 00000014
Анализ представленных на графиках (фигуры 2, 3) и в таблицах 1, 2 данных показывает, что по вероятности правильного отождествления пеленгов заявляемый способ превосходит прототип в 1,5 раза при I=5 шт., в 1,8 раза при I=15 шт. и в 2,1 раза при I=31 шт.
Превосходство предлагаемого способа возрастает по мере увеличения количества обрабатываемых пеленгов и практически не зависит от СКО их измерения. Преимущество заявляемого технического решения достигается благодаря тому, что в нем, в отличие от прототипа, применяется адаптация радиуса (размера) ДО ИРИ к текущей точке пеленгования в соответствии с формулой (4). Размеры ДО ИРИ в способе - прототипе вычисляются по выражению (5) только для точки пеленгования на траверзе и без корректировки применяются для обработки пеленгов, полученных в остальных точках измерения, дальность из значительного числа которых до ИРИ может быть существенно больше расстояния до него по линии траверза. В частности, в анализируемом варианте исходных данных дальность до ИРИ из крайних точек пеленгования превосходит расстояние по линии траверза в 5,1 раза.
На фигурах 4, 5 и в таблицах 3, 4 представлены результаты сравнительной оценки вероятности правильного отождествления пеленгов для значений σа=0,3°; 3,0°, Dт/L=0,3 и I=5, 15, 31 шт.
Figure 00000015
Figure 00000016
Данные, приведенные на графиках (фигуры 4, 5) и в таблицах 4, 5 свидетельствуют о том, что по вероятности правильного отождествления пеленгов заявляемый способ превосходит прототип примерно в 1, 2 раза во всех вариантах по количеству пеленгов независимо от СКО их измерения.
Преимущество предлагаемого способа достигается за счет, во-первых, адаптации размера ДО ИРИ к текущей точке пеленгования и, во-вторых, благодаря использованию в формуле (4)вычисления радиуса ДО ИРИ математически обоснованного в соответствии с выражением (3) коэффициента пропорциональности, равного 2,146 (применяемый в способе - прототипе аналогичный сомножитель в формуле (5) равен двум).
На фигурах 6, 7 и в таблицах 5, 6 представлены результаты сравнительной оценки вероятности правильного отождествления пеленгов для значений σа=0,3°; 3,0°, Dт/L=0,6 и I=5, 15, 31 шт.
Figure 00000017
Figure 00000018
Анализ представленных на графиках (фигуры 6, 7) и в таблицах 6, 7 данных показывает, что по вероятности правильного отождествления пеленгов заявляемый способ превосходит прототип примерно в 1,1 раза во всех вариантах по количеству пеленгов независимо от СКО их измерения.
Преимущество предлагаемого способа в этом варианте исходных данных достигается благодаря использованию для вычисления радиуса ДО ИРИ оптимального (по критерию доверительной вероятности) коэффициента, равного 2,146 при Рдов мп=0,9, вместо применяемого в способе - прототипе аналогичного сомножителя равного двум.
Показатели надежности (достоверности) и точности результатов оценки вероятности правильного отождествления пеленгов заявляемым способом и способом - прототипом для шести наихудших (при наибольших значениях СКО оценки вероятности правильного отождествления) исследованных вариантов, полученные путем статистической обработки данных 100 опытов, представлены на фигурах 8, 9 и в таблицах 7, 8.
На графиках (фигура 8) и в таблице 7 приведены значения СКО, доверительной вероятности Рдов оц и доверительных интервалов оценки вероятности правильного отождествления пеленгов заявляемым способом и способом - прототипом для значений σа=0,3°; Dт/L=0,1 и I=5, 15, 31 шт.
Figure 00000019
На графиках (фигура 9) и в таблице 8 приведены значения СКО, доверительной вероятности Рдов оц и доверительных интервалов оценки вероятности правильного отождествления пеленгов заявляемым способом и способом - прототипом для значений σа=3,0; Dт/L=0,1; I=5, 15, 31 шт.
Figure 00000020
Данные на фигурах 8, 9 и в таблицах 7, 8 свидетельствуют о том, что с 95 - процентной достоверностью значения оценок вероятности правильного отождествления пеленгов заявляемым способом и способом - прототипом, полученные путем статистического имитационного моделирования в 100 опытах, находятся в пределах доверительных интервалов:
Figure 00000021
и
Figure 00000022
- для четырех из шести наихудших (при наибольших значениях СКО оценки вероятности правильного отождествления) исследованных вариантов;
Figure 00000023
и
Figure 00000024
- для двух из шести наихудших вариантов.
На фигуре 10 представлена упрощенная структурная схема системы пространственного отождествления пеленгов с наземными источниками радиоизлучения, реализующей предлагаемый способ, где входные сигналы обозначены цифрами, а выходные - цифрами в квадратных скобках.
Система включает в себя бортовой пеленгатор (БП) для измерения пеленгов по азимуту αi на ИРИ, навигационную систему (НС) для определения координат xi, yi летательного аппарата, устройство запоминания (УЗ), устройство сравнения (УС1), устройство сравнения (УС2), устройство вычисления (УВ1) и устройство вычисления (УВ2).
Перечисленные устройства, за исключением БП и НС, объединены в бортовую вычислительную систему (БВС).
Система работает следующим образом.
Сигналы от наземного ИРИ поступают на вход 1 бортового пеленгатора, измеряющего пеленги по азимуту αi на ИРИ, которые с выхода [1] БП подаются на вход 1 УЗ. Одновременно с выхода [1] НС на вход 2 УЗ подаются значения координат точек пеленгованиях xi, yi.
После измерения первого пеленга УЗ производится запоминание его значения и координат точки пеленгования.
При поступлении на вход 1 УЗ второго пеленга и координат соответствующей ему точки пеленгования, значения пеленга и координат запоминаются УЗ. Далее значения αi, xi, yi, относящиеся к первому и второму пеленгам, поступают на вход 1 УС1, которое выполняет вычисление утла γ=|α12| между ними и проверку удовлетворения значения данного угла условию 30°<γ=γоп<120°.
Если это условие не выполняется, то система продолжает работать в режиме ожидания поступления очередного пеленга с выхода [1] БП.
После поступления на вход 1 УЗ вновь полученного (очередного) пеленга его параметры запоминаются, затем подаются на вход 1 УС1, которое выполняет вышеперечисленные операции.
В случае попадания угла γ в указанный диапазон углов пересечения, соответствующие два пеленга считаются опорными. Значения опорных пеленгов αоп1(2) и соответствующих им координат точек пеленгования xoп1(2), yоп1(2) с выхода [1] УС1, а также параметры остальных пеленгов αi, хi, уi c выхода [1] УЗ подаются на вход 1 и вход 2 УВ1 соответственно, которое вычисляет опорные координаты
Figure 00000025
ИРИ по формулам (1, 2), а также радиус ДО согласно (5) и угловой размер ДО Δβ=|βiт1iт2| для точки пеленгования по линии траверза (применяется только в прототипе).
Далее с выхода [2] УВ1на вход 2 УВ2 поступают значения
Figure 00000025
а с выхода [1] УЗ на вход 1УВ2 - параметры измеренных пеленгов αi, xi, yi, которое вычисляет угловой размер ДО Δβi=|βi1i2| для каждой текущей точки пеленгования (применяется в заявляемой системе).
Затем с выхода [2] УВ1 на вход 2 УС2 поступают значения βiт1, βiт2, а с выхода [1] УВ2 на вход 3УС2 - βi1, βi2. Одновременно с выхода [1] УЗ на вход 1 УС2 подаются параметры измеренных пеленгов αi, xi, yi.
По этим данным УС2 реализует проверку попадания текущих пеленгов в пределы сектора βiт1≤αi≤βiт2 (применяется только в прототипе) и в пределы сектора βi1≤αi≤βi2 (применяется в заявляемой системе), а также формирует список отождествленных с ИРИ пеленгов и соответствующих им координат точек пеленгования V=[α1, х1, у1; …αi, хi, уi; …αI, хI, yI] в интересах потребителей.
Реализация заявляемого технического решения, включающего адаптацию радиуса ДО ИРИ к текущей точке пеленгования и обработку в реальном масштабе времени, позволит существенно повысить вероятность правильного отождествления пеленгов и, благодаря этому, точность определения МП ИРИ, а также оперативность решения воздушными одно- и многопозиционными угломерными системами задач радиомониторинга.
ЛИТЕРАТУРА
1. Мельников Ю.П., Попов С.В. Радиотехническая разведка. - М.: Радиотехника, 2008.
2. Гребенников В.Б., Меркулов В.И., Тетеруков А.Г. Алгоритм многоцелевого сопровождения объектов в пассивной многопозиционной радиолокационной системе // Успехи современной радиоэлектроники. 2016. №2.
3. Уфаев В.А. Синтез алгоритмов межпериодной идентификации результатов синхронного многопозиционного пеленгования // Антенны. 2016. Вып. 6 (226).
4. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. Определения, теоремы, формулы. М.: Наука, 1974.

Claims (2)

1. Адаптивный способ пространственного отождествления пеленгов с наземными источниками радиоизлучения (ИРИ), заключающийся в том, что бортовой станцией радиомониторинга (СРМ) в процессе полета летательного аппарата последовательно осуществляют пеленгование ИРИ из точек xi, yi (i-я точка) для определения пеленгов по азимуту αi; после получения группы пеленгов берут первый пеленг и последовательно сравнивают с другими до тех пор, пока угол их пересечения γ не удовлетворит условию 30°<γ=γоп<120°, где
Figure 00000026
два пеленга, отвечающих указанному условию, считают опорными и находят координаты
Figure 00000027
точки их пересечения; относительно этой точки пересечения строят доверительную область (ДО), радиус Rдо которой вычисляют по формуле
Figure 00000028
где Dт - дальность до ИРИ по линии траверза, σα - среднеквадратическая ошибка измерения пеленгов; отождествляют попадающие в ДО пеленги с ИРИ, отличающийся тем, что для каждой текущей (i-й) точки пеленгования вычисляют радиус ДО ИРИ Rдoi из формулы Рдов мп=1-exp(-R2 доi/2σ2 αDi 2), где Рдов мп - заданная доверительная вероятность попадания истинного местоположения ИРИ в ДО, σα - среднеквадратическая ошибка измерения пеленгов, Di - дальность до ИРИ из текущей (i-й) точки пеленгования, и угловой размер ДО (сектор)
Figure 00000029
где βi1, (βi2) - угол наклона первой (второй) касательной к ДО из текущей (i-й) точки пеленгования, в пределах которого происходит попадание пеленга в ДО; проверяют для каждой текущей точки пеленгования попадание измеренного пеленга в пределы сектора βi1≤αi≤βi2; отождествляют попадающие в ДО пеленги с ИРИ; при этом операции по обработке и отождествлению пеленгов с ИРИ выполняют по мере их измерения в реальном масштабе времени.
2. Система пространственного отождествления пеленгов с наземными источниками радиоизлучения, реализующая способ по п. 1, содержащая бортовой пеленгатор (БП) для измерения пеленгов по азимуту αi на ИРИ, навигационную систему (НС) для определения координат xi, yi летательного аппарата, устройство запоминания (УЗ) осуществляет запоминание измеренных пеленгов на ИРИ и координат точек пеленгования, устройство сравнения (УС1) реализует проверку попадания измеренных пеленгов в диапазон опорных пеленгов, устройство сравнения (УС2), устройство вычисления (УВ1) для вычисления по двум опорным пеленгам и соответствующим им координатам точек пеленгования опорных координат ИРИ, а также радиуса ДО и углового размера ДО (сектора)
Figure 00000030
для точки пеленгования по линии траверза; при этом на вход 1 БП поступают сигналы от ИРИ, выход 1 БП соединен с входом 1 УЗ, выход 1 НС соединен с входом 2 УЗ, выход 1 УЗ соединен с входом 1 УС1, входом 2 УВ1 и с входом 1 УС2, выход 1 УС 1 соединен с входом 1 УВ1, выход 2 УВ1 соединен с входом 2 УС2, отличающаяся тем, что дополнительно содержит устройство вычисления (УВ2) с функцией вычисления по координатам точек пеленгования и опорным координатам ИРИ радиуса ДО и углового размера ДО (сектора)
Figure 00000031
для каждой текущей точки пеленгования; выход 1 УЗ соединен с входом 1 УВ2, выход 1 УВ1 соединен с входом 2 УВ2, выход 1 УВ2 соединен с входом 3 УС2; при этом в УС2 реализуется проверка попадания текущего пеленга в пределы сектора βiт1≤αi≤βiт2 и в пределы сектора βi1≤αi≤βi2, а также формирование списка значений отождествленных пеленгов и соответствующих им координат точек пеленгования V=[α1, х1, y1; … αi, хi, yi; … αI, xI, yI].
RU2018109250A 2018-03-15 2018-03-15 Адаптивный способ пространственного отождествления пеленгов с наземными источниками радиоизлучения и система для его реализации RU2686481C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018109250A RU2686481C1 (ru) 2018-03-15 2018-03-15 Адаптивный способ пространственного отождествления пеленгов с наземными источниками радиоизлучения и система для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018109250A RU2686481C1 (ru) 2018-03-15 2018-03-15 Адаптивный способ пространственного отождествления пеленгов с наземными источниками радиоизлучения и система для его реализации

Publications (1)

Publication Number Publication Date
RU2686481C1 true RU2686481C1 (ru) 2019-04-29

Family

ID=66430304

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018109250A RU2686481C1 (ru) 2018-03-15 2018-03-15 Адаптивный способ пространственного отождествления пеленгов с наземными источниками радиоизлучения и система для его реализации

Country Status (1)

Country Link
RU (1) RU2686481C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2731682C1 (ru) * 2020-02-06 2020-09-07 Акционерное общество "Концерн "Созвездие" Способ пространственного отождествления пеленгов с наземными источниками радиоизлучения
RU2752795C1 (ru) * 2020-11-16 2021-08-06 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Способ определения координат наземной цели радиолокационной системой, состоящей из приемника-пеленгатора и многолучевого передатчика
RU2752863C1 (ru) * 2020-06-03 2021-08-11 Акционерное общество "Концерн "Созвездие" Способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке
RU2799498C1 (ru) * 2022-09-16 2023-07-05 Акционерное общество "Концерн "Созвездие" Способ комплексирования пеленга и координат источника радиоизлучения

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201501A (ja) * 1995-01-24 1996-08-09 Nec Corp 電波源位置標定装置
RU2253126C1 (ru) * 2004-01-14 2005-05-27 Открытое акционерное общество "Корпорация "Фазотрон-Научно-исследовательский институт радиостроения" Способ отождествления пеленгов источников радиоизлучений в угломерных двухпозиционных пассивных радиолокационных системах
WO2006114426A1 (fr) * 2005-04-26 2006-11-02 Thales Dispositif et procede de localisation passive de cibles rayonnantes
US20080079542A1 (en) * 2006-09-26 2008-04-03 Broadcom Corporation, A California Corporation Radio frequency identification (RFID) carrier and system
RU2330306C1 (ru) * 2006-12-15 2008-07-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт "Градиент" Способ обнаружения и определения координат и параметров цели в многопозиционной радиолокационной системе
RU2503969C1 (ru) * 2012-05-03 2014-01-10 Закрытое акционерное общество Научно-производственное предприятие "Спец-Радио" (ЗАО НПП "Спец-Радио") Триангуляционно-гиперболический способ определения координат радиоизлучающих воздушных объектов в пространстве
RU2557784C1 (ru) * 2014-01-29 2015-07-27 Акционерное общество "Концерн радиостроения "Вега" (АО "Концерн "Вега") Способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201501A (ja) * 1995-01-24 1996-08-09 Nec Corp 電波源位置標定装置
RU2253126C1 (ru) * 2004-01-14 2005-05-27 Открытое акционерное общество "Корпорация "Фазотрон-Научно-исследовательский институт радиостроения" Способ отождествления пеленгов источников радиоизлучений в угломерных двухпозиционных пассивных радиолокационных системах
WO2006114426A1 (fr) * 2005-04-26 2006-11-02 Thales Dispositif et procede de localisation passive de cibles rayonnantes
US20080079542A1 (en) * 2006-09-26 2008-04-03 Broadcom Corporation, A California Corporation Radio frequency identification (RFID) carrier and system
RU2330306C1 (ru) * 2006-12-15 2008-07-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт "Градиент" Способ обнаружения и определения координат и параметров цели в многопозиционной радиолокационной системе
RU2503969C1 (ru) * 2012-05-03 2014-01-10 Закрытое акционерное общество Научно-производственное предприятие "Спец-Радио" (ЗАО НПП "Спец-Радио") Триангуляционно-гиперболический способ определения координат радиоизлучающих воздушных объектов в пространстве
RU2557784C1 (ru) * 2014-01-29 2015-07-27 Акционерное общество "Концерн радиостроения "Вега" (АО "Концерн "Вега") Способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2731682C1 (ru) * 2020-02-06 2020-09-07 Акционерное общество "Концерн "Созвездие" Способ пространственного отождествления пеленгов с наземными источниками радиоизлучения
RU2752863C1 (ru) * 2020-06-03 2021-08-11 Акционерное общество "Концерн "Созвездие" Способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке
RU2752795C1 (ru) * 2020-11-16 2021-08-06 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Способ определения координат наземной цели радиолокационной системой, состоящей из приемника-пеленгатора и многолучевого передатчика
RU2799498C1 (ru) * 2022-09-16 2023-07-05 Акционерное общество "Концерн "Созвездие" Способ комплексирования пеленга и координат источника радиоизлучения

Similar Documents

Publication Publication Date Title
RU2686481C1 (ru) Адаптивный способ пространственного отождествления пеленгов с наземными источниками радиоизлучения и система для его реализации
CN106054134A (zh) 一种基于tdoa的快速定位方法
US20160178752A1 (en) Navigation and integrity monitoring
RU2432580C1 (ru) Способ определения координат источника радиоизлучений при амплитудно-фазовой пеленгации с борта летательного аппарата
RU2458358C1 (ru) Угломерно-корреляционный способ определения местоположения наземных источников радиоизлучения
JP2008134256A (ja) パッシブコヒーレント探索アプリケーションにおいて、集中方式で関連付けし追尾するシステムおよび方法
US9660740B2 (en) Signal strength distribution establishing method and wireless positioning system
US9612316B1 (en) Correlation and 3D-tracking of objects by pointing sensors
Al-odhari et al. Positioning of the radio source based on time difference of arrival method using unmanned aerial vehicles
EP3146356B1 (en) Direct geolocation from tdoa, fdoa, and agl
US20060063537A1 (en) Method and apparatus for determining position of mobile communication terminal
WO2013124292A1 (en) Method and system for simultaneous receiver calibration and object localisation for multilateration
CN107205226B (zh) 基于信道分类的室内定位跟踪方法及***
RU2613369C1 (ru) Способ навигации летательного аппарата с использованием высокоточного одноэтапного пеленгатора и адресно-ответной пакетной цифровой радиолинии в дкмв диапазоне
EP3232220B1 (en) Method and device for estimating accuracy of a position determination
US9030350B2 (en) Method for initializing Cartesian tracks based on bistatic measurements performed by one or more receivers of a multistatic radar system
US8797899B2 (en) System and method for probabilistic WLAN positioning
Grabbe et al. Geo-location using direction finding angles
Chen et al. TDOA/FDOA mobile target localization and tracking with adaptive extended Kalman filter
US20160247392A1 (en) A method and system for 3d position estimation of an object using time of arrival measurements
US20200033439A1 (en) Multi-algorithm trilateration system
RU137394U1 (ru) Устройство обработки информации сети разнесенных в пространстве постов пеленгации
US10451417B2 (en) Acquisition and/or tracking of remote object
Neamati et al. Set-based ambiguity reduction in shadow matching with iterative GNSS pseudoranges
CN114861725A (zh) 一种目标感知跟踪的后处理方法、装置、设备及介质