RU2685072C1 - Способ исследования процесса горения порошков металлов или их смесей - Google Patents

Способ исследования процесса горения порошков металлов или их смесей Download PDF

Info

Publication number
RU2685072C1
RU2685072C1 RU2018124660A RU2018124660A RU2685072C1 RU 2685072 C1 RU2685072 C1 RU 2685072C1 RU 2018124660 A RU2018124660 A RU 2018124660A RU 2018124660 A RU2018124660 A RU 2018124660A RU 2685072 C1 RU2685072 C1 RU 2685072C1
Authority
RU
Russia
Prior art keywords
radiation
laser
photodiode
combustion process
amplifier
Prior art date
Application number
RU2018124660A
Other languages
English (en)
Inventor
Федор Александрович Губарев
Линь Ли
Андрей Владимирович Мостовщиков
Александр Петрович Ильин
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет"
Priority to RU2018124660A priority Critical patent/RU2685072C1/ru
Application granted granted Critical
Publication of RU2685072C1 publication Critical patent/RU2685072C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Изобретение относится к области квантовой электроники, а именно неразрушающему контролю и диагностике оптическими методами, и может быть использовано для исследования процессов высокотемпературного горения порошков металлов, а также процессов взаимодействия лазерного излучения с веществом. Заявленный способ исследования процесса горения порошков металлов или их смесей включает поджиг объекта исследования, фокусировку излучения лазерного усилителя, работающего в режиме сверхсветимости на объекте исследования, сбор и направление сигнала, отраженного от него, на вход лазерного усилителя яркости, где его усиливают и проецируют на цифровую камеру, изображение которой передают в персональный компьютер, где представляют в цифровом виде для обработки и анализа изображений, причем импульс сверхсветимости лазерного усилителя синхронизуют с экспозицией цифровой камеры. Одновременно инициируют процесс горения в предварительно спрессованном порошке с помощью сфокусированного излучения инициирующего лазера, фиксируют момент начала воздействия инициирующего излучения одним фотодиодом, освещают поверхность объекта сфокусированным излучением усилителя яркости, усиливают отраженное излучение, масштабируют по интенсивности, регистрируют полное излучение вторым фотодиодом, регистрируют монохроматическое излучение цифровой камерой. По интенсивности сигнала второго фотодиода судят об отражательной способности поверхности порошка во время и после воздействия излучением инициирующего лазера, а по форме сигнала второго фотодиода судят о временных параметрах процесса горения. Технический результат - возможность одновременного инициирования процесса горения и получения количественной информации о временных характеристиках процессов горения порошков металлов и их смесей в режиме реального времени. 2 ил.

Description

Изобретение относится к области квантовой электроники, а именно неразрушающему контролю и диагностике оптическими методами, и может быть использовано для исследования процессов высокотемпературного горения порошков металлов, а также процессов взаимодействия лазерного излучения с веществом.
Известен способ исследования высокотемпературных процессов при взаимодействии лазерного излучения с веществом с помощью лазерного проекционного микроскопа, [Абрамов Д.В., Галкин А.Ф., Жаренова С.В., Климовский И.И., Прокошев В.Г, Шаманская Е.Л. Визуализация с помощью лазерного монитора взаимодействия лазерного излучения с поверхностью стекло- и пироуглерода // Известия Томского политехнического университета, Т. 312, № 2, 2008. – Р. 97–101]. С помощью Nd-YAG лазера осуществляют нагрев поверхности углеродного образца. Усилитель яркости на парах меди формирует оптические изображения области лазерного воздействия, изображения регистрируют CMOS-сенсором. Максимальная частота съемки системы регистрации изображения составляет 5000 кадров в секунду, частота работы лазерного усилителя составляет 16 кГц.
Данный способ не позволяет провести количественную оценку характеристик наблюдаемых процессов в режиме реального времени, данные о процессе могут быть получены только после обработки видеозаписи с использованием специального программного обеспечения, в видеозаписи могут возникать пропущенные кадры.
Известен способ исследования процесса горения нанопорошка алюминия в воздухе путем лазерного инициирования [Medvedev V., Tsipilev V., Reshetov A., Ilyin A.P. Conditions of millisecond laser ignition and thermostability for ammonium perchlorate/aluminum mixtures // Propellants, Explosives, Pyrotechnics, Vol. 42, No 3, 2017. – Р. 243-246]. Используют неодимовый лазер с длиной волны 1,06 мкм, работающий в квазинепрерывном режиме. Путем изменения мощности излучения лазера определяют пороговые значения мощности. Время воздействия задают длительностью инициирующего лазерного импульса. Наблюдение за процессом осуществляют визуально невооруженным глазом.
Однако с помощью этого способа невозможно вести наблюдение поверхности образцов с температурами несколько тысяч градусов, в частности, второй стадии горения нанопорошка алюминия. Интенсивная фоновая засветка препятствует изучению процесса в режиме реального времени. Количественная оценка временных параметров процесса горения при наблюдении невооруженным глазом практически невозможна.
Известен способ исследования процесса горения смеси крупнодисперсных порошков металлов [Evtushenko G.S., Trigub M.V., Gubarev F.A., Evtushenko T.G., Torgaev S.N., Shiyanov D.V. Laser monitor for non-destructive testing of materials and processes shielded by intensive background lighting // Review of Scientific Instruments, 2014, Vol. 85, 033111-1–033111-5], включающий фокусировку излучения лазерного усилителя, работающего в режиме сверхсветимости, на объекте исследования отраженный от него сигнал собирают и направляют на вход лазерного усилителя, где его усиливают и проецируют системой формирования изображения на высокоскоростную CCD-камеру. Изображение с высокоскоростной CCD-камеры передают в персональный компьютер, где представляют в цифровом виде для обработки и анализа изображения. Импульс сверхсветимости лазерного усилителя синхронизуют с экспозицией высокоскоростной CCD-камеры и изменяют скорость съемки высокоскоростной CCD-камеры путем формирования синхроимпульса с частотой, кратной неизменной частоте работы лазерного усилителя. Поджиг смеси порошков металлов осуществляют с помощью нагретой спирали или открытого огня.
Способ позволяет визуально наблюдать процесс горения, сопровождающийся интенсивной фоновой засветкой, записывать изображения и видео в память компьютера, которое необходимо в последующем обработать с помощью специальной программы для получения информации. Однако этот способ не позволяет инициировать процесс горения синхронно с усилением яркости и цифровой записью изображений и количественно оценивать характеристики наблюдаемых процессов в режиме реального времени.
Техническим результатом предложенного способа является возможность одновременно инициировать процесс горения и получать количественную информацию о временных характеристиках процессов горения порошков металлов и их смесей в режиме реального времени.
Cпособ исследования процесса горения порошков металлов или их смесей, также как в прототипе, включает поджиг объекта исследования, фокусировку излучения лазерного усилителя, работающего в режиме сверхсветимости на объекте исследования, сбор и направление сигнала, отраженного от него, на вход лазерного усилителя яркости, где его усиливают и проецируют на цифровую камеру, изображение которой передают в персональный компьютер, где представляют в цифровом виде для обработки и анализа изображений, причем импульс сверхсветимости лазерного усилителя синхронизуют с экспозицией цифровой камеры.
Согласно изобретению одновременно в предварительно спрессованном порошке инициируют процесс горения с помощью сфокусированного излучения инициирующего лазера, фиксируют момент начала воздействия инициирующего излучения одним фотодиодом, освещают поверхность объекта сфокусированным излучением усилителя яркости, усиливают отраженное излучение, масштабируют по интенсивности, регистрируют полное излучение вторым фотодиодом, регистрируют монохроматическое излучение цифровой камерой. По интенсивности сигнала второго фотодиода судят об отражательной способности поверхности порошка во время и после воздействия излучением инициирующего лазера, а по форме сигнала второго фотодиода судят о временных параметрах процесса горения.
В процессе горения порошков происходит изменение химического состава, изменение фаз и морфологии продуктов горения. Это приводит к изменению поверхности объекта исследования, в частности коэффициента отражения и отражательной способности. Усилитель яркости обладает свойством усиления излучения на определенной длине волны, то есть он одновременно является узкополосным фильтром. Если объект исследования излучает или отражает свет с определенной длиной волны, этот свет будет усилен. Процесс горения протекает при температуре не болеe 3000 °С. Таким образом, энергия пламени на длине волны усилителя яркости в десятки раз меньше порога усиления.
В предлагаемом устройстве усилитель яркости является одновременно и осветителем, и усилителем. Импульсный режим работы усилителя яркости позволяет освещать объект исследования достаточно интенсивным светом, но значительно меньшим порога его возгорания. При малых входных сигналах усилитель яркости имеет значительный коэффициент усиления (10-100), позволяющий получать на выходе сигнал, достаточный для регистрации быстродействующим вторым фотодиодом. В результате напряжение на выходе второго фотодиода, наблюдаемое с помощью осциллографа, находится в соответствии с изменением средней яркости сигнала усилителя яркости, а соответственно, с изменением отражающей способности поверхности объекта исследования, попадающей в область зрения усилителя.
На фиг. 1 представлена схема устройства для исследования процесса горения порошков металлов или их смесей.
На фиг. 2 представлены кривые изменения интенсивности сигнала усилителя яркости, зарегистрированные вторым фотодиодом (сплошные линии 1 - 4) и полученные путем усреднения яркости кадров, записанных на цифровую камеру (пунктирные линии 1´ – 4´), где а) - при наблюдении и инициировании горения порошка в центральной области образцов; б) – при инициировании горения порошка у края образцов и наблюдении в их центральной области.
Способ исследования процесса горения порошков металлов или их смесей осуществлен с помощью устройства (фиг. 1), которое содержит инициирующий лазер 1, на оптической оси которого последовательно расположены механический затвор 2, первая светоделительная пластина 3, первая двояковыпуклая линза 4 и объект исследования 5, установленный на линейном трансляторе 6. Первый фотодиод 7 установлен напротив первой светоделительной пластины 3 под углом к оптической оси лазера, равном углу отражения первой светоделительной пластины 3. На оптической оси усилителя яркости 8 с одной стороны расположены первый объектив 9 и объект исследования 5, а с другой стороны – вторая светоделительная пластина 10, нейтральный фильтр 11, второй объектив 12, полосовой фильтр 13 и цифровая камера 14.
На оптической оси второго фотодиода 15 последовательно расположены диффузор 16, вторая двояковыпуклая линза или объектив 17, нейтральный светофильтр 18, вторая светоделительная пластина 10. Цифровая камера 14 подключена к персональному компьютеру 19. Вход синхроимпульсов цифровой камеры 14 подключен к формирователю импульсов 20 (ФИ), который соединен оптоволоконным кабелем с оптическим преобразователем 21 (ОП). Вход включения записи цифровой камеры 14 соединен с контроллером 22 (К).
Первый 7 и второй 15 фотодиоды соединены с цифровым осциллографом 23 (ОСЦ), который связан с персональным компьютером 19 (ПК). Задающий генератор 24 (ЗГ) подключен к оптическому преобразователю 21 (ОП), который соединен оптоволоконным кабелем с источником высоковольтных импульсов 25 (ИВИ), который подключен к усилителю яркости 8. Механический затвор 2 соединен с контролером 22.
В качестве лазера 1 использован, например, твердотельный лазер с диодной накачкой с длиной волны излучения 532 нм. Механическим затвором 2 может быть, затвор фирмы Thorlabs SHB1. Использован линейный транслятор 6, обеспечивающий линейное перемещение с ручной регулировкой, например, 7T173-25 фирмы Standa. В качестве первого 7 и второго 15 фотодиода могут быть использованы быстродействующие фотодиоды Thorlabs DET10A/M с временем отклика 1 нс. Усилитель яркости 8 выполнен на основе активного элемента на парах бромида меди. Нейтральный фильтр 11 представляет собой, например, нейтральное стекло марки НС-9 [http://www.elektrosteklo.ru/Color_Glass_Spectral_Transmittance.pdf]. В качестве задающего генератора 24 (ЗГ) использован генератор SFG-72120 фирмы GW Instek. Оптический преобразователь 21 (ОП) выполнен на основе комплектов оптоэлектронных устройств Avago Technologies HFBR-RXXYYY Series. Источник высоковольтных импульсов 25 (ИВИ) выполнен по схеме с импульсным зарядом накопительной емкости [Троицкий В.О., Димаки В.А., Филонов А.Г. Источник питания для лазера на парах бромида меди // Приборы и техника эксперимента. 2016. № 3. - С. 57-60]. Может быть использован контроллер затвора фирмы Thorlabs в качестве контроллера 22 (К). Цифровая камера 14 –камера HiSpec 1 фирмы Fastec.
Исследовали образцы нанопорошка алюминия весом 3 г в форме параллелепипеда с размерами 20х8х3 мм.
После вывода устройства на номинальный режим работы, образец 5 поместили на линейный транслятор 6, с помощью которого настроили резкость изображения поверхности, наблюдая его на мониторе компьютера 19 (ПК) при использовании цифровой камеры 14. Затем настроили положение инициирующего лазера 1 при его минимальной мощности в 5 мВт и открытом механическом затворе. При настройке луч инициирующего лазера 1 направляли в область инициирования горения. После настройки затвор закрывали. При закрытом затворе устанавливали мощность инициирующего лазера 1 на уровне, достаточном для инициирования процесса горения, например, 100-200 мВт в непрерывном режиме. Контроллер 22 (К) по заданию оператора формировал импульс, который открывал механический затвор 2 и включал запись на цифровой камере 14. После открытия механического затвора 2, излучение с помощью линзы 4 фокусировалось на объекте исследования 5. Первая светоделительная пластина 3 отражала часть излучения, которое поступало на первый фотодиод 7. Таким образом, первый фотодиод 7 регистрировал начало воздействия инициирующего излучения на объект исследования 5.
Спустя некоторое время после начала воздействия, образец 5 порошка загорелся, и происходили изменения его поверхности.
С помощью задающего генератора 24 (ЗГ), оптического преобразователя 21 (ОП) и источника высоковольтных импульсов 25 (ИВИ) формировали импульсы накачки усилителя яркости 8, которые создавали излучение сверхсветимости усилителя яркости 8, которое фокусировали на объекте исследования 5 при помощи первого объектива 9, перемещая объект исследования 5 на линейном трансляторе 6. Отраженный от объекта исследования 5 сигнал собирали и направляли на вход усилителя яркости 8 объективом 9. Проходя через активную среду усилителя яркости 8, сигнал усиливался. Часть света с помощью второй светоделительной пластины 10 направлялась в сторону второго фотодиода 15, при этом масштабировалось по интенсивности с помощью нейтрального светофильтра 18, и проецировалось второй двояковыпуклой линзой 17 через диффузор 16 на второй фотодиод 15. Другая часть излучения с выхода усилителя яркости 8 проходила через вторую светоделительную пластину 10, масштабировалась с помощью нейтрального светофильтра 11, и проецировалась вторым объективом 12 через полосовой фильтр 13 на матрицу цифровой камеры 14. Последовательность кадров цифровой камеры 14 передавалась в персональный компьютер 19 (ПК) для последующего хранения и обработки.
Усилитель яркости 8 работал в импульсно-периодическом режиме, который реализовывался путем формирования высоковольтных импульсов. Каждый импульс производил изображение объекта исследования 5, средняя яркость которого регистрировалась вторым фотодиодом 15. Таким образом, на выходе второго фотодиода 15 формировалась последовательность импульсов с частотой работы усилителя яркости 8 20 кГц, и амплитудой, соответствующей отраженному от поверхности объекта исследования 5 излучению. Огибающая этой последовательности импульсов на выходе второго фотодиода 15 дала информацию об изменении отражательной способности поверхности объекта исследования 5 в зоне наблюдения (фиг. 2). Сигналы с первого 7 и второго 15 фотодиодов отображались на осциллографе 23 (ОСЦ) и передавались в персональный компьютер 19 (ПК) для последующего хранения или обработки.
Горение образцов нанопорошка алюминия протекало в две стадии. Сигнал второго фотодиода 15 позволил идентифицировать следующие фазы процесса горения. При наблюдении в области воздействия (фиг. 2, а): I – прогрев порошка в области воздействия, порошок темнеет; II – начало первой стадии горения, спекание нанопорошка в более крупные частицы, увеличение отражательной способности; III – поверхность в области наблюдения практически не изменилась, первая волна горения прошла в других областях образца; IV – вторая волна в области наблюдения, повышение отражательной способности; IV, V – высокотемпературная стадия горения; VI – остывание. При наблюдении в стороне от области воздействия (фиг. 2, б): I – нагрев и усадка образца по мере приближения тепловой волны; II – прохождение волны горения в области наблюдения; III - первая волна горения проходит в других областях образца, IV, V – высокотемпературная стадия горения.
Из фиг. 2 следует, что сигналы фотодиода 15 находятся в соответствии с расчётами средней яркости кадров видеозаписи. Среднюю яркость изображения рассчитывали для верификации сигнала регистрируемого вторым фотодиодом 15 в персональном компьютере 19 (ПК) с использованием программного продукта Matlab. Изменение яркости изображения визуально сравнивали с видеоизображениями, что показало соответствие временных характеристик процесса, наблюдаемых оператором (движение поверхности, прохождение волн горения, агломерация, остывание) с изменением средней яркости изображения. Таким образом, средняя яркость изображения является информативным параметром для оценки процесса горения порошка металла.

Claims (1)

  1. Cпособ исследования процесса горения порошков металлов или их смесей, включающий поджиг объекта исследования, фокусировку излучения лазерного усилителя, работающего в режиме сверхсветимости на объекте исследования, сбор и направление сигнала, отраженного от него, на вход лазерного усилителя яркости, где его усиливают и проецируют на цифровую камеру, изображение которой передают в персональный компьютер, где представляют в цифровом виде для обработки и анализа изображений, причем импульс сверхсветимости лазерного усилителя синхронизуют с экспозицией цифровой камеры, отличающийся тем, что одновременно в предварительно спрессованном порошке инициируют процесс горения с помощью сфокусированного излучения инициирующего лазера, фиксируют момент начала воздействия инициирующего излучения одним фотодиодом, освещают поверхность объекта сфокусированным излучением усилителя яркости, усиливают отраженное излучение, масштабируют по интенсивности, регистрируют полное излучение вторым фотодиодом, регистрируют монохроматическое излучение цифровой камерой, по интенсивности сигнала второго фотодиода судят об отражательной способности поверхности порошка во время и после воздействия излучением инициирующего лазера, а по форме сигнала второго фотодиода судят о временных параметрах процесса горения.
RU2018124660A 2018-07-06 2018-07-06 Способ исследования процесса горения порошков металлов или их смесей RU2685072C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018124660A RU2685072C1 (ru) 2018-07-06 2018-07-06 Способ исследования процесса горения порошков металлов или их смесей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018124660A RU2685072C1 (ru) 2018-07-06 2018-07-06 Способ исследования процесса горения порошков металлов или их смесей

Publications (1)

Publication Number Publication Date
RU2685072C1 true RU2685072C1 (ru) 2019-04-16

Family

ID=66168570

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018124660A RU2685072C1 (ru) 2018-07-06 2018-07-06 Способ исследования процесса горения порошков металлов или их смесей

Country Status (1)

Country Link
RU (1) RU2685072C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2755256C1 (ru) * 2021-02-01 2021-09-14 Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук (ИОА СО РАН) Бистатический лазерный монитор
RU2756431C1 (ru) * 2021-03-25 2021-09-30 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Устройство для исследования процесса горения порошков металлов или их смесей
RU2756885C1 (ru) * 2021-03-24 2021-10-06 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Способ исследования процесса горения порошков металлов или их смесей

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1179174A1 (ru) * 1983-12-09 1985-09-15 Казанский Ордена Трудового Красного Знамени И Ордена Дружбы Народов Авиационный Институт Им.А.Н.Туполева Измеритель параметров пламени
JP2010054391A (ja) * 2008-08-29 2010-03-11 Nano Photon Kk 光学顕微鏡、及びカラー画像の表示方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1179174A1 (ru) * 1983-12-09 1985-09-15 Казанский Ордена Трудового Красного Знамени И Ордена Дружбы Народов Авиационный Институт Им.А.Н.Туполева Измеритель параметров пламени
JP2010054391A (ja) * 2008-08-29 2010-03-11 Nano Photon Kk 光学顕微鏡、及びカラー画像の表示方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fedor A. Gubarev и др. "Copper Bromide Laser Monitor for Combustion Processes Visualization", Proceedings of 2016 Progress In Electromagnetic Research Symposium (PIERS), Shanghai, China, 2016 г., стр. 2666-2670. *
G. S. Evtushenko и др. "Laser monitor for non-destructive testing of materials and processes shielded by intensive background lighting", REVIEW OF SCIENTIFIC INSTRUMENTS, т. 85, No 3, 2014 г., стр. 033111-1 - 033111-5. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2755256C1 (ru) * 2021-02-01 2021-09-14 Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук (ИОА СО РАН) Бистатический лазерный монитор
RU2756885C1 (ru) * 2021-03-24 2021-10-06 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Способ исследования процесса горения порошков металлов или их смесей
RU2756431C1 (ru) * 2021-03-25 2021-09-30 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Устройство для исследования процесса горения порошков металлов или их смесей

Similar Documents

Publication Publication Date Title
RU2685072C1 (ru) Способ исследования процесса горения порошков металлов или их смесей
RU2685040C1 (ru) Устройство для исследования процесса горения порошков металлов или их смесей
US5760898A (en) Laser detection of explosive residues
RU2712756C1 (ru) Устройство для исследования процесса горения порошков металлов или их смесей
CN203606288U (zh) 共聚焦显微拉曼和激光诱导击穿光谱联用激光光谱分析仪
CN103743718A (zh) 共聚焦显微拉曼和激光诱导击穿光谱联用激光光谱分析仪
CN104596997A (zh) 一种激光诱导击穿-脉冲拉曼光谱联用***及使用方法
CN107449738A (zh) 一种双光束泵浦探测实验***
EP1589335A2 (en) System and method to enable eye-safe laser ultrasound detection
CN111308849A (zh) 一种基于纹影技术的超高速时间分辨摄像装置和方法
RU2687308C1 (ru) Устройство для исследования процесса горения порошков металлов или их смесей
KR102298835B1 (ko) 성분 조성 계측 시스템 및 성분 조성 계측 방법
CN112033538B (zh) 一种基于光谱-时间映射的超快成像装置
CN104048813A (zh) 一种激光损伤光学元件过程的记录方法及其装置
Gubarev et al. High-speed optical imaging technique for combusting metal nanopowders
Gubarev et al. An optical system with brightness amplification for studying the surface of metal nanopowders during combustion
Olofsson et al. Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments
CN112255191A (zh) 激光诱导击穿光谱与声反射结合的在线监测***及方法
CN115541560A (zh) 一种基于高光谱成像的激光时频变换观测***及方法
Gubarev et al. Laser monitor application for study of aluminum nanopowder ignition and combustion
RU2746308C1 (ru) Устройство для исследования процесса горения нанопорошков металлов или их смесей
JP3535577B2 (ja) 光プロセスの動的画像診断装置および光プロセス診断方法
Li et al. Monitoring of nanopowder combustion ignited by laser radiation
JP3829749B2 (ja) 多光子励起を用いた蛍光試料観測方法及び装置
JP2022508814A (ja) プラズマスペクトル分析を介して物体の材料組成を分析するためのロングパスフィルターを有する装置