RU2675582C2 - Способ производства пористых металлоуглеродных материалов - Google Patents

Способ производства пористых металлоуглеродных материалов Download PDF

Info

Publication number
RU2675582C2
RU2675582C2 RU2017108436A RU2017108436A RU2675582C2 RU 2675582 C2 RU2675582 C2 RU 2675582C2 RU 2017108436 A RU2017108436 A RU 2017108436A RU 2017108436 A RU2017108436 A RU 2017108436A RU 2675582 C2 RU2675582 C2 RU 2675582C2
Authority
RU
Russia
Prior art keywords
substrate
schiff
carbon
metal
transition metal
Prior art date
Application number
RU2017108436A
Other languages
English (en)
Other versions
RU2017108436A3 (ru
RU2017108436A (ru
Inventor
Семен Коган
Светлана А. БЕЛОУС
Татьяна С. ЛАВРОВА
Ирина А. ЧЕПУРНАЯ
Александр М. ТИМОНОВ
Михаил П. КАРУШЕВ
Original Assignee
Пауэрмерс Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Пауэрмерс Инк. filed Critical Пауэрмерс Инк.
Publication of RU2017108436A3 publication Critical patent/RU2017108436A3/ru
Publication of RU2017108436A publication Critical patent/RU2017108436A/ru
Application granted granted Critical
Publication of RU2675582C2 publication Critical patent/RU2675582C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • C07F15/045Nickel compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/13Organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/08Intercalated structures, i.e. with atoms or molecules intercalated in their structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Non-Insulated Conductors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Изобретение может быть использовано при изготовлении электродов топливных элементов, двухслойных конденсаторов, литий-ионных или литий-полимерных батарей, а также катализаторов или адсорбентов. На электропроводящую подложку, например стеклоуглеродную пластину, наносят слой полимерного комплекса переходного металла с основанием Шиффа вида [M(Shiff)]n, имеющего повторяющийся фрагмент следующей структуры:где n - целое число в интервале от 2 до 50000; М - переходный металл, выбранный из группы, состоящей из никеля, палладия, платины, кобальта, меди, железа; Shiff - тетрадентатный лиганд, выбранный из группы, состоящей из Salen (остаток бис-(салицилальдегид)-этилендиамина), Saltmen (остаток бис-(салицилальдегид)-тетраметилэтилендиамина), Salphen (остаток бис-(салицилальдегид)-о-фенилендиамина); R - заместитель в основании Шиффа, выбранный из группы, состоящей из Н- и углеродсодержащих заместителей, предпочтительно СН3-, С2Н5-, СН3О-, С2Н5O-; и Y - диаминовый мостик в основании Шиффа, имеющий следующую структуру:для основания Шиффа Salen,для основания Шиффа Saltmen,для основания Шиффа Salphen. Затем проводят нагрев в инертной атмосфере до 500-750°С в течение 1-4 ч до завершения процесса карбонизации полимерного комплекса. Инертную атмосферу создают одним или несколькими газами, выбранными из группы, включающей азот, аргон и гелий. Перед нагреванием подложку с нанесенным на нее слоем указанного комплекса можно промыть, используя ацетонитрил. Полученный электрохимически активный металлуглеродный материал имеет высокую электронную проводимость, удельную поверхность, контролируемые элементный состав и распределение размера пор, при этом атомы металла распределены внутри него равномерно. 2 н. и 12 з.п. ф-лы, 8 пр.

Description

РОДСТВЕННЫЕ ЗАЯВКИ
[0001] По настоящей заявке испрашивается приоритет предварительной заявки США №62/039,010, поданной 19 августа 2014 года, содержание которой посредством ссылки в полном объеме включено в настоящее описание.
ОБЛАСТЬ ТЕХНИКИ
[0002] Представленное изобретение относится к способам получения пористых металл-углеродных материалов с высокой электропроводностью и большой удельной поверхностью с контролируемым распределением пор по размерам.
УРОВЕНЬ ТЕХНИКИ
[0003] Пористые углеродные материалы (УМ) с высокой удельной поверхностью находят широкое применение в электрохимических, каталитических и адсорбционных областях. Получение таких материалов обычно включает две стадии: 1) получение углерода карбонизацией исходного сырья; 2) активацию углерода для повышения площади поверхности.
[0004] Пористые УМ можно получать путем карбонизации природного сырья, такого как дерево, нефтяной пек, торф и другие источники с высоким содержанием углерода. Основным преимуществом УМ, полученных из природного сырья, является их относительно низкая стоимость. В то же время, такие УМ содержат большое количество примесей, таких как сера, азот, фосфор и соли металлов, которые изначально присутствуют в исходном сырье. Такие примеси могут вызывать нежелательные побочные реакции при использовании углеродного материала, например, в устройствах аккумулирования энергии, таких как литий-ионные батареи, топливные элементы или двухслойные конденсаторы. Эти побочные реакции могут нарушать структуру и снижать эксплуатационные качества прибора.
[0005] Пористые УМ также могут быть получены карбонизацией синтетических материалов с высоким содержанием углерода, например полимеров, при очень высоких температурах в не-окислительной (инертной) атмосфере, например, в атмосфере азота, аргона или гелия. Наиболее широко используемым в качестве исходного сырья синтетическим полимером для получения УМ является полиакрилонитрил. Также используются другие исходные материалы, такие как фенольно-альдегидные полимеры и полиацетилены. Недостатки УМ, полученных из синтетических полимеров, заключаются в том, что эти УМ имеют очень небольшую удельную поверхность.
[0006] Для увеличения удельной поверхности УМ после карбонизации всегда проводится активация. Физическая активация производится при помощи пара, моноксида углерода (СО), диоксида углерода (CO2) и CO2-содержащих газов. В качестве реагентов для химической активации используют ZnCl2, H2SO4, H3PO4, NaOH, LiOH, КОН, NxOy [х=1-2, у=1-3], Cl2 и другие галогены. Активация проводится для увеличения удельной поверхности УМ, но она может приводить к дефектам или полному разрушению полученного углеродного тела.
[0007] Чтобы быть пригодной для электрохимических и каталитических применений полученная площадь поверхности УМ должна обладать следующими свойствами: нано- или молекулярным уровнем организации углеродной структуры, со структурными элементами (углеродными фрагментами) размером от 1 нм (молекулярные размеры) до 10-100 нм (наноразмеры); регулируемым распределением структурных элементов (углеродных фрагментов), которым можно управлять, корректируя в соответствии с применением материала; узким распределением размера пор; высокой электронной проводимостью, высокой химической стабильностью и механической прочностью; и низкой стоимостью.
[0008] Основной проблемой при использовании большинства углеродных материалов является относительно высокое внутреннее сопротивление УМ, которое может быть снижено за счет использования металл-углеродных материалов (МУМ). Равномерное распределение атомов металла в форме, например, частиц наноразмера или кластеров в пористой углеродной структуре также улучшает и усиливает каталитические свойства обсуждаемых МУМ.
[0009] Известны различные способы получения металл-углеродных материалов. Один из способов получения включает термическое каталитическое разложение углеводородов в микропористой металлической матрице. Еще один способ описывает синтез МУМ посредством термохимического вакуумного осаждения этана в присутствии водорода при 660°С на никелевых или Ni-содержащих фильтрах из синтерированных металлических волокон.
[0010] Другой способ включает пропитку пористого углерода с высокой площадью поверхности металлическими прекурсорами (солями металлов или комплексами металлов) с последующим восстановлением до чистого металла или оксидов металла. Например, один из способов описывает метод, в котором волокнистый углеродный материал погружают в водный раствор хлорида рутения с последующим термическим разложением до оксида рутения, образующегося в порах углеродных волокон.
[0011] Большинство коммерческих металл-углеродных материалов содержат металл-углеродные глобулы или волокна различных заданных размеров, но относительное распределение глобул (или волокон) является хаотичным и его сложно регулировать. Сложность в регулировании препятствует получению МУМ с заданными и контролируемыми свойствами, которые определяются применением материала, что в свою очередь ограничивает широкое использование таких материалов.
[0012] Представленное изобретение направлено на решение этой проблемы.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0013] Одним из аспектов настоящего изобретения является способ получения пористого металл-углеродного материала (МУМ) обладающего высокой электронной проводимостью, высокой удельной поверхностью, контролируемым элементным составом, равномерным распределением атомов металла внутри МУМ и контролируемым распределением размера пор, чтобы удовлетворять требованиям конкретных применений.
[0014] В одном из вариантов осуществления изобретения, способ получения металл-углеродного материала включает карбонизацию полимера, выращенного на подложке; причем полимер представляет собой полимерный комплекс переходного металла с основанием Шиффа. В одном из вариантов осуществления изобретения карбонизация проводится при нагревании полимера на подложке в неокислительной (инертной) атмосфере при температуре в интервале от 500°С до 750°С в течение времени, достаточного для получения металл-углеродного материала на подложке.
[0015] В различных вариантах осуществления изобретения металл-углеродный композитный материал по изобретению получен из полимерного комплекса переходного металла с основанием Шиффа (далее обозначаемый как поли[M(Shiff)], где М это переходный металл и Shiff - лиганд тетрадентатного основания Шиффа, полученного посредством окислительной электрохимической полимеризации соответствующих плоских квадратных мономерных комплексов на поверхности инертной электропроводящей подложки.
[0016] В других вариантах осуществления поли[M(Shiff)] полимеры имеют высокое содержание углерода, равномерно распределенные в структуре полимера атомы металла, большую площадь поверхности и равномерное распределение структурных элементов на поверхности подложки. Структурные элементы поли[M(Shiff)] полимеров представляют собой отдельные «стеки» (стопки), расположенные перпендикулярно поверхности подложки. Каждый стек образуется из плоских квадратных мономерных фрагментов [M(Shiff)] благодаря донорно-акцепторным взаимодействиям между металлическим центром одного мономерного фрагмента и фенильным кольцом лиганда, который является частью другого мономерного фрагмента. Длина и диаметр стеков и расстояние между стеками определяется составом мономера и условиями полимеризации (потенциалом полимеризации, режимом полимеризации, поддерживающим электролитом и растворителем).
[0017] Полимерные комплексы переходного металла с основанием Шиффа термически стабильны при температурах ниже 370°С. Когда эти полимеры нагревают при более высоких температурах в неокислительной (инертной) атмосфере, начинается карбонизация полимеров. Карбонизация включает разложение органической части полимера, сопровождаемую выделением водорода, кислорода и азота. В результате полной карбонизации поли[M(Shiff)] полимеров образуется металл-углеродный материал.
[0018] Геометрия полученного металл-углеродного материала очень близка к геометрии исходного полимера. В процессе карбонизации полимерные стеки превращаются в столбчатые элементы, состоящие из углерода и атомов металла, и формируется МУМ, состоящий из структурных элементов, стерически и геометрически похожих на полимерные стеки. Диаметр упомянутого элемента составляет от 1 до 1,5 нанометров и определяется диаметром стеков полимера прекурсора. Длина упомянутых элементов достигает 50 микрометров и определяется толщиной пленки полимера прекурсора. Элементы расположены на расстоянии от 0,2 до 10 нанометров друг от друга, что соответствует исходному распределению полимерных блоков вдоль поверхности подложки. Постоянное расстояние между столбчатыми элементами делает полученный металл-углеродный материал высокопористым, с равномерным распределением пор по размерам в области нанопор. Сохранение геометрии исходного полимера в полученном МУМ обеспечивается посредством карбонизации поли[M(Shiff)] полимера, помещенного на подложку, причем подложка представляет собой подложку, используемую для выращивания полимера.
[0019] Результатом представленного изобретения является получение на подложке металл-углеродного материала, обладающего следующими свойствами: удельная электрохимически активная площадь поверхности от 50 м2/г до 2500 м2/г; содержание углерода от 50 до 85 массовых процентов; соотношение металл:углерод от 0,2 до 1,0 по весу; контролируемая регулярная структура, состоящая из столбчатых элементов с диаметром от 1 до 1,5 нанометров, длиной до 50 микрометров, расположенных на расстоянии от 0,2 до 10 нанометров друг от друга вдоль поверхности подложки; равномерное распределение в металл-углеродном материале кластеров металлов, соответствующих химической формуле MCn, где М - атом металла, С - атом углерода и (n) - число от 0,5 до 6.
[0020] Присутствие атомов металла, равномерно распределенных в металл-углеродном материале, приводит к высокой электронной проводимости МУМ.
[0021] Эти и другие объекты и признаки настоящего изобретения будут более подробно разъяснены в последующем детальном описании изобретения.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[0022] Полимеры комплексов переходного металла с основаниями Шиффа (прекурсоры, используемые для получения металл-углеродных материалов в соответствии с данным изобретением), имеют химическую структуру, описываемую формулой [M(Shiff)]n и повторяющуюся единицу следующей структуры:
Figure 00000001
где n это целое число в интервале от 2 до 50000; М представляет собой переходный металл, выбранный из группы, состоящей из никеля, палладия, платины, кобальта, меди, железа; Sniff это лиганд тетрадентатного основания Шиффа, выбранный из группы, состоящей из Salen (остатка бис-(салицилальдегид)-этилендиамина), Saltmen (остатка бис-(салицилальдегид)-тетраметилэтилендиамина), Salphen (остатка бис-(салицилальдегид)-о-фенилендиамина), R представляет собой заместитель в основании Шиффа, выбранный из группы, состоящей из Н- и углеродсодержащих заместителей, предпочтительно СН3-, С2Н5-, СН3О-, C2H5O-; и Y представляет собой мостик в основании Шиффа и имеет следующую структуру:
Figure 00000002
Figure 00000003
Figure 00000004
[0023] Структурные элементы полимерных комплексов переходного металла с основаниями Шиффа (поли[М(Shiff)]) представляют собой отдельные стеки, расположенные перпендикулярно поверхности подложки. Каждый стек образован из плоских квадратных мономерных фрагментов [M(Shiff)] через донорно-акцепторные взаимодействия между металлом в центре одного мономера и фенильным кольцом лиганда, который является частью другого мономерного фрагмента. Перенос заряда в полимерных комплексах переходного металла с основаниями Шиффа происходит через «перескок электрона» ("electron hopping") между центральными металлами с различными степенями окисления (оксилительно-восстановительная проводимость). Окисление или восстановление полимерных комплексов металлов, связанное с изменением степени окисления центрального металла, сопровождается входом/выходом компенсирующих заряд противоионов раствора электролита в/из полимерную пленку, так что система в целом поддерживает электро-нейтральное состояние.
[0024] Полимеры (поли[М(Shiff)]), обладающие определенной структурой на молекулярном уровне, т.е. равномерным контролируемым распределением структурных элементов (стеков) на поверхности подложки, могут выращиваться с использованием различных методик окислительной электрохимической полимеризации комплексов переходных металлов с основаниями Шиффа. Такие полимеры обладают высоким содержанием углерода, большой площадью поверхности и содержат равномерно распределенные в полимерной структуре атомы металла.
[0025] Способ получения металл-углеродного материала в соответствии с представленным изобретением включает карбонизацию полимера, выращенного на подложке, причем указанный полимер представляет собой полимерный комплекс переходного металла с основанием Шиффа, осуществляемую посредством нагревания помещенного на подложку полимера в условиях не-окислительной (инертной) атмосферы при повышенной температуре.
[0026] Полимер прекурсора для получения металл-углеродного материала предпочтительно находится в форме полимерной пленки, выращенной на подложке при помощи окислительной электрохимической полимеризации. Толщина полимерной пленки ограничена расстоянием, при котором сохраняется первоначальное контролируемое распределение структурных элементов (стеков) (обычно, до 50 микрометров).
[0027] Подложку выбирают из группы, состоящей из электропроводящих материалов, таких как углерод, включая стекловидный углерод, углеволокно, углеродные волокна и другие углеродные материалы, углеродные материалы с металлическим покрытием и металлы, наиболее предпочтительно металлы, электрохимически инертные при потенциале полимеризации.
[0028] Полимер прекурсора для получения металл-углеродного материала предпочтительно представляет собой полимер, структурированный на молекулярном уровне, с требуемым элементным составом и предопределенным распределением структурных элементов (стеков) на поверхности подложки в соответствии с назначением МУМ.
[0029] Полимер прекурсора, закрепленный на подложке, затем помещают в контейнер, предпочтительно в трубчатую печь, заполненную неокисляющей атмосферой, включающей азот, аргон или гелий, и нагревают до высокой температуры в диапазоне от 500°С до 750°С, предпочтительно от 550°С до 650°С, и еще более предпочтительно от 580°С до 620°С. При достижении требуемой температуры, нагревание проводят при этой температуре в течение времени, достаточного для полного завершения карбонизации исходного полимера; как правило, от 1 до 4 часов, и предпочтительно от 2 до 3 часов.
[0030] Под термином «карбонизация» здесь понимается увеличение содержания углерода в исходном материале при нагревании в неокислительных условиях до высоких температур, в ходе которого выделяется водород, кислород и азот. В качестве продукта реакции после проведения карбонизации полимерного комплекса переходного металла с основанием Шиффа получается металл-углеродный материал.
[0031] Геометрия полученного металл-углеродного материала близка к геометрии исходного полимера. В процессе карбонизации полимерные стеки превращаются в столбчатые элементы, состоящие из углерода и атомов металла, и получается МУМ, состоящий из структурных элементов, имеющих пространственное и структурное сходство с полимерными стеками. Диаметр элемента составляет от 1 до 1,5 нанометров и определяется диаметром стеков полимера прекурсора. Длина упомянутых элементов достигает 50 микрометров и определяется толщиной пленки полимера прекурсора. Элементы расположены на расстоянии от 0,2 до 10 нанометров друг от друга, что соответствует исходному распределению полимерных стеков вдоль поверхности подложки. Постоянное расстояние между столбчатыми элементами делает полученный металл-углеродный материал высокопористым, с равномерным распределением пор по размерам в области нанопор. Сохранение геометрии исходного полимера в полученном МУМ обеспечивается посредством карбонизации закрепленного на подложке поли[М(Shiff)] полимера, причем подложка представляет собой подложку, используемую для выращивания полимера.
[0032] Полученный металл-углеродный материал имеет содержание углерода от 50 до 85 массовых процентов и соотношение металл:углерод от 0,2 до 1,0 по весу, которое определяется химическим составом полимера прекурсора. Атомы металла равномерно распределены в композитном материале и представляют собой кластеры металлов, соответствующих химической формуле MCn, где М - атом металла, С - атом углерода и (n) - число от 0,5 до 6. Присутствие в структуре МУМ рассредоточенных атомов металла приводит к более высокой электронной проводимости металл-углеродного материала, чем в случае обычных пористых УМ.
[0033] Полученный металл-углеродный композитный материал имеет удельную электрохимически активную площадь поверхности от 50 м2/г до 2500 м2/г без дополнительной активации. Термин «электрохимически активная площадь поверхности» здесь означает внутреннюю площадь поверхности, доступную для ионов поддерживающего электролита в электрохимическом эксперименте. Величину удельной электрохимически активной площади поверхности рассчитывают, используя значение удельной двухслойной емкости, определенное при помощи циклического вольтамперометрического исследования образца МУМ в растворе ацетонитрила, содержащем 0,1 моль/л тетрафторбората тетраэтиламмония.
[0034] Параметры процесса получения металл-углеродного материала по настоящему изобретению существенно влияют на свойства конечного продукта.
[0035] Температура карбонизации влияет на содержание углерода и величину удельной электрохимически активной площади поверхности в МУМ. Проведение процесса при температурах, которые ниже, чем требуются для эффективной карбонизации данного полимера, приводит к получению недокарбонизированного МУМ. В таком недокарбонизированном материале остается некоторое количество атомов водорода, кислорода и азота, что снижает итоговый выход углерода. В таком недокарбонизированном материале также остается некоторое количество непроводящего полимера, который уже потерял окислительно-восстановительную проводимость, но еще не приобрел электронную проводимость. В результате, итоговый МУМ имеет относительно низкую электронную проводимость и уменьшенную величину удельной электрохимически активной площади поверхности. Нагревание полимера прекурсора до температур, которые выше, чем требуются для эффективной карбонизации данного полимера, приводит к агломерации индивидуальных структурных элементов, результатом чего становится низкая пористость полученного металл-углеродного материала.
[0036] Процесс карбонизации, проводимый при требуемой температуре в течение недостаточного времени также приводит к образованию недокарбонизированного МУМ с низким содержанием углерода и меньшей удельной электрохимически активной площадью поверхности.
[0037] Пористость итогового металл-углеродного материала также зависит от свойств полимера прекурсора. Как обсуждалось выше, свойства поли[M(Shiff)] полимеров могут эффективно контролироваться посредством изменения условий полимеризации, таких как структура мономера, режим полимеризации, поддерживающий электролит и растворитель.
[0038] Металл-углеродный материал по настоящему изобретению можно использовать в качестве базовых или основных материалов для каталитических и других применений, в которых необходима большая площадь поверхности с контролируемой пористостью.
[0039] Другие области применения металл-углеродных материалов это производство энергии и накопление энергии, в том числе электроды для топливных элементов, двухслойные конденсаторы, литий-ионные и литий-полимерные батареи.
[0040] В конечном счете, свойства металл-углеродных материалов по настоящему изобретению могут эффективно контролироваться в соответствии с требованиями конкретных применений.
[0041] Селективность металл-углеродных материалов по настоящему изобретению в каталитических применениях может быть обеспечена посредством изменения центрального металла в полимере прекурсора. Например, никельсодержащие МУМ будут наиболее эффективны в качестве катализаторов процессов гидрирования, тогда как палладийсодержащие МУМ будут эффективно катализировать окисление метанола. При использовании металл-углеродных материалов с большими порами и относительно низкой удельной электрохимически активной площадью поверхности может быть обеспечена доступность металлических каталитических центров для молекул субстрата и высокие скорости диффузии субстратов и продуктов реакции внутри твердого катализатора.
[0043] Металл-углеродные материалы с высокой удельной электрохимически активной поверхностью наиболее эффективны для применения в энергопроизводящих устройствах и устройствах аккумулирования энергии, которые обычно требуют высокой пористости и высокой удельной площади поверхности материала электрода.
[0043] Приведенные ниже примеры служат для иллюстрации изобретения, но не должны рассматриваться, как ограничивающие изобретение.
ПРИМЕРЫ
Пример 1.
[0044] Полимерную пленку с формулой поли[Cu(CH3O-Salen)] и повторяющейся единицей
Figure 00000005
использовали для получения металл-углеродного материала. Полимерную пленку толщиной 0,8 микрометров и массой 2×10-5 г помещали на стеклоуглеродную пластину с размерами 1 сантиметр на 0,5 сантиметра на 0,04 сантиметра так, что полимер занимал площадь 0,5 сантиметра на 0,5 сантиметра на одной стороне пластины. Проводили полимеризацию приложением постоянного потенциала +0,98 В (против стандартного электрода серебро/хлорид серебра) к стеклоуглеродной пластине в растворе ацетонитрила, содержащем 0,1 моль/л тетрафторбората тетраэтиламмония и 0,001 моль/л мономерного комплекса [Cu(CH3O-Salen)]. Подложку с полимерной пленкой на ней аккуратно промывали ацетонитрилом, чтобы удалить остатки мономера и поддерживающего электролита и помещали в трубчатую печь, заполненную азотом высокой чистоты. Полимер карбонизировали при 600°С в течение 3 часов. Готовый металл-углеродный материал содержал 77 мас. % углерода и имел удельную электрохимически активную площадь поверхности 2000 м2/г.
Пример 2.
[0045] Для получения металл-углеродного материала использовали полимер, синтезированный в соответствии с методикой, описанной в Примере 1. Полимер карбонизировали при 500°С в течение 3 часов. Готовый металл-углеродный материал содержал 64 мас. % углерода и имел удельную электрохимически активную площадь поверхности 1000 м2/г. Карбонизация при более низкой температуре, чем применялась в Примере 1, привела к неполной карбонизации. В результате полимер потерял окислительно-восстановительную проводимость до того, как углеродная матрица была полностью сформирована, что привело к низкой электронной проводимости полученного металл-углеродного материала.
Пример 3.
[0046] Для получения металл-углеродного материала использовали полимер, синтезированный в соответствии с методикой, описанной в Примере 1. Полимер карбонизировали при 700°С в течение 3 часов. Готовый металл-углеродный материал содержал 77 мас. % углерода и имел удельную электрохимически активную площадь поверхности 500 м2/г. Карбонизация при более высокой температуре, чем применялась в Примере 1, привела к агломерации индивидуальных структурных элементов, результатом чего стала низкая пористость металл-углеродного материала.
Пример 4.
[0047] Использовали методику, описанную в Примере 1, за исключением того, что пленка полимера прекурсора имела толщину 0,4 микрометра и массу 1×10-5 г. Полимер карбонизировали при 600°С в течение 3 часов. После карбонизации металл-углеродный материал содержал 77 мас. % углерода и имел удельную электрохимически активную площадь поверхности 2000 м2/г. Сравнение полученного результата с результатом Примера 1 показывает, что пористость металл-углеродного материала на зависит от толщины пленки полимера прекурсора, а скорее определяется исходным распределением структурных элементов (стеков) в полимере.
Пример 5.
[0048] Использовали методику, описанную в Примере 1, за исключением того, что полимеризационный раствор вместо ацетонитрила содержал пропиленкарбонат, и масса полученной 0,8 микрометровой полимерной пленки составляла 7.5×10-6 г. После карбонизации металл-углеродный материал содержал 77 мас. % углерода и имел удельную электрохимически активную площадь поверхности 750 м2/г. Более крупные молекулы растворителя (пропиленкарбонат) в полимеризационном растворе в сравнении с раствором, применяемым в Примере 1 (ацетонитрил), обеспечивают большие расстояния между структурными элементами (стеками) полимера прекурсора. Это приводит к увеличению размера пор в полученном металл-углеродном материале, но снижает количество электроактивного материала на квадратный сантиметр подложки, что отражается в низкой величине удельной электрохимически активной площади поверхности композита.
Пример 6.
[0049] Полимерную пленку с формулой поли[Cu(СН3О- Saltmen)] и повторяющейся единицей
Figure 00000006
использовали для получения металл-углеродного материала. Полимерную пленку толщиной 0,8 микрометров и массой 2,2×10-5 г помещали на стеклоуглеродную пластину с размерами 1 сантиметр на 0,5 сантиметра на 0,04 сантиметра так, что полимер занимал площадь 0,5 сантиметра на 0,5 сантиметра на одной стороне пластины. Проводили полимеризацию прикладыванием постоянного потенциала +1,00 В (против стандартного электрода серебро/хлорид серебра) к стеклоуглеродной пластине в растворе ацетонитрила, содержащем 0,1 моль/л тетрафторбората тетраэтиламмония и 0,001 моль/л мономерного комплекса [Cu(CH3O- Saltmen)]. Подложку с полимерной пленкой на ней аккуратно промывали ацетонитрилом, чтобы удалить остатки мономера и поддерживающего электролита и помещали в трубчатую печь, заполненную азотом высокой чистоты. Полимер карбонизировали при 600°С в течение 3 часов. Готовый металл-углеродный материал содержал 81 мас. % углерода и имел удельную электрохимически активную площадь поверхности 1200 м2/г. Отталкивание между мономерными фрагментами, вызванное присутствием четырех дополнительных метильных групп в лиганде мономера, приводит к увеличению расстояний между структурными элементами (стеками) в полимере прекурсора с формулой поли[Cu(CH3O-Saltmen)] в сравнении с полимером прекурсора с формулой поли[Cu(CH3O-Salen)], который применялся для синтеза мелалл-углеродного материала в Примере 1. Это приводит к увеличению размера пор в полученном мелалл-углеродном материале, но снижает количество электроактивного материала на квадратный сантиметр подложки, что отражается в низкой величине удельной электрохимически активной площади поверхности композита.
Пример 7.
[0050] Полимерную пленку с формулой поли[Ni(Salen)] и повторяющейся единицей
Figure 00000007
использовали для получения металл-углеродного материала. Полимерную пленку толщиной 0,8 микрометров и массой 1,7×10-5 г помещали на стеклоуглеродную пластину с размерами 1 сантиметр на 0,5 сантиметра на 0,04 сантиметра так, что полимер занимал площадь 0,5 сантиметра на 0,5 сантиметра на одной стороне пластины. Проводили полимеризацию прикладыванием постоянного потенциала +1.00 В (против стандартного электрода серебро/хлорид серебра) к стеклоуглеродной пластине в растворе ацетонитрила, содержащем 0,1 моль/л тетрафторбората тетраэтиламмония и 0,001 моль/л мономерного комплекса [Ni(Salen)]. Подложку с полимерной пленкой на ней аккуратно промывали ацетонитрилом, чтобы удалить остатки мономера и поддерживающего электролита и помещали в трубчатую печь, заполненную азотом высокой чистоты. Полимер карбонизировали при 600°С в течение 3 часов. Готовый металл-углеродный материал содержал 77 мас. % углерода и имел удельную электрохимически активную площадь поверхности 2500 м2/г.
Пример 8.
[0051] Использовали методику, описанную в Примере 7, за исключением того, что полимеризационный раствор вместо 0,1 моль/л тетрафторбората тетраэтиламмония содержал гексафторфосфат тетраэтиламмония, и масса образованной 0,8 микрометровой исходной полимерной пленки составляла 1,2×10-5 г. После карбонизации металл-углеродный материал содержал 77 мас. % углерода и имел удельную электрохимически активную площадь поверхности 1700 м2/г. Более крупные анионы поддерживающего растворителя (ионы гексафторфосфата) в полимеризационном растворе в сравнении с анионами электролита, применяемого в Примере 7 (ионы тетрафторбората), обеспечивают большие расстояния между структурными элементами (стеками) полимера прекурсора. Это приводит к увеличению размера пор в полученном металл-углеродном материале, но снижает количество электроактивного материала на квадратный сантиметр подложки, что отражается в низкой величине удельной электрохимически активной площади поверхности композита.
[0052] Если не указано иное, все числа, выражающие длину, ширину, глубину или другие размеры, и т.п., используемые в описании и формуле изобретения, во всех случаях должны пониматься с одной стороны как точные значения, как указано, а с другой, они могут уточняться термином «около». Соответственно, если не указано иное, числовые параметры, используемые в описании и прилагаемой формуле изобретения, представляют собой примерные значения, которые могут различаться в зависимости от желаемых свойств, которые должны быть получены. Как минимум, и не как попытка ограничить применение доктрины эквивалентов в отношении объема притязаний, каждый числовой параметр должен толковаться по меньшей мере с учетом количества значимых цифр и с использованием стандартных методов округления. Любое конкретное значение может отличаться на 20%.
[0053] Неопределенные и определенные артикли и т.п., используемые при описании изобретения (особенно в приведенной формуле изобретения) должны пониматься, как охватывающие и единственное, и множественное число, если не указано иное или это явно не противоречит контексту. Все описанные здесь способы могут осуществляться в любом подходящем порядке, если не указано иное или это явно не противоречит контексту. Использование любых и всех примеров или иллюстративных выражений (например, «таких как»), приведенные в настоящей заявке, предназначено лишь для лучшего понимания изобретения и не должно рассматриваться как ограничение объема любого из пунктов. Никакие выражения в описании не должны толковаться, как указывающие на какой-либо не заявленный элемент, существенный для осуществления изобретения.
[0054] Группировка альтернативных элементов или примеров осуществления, раскрытых в настоящем документе, не должна пониматься, как ограничения. Каждый член группы может быть определен или заявлен отдельно или в комбинации с другими членами группы или с другими элементами, приведенными здесь. Предполагается, что один или более членов группы могут быть включены в группу или удалены из группы по причинам несоответствия и/или патентоспособности. Когда происходит любое такое включение или исключение, описание рассматривается, как содержащее измененную группу, таким образом удовлетворяя требованиям к письменному описанию всех групп Маркуша, указанных в приложенной формуле изобретения.
[0055] В настоящей заявке описаны определенные варианты осуществления изобретения, включая лучший вариант, известный изобретателю и отражающий сущность настоящего раскрытия. После прочтения вышеприведенного описания специалисту в данной области техники станут очевидными вариации в описанных здесь вариантах осуществления изобретения. Изобретатель полагает, что квалифицированные специалисты могут использовать такие вариации в соответствующих случаях, и изобретатель намеревается реализовать данное изобретение иначе, чем детально описано здесь. Соответственно, формула изобретения включает все модификации и эквиваленты объекта изобретения, приведенного в формуле изобретения, в рамках применимого законодательства. Более того, предусматривается любая комбинация описанных выше элементов во всех возможных их вариантах, если не указано иное или это явно не противоречит контексту.
[0056] В заключение следует понимать, что раскрытые здесь варианты осуществления изобретения являются иллюстрациями принципов, лежащих в основе формулы изобретения. В рамках формулы изобретения возможны и другие модификации, которые могут быть осуществлены. Таким образом, в качестве примера, но не ограничения, могут использоваться альтернативные варианты осуществления изобретения в соответствии с приведенным раскрытием. Соответственно, формула изобретения не ограничивается раскрытыми и описанными конкретными вариантами осуществления изобретения.

Claims (24)

1. Способ изготовления электрохимически активного металл-углеродного материала, включающий:
нанесение на электропроводящую подложку слоя полимерного комплекса переходного металла с основанием Шиффа вида [M(Shiff)]n, имеющего повторяющийся фрагмент следующей структуры:
где n - целое число в интервале от 2 до 50000;
М - переходный металл, выбранный из группы, состоящей из никеля, палладия, платины, кобальта, меди, железа;
Shiff - тетрадентатный лиганд, выбранный из группы, состоящей из Salen (остаток бис-(салицилальдегид)-этилендиамина), Saltmen (остаток бис-(салицилальдегид)-тетраметилэтилендиамина), Salphen (остаток бис-(салицилальдегид)-о-фенилендиамина);
R - заместитель в основании Шиффа, выбранный из группы, состоящей из Н- и углеродсодержащих заместителей, предпочтительно СН3-, С2Н5-, СН3О-, С2Н5O-; и
Y - диаминовый мостик в основании Шиффа, имеющий следующую структуру:
Figure 00000008
для основания Шиффа Salen,
Figure 00000009
для основания Шиффа Saltmen,
Figure 00000010
для основания Шиффа Salphen
и последующее нагревание подложки с нанесенным на нее упомянутым слоем полимерного комплекса переходного металла с основанием Шиффа в инертной атмосфере до завершения процесса карбонизации упомянутого полимерного комплекса.
2. Способ по п. 1, где в качестве электропроводящей подложки использована стеклоуглеродная пластина.
3. Способ по п. 1, где инертная атмосфера создана одним или несколькими газами, выбранными из группы, включающей азот, аргон и гелий.
4. Способ по п. 1, где нагревание подложки с нанесенным на нее слоем полимерного комплекса переходного металла с основанием Шиффа осуществляют при температуре в интервале от 500 до 750°С в течение от 1 до 4 ч.
5. Способ по п. 4, где нагревание подложки с нанесенным на нее слоем полимерного комплекса переходного металла с основанием Шиффа осуществляют при температуре от 550 до 650°С.
6. Способ по п. 4, где нагревание подложки с нанесенным на нее слоем полимерного комплекса переходного металла с основанием Шиффа осуществляют при температуре от 580 до 620°С.
7. Способ по п. 4, где нагревание подложки с нанесенным на нее слоем полимерного комплекса переходного металла с основанием Шиффа осуществляют в течение 2-3 ч.
8. Способ по п. 1, где нанесение на подложку слоя полимерного комплекса переходного металла с основанием Шиффа осуществляют путем электрохимической полимеризации при приложении постоянного потенциала к подложке.
9. Способ по п. 8, где значение приложенного к подложке постоянного потенциала составляет +0,98 В по отношению к стандартному хлоридсеребряному электроду.
10. Способ по п. 8, где электрохимическую полимеризацию осуществляют в растворе, содержащем тетрафторборат тетраэтиламмония и мономерный комплекс переходного металла с основанием Шиффа.
11. Способ по п. 10, где растворителем является ацетонитрил.
12. Способ по п. 10, где растворителем является пропиленкарбонат.
13. Способ по п. 10, где перед нагреванием подложку с нанесенным на нее слоем полимерного комплекса переходного металла с основанием Шиффа промывают, используя ацетонитрил.
14. Электрохимически активный металл-углеродный материал, изготовленный способом по любому из пп. 1-13.
RU2017108436A 2014-08-19 2015-08-13 Способ производства пористых металлоуглеродных материалов RU2675582C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462039010P 2014-08-19 2014-08-19
US62/039,010 2014-08-19
PCT/US2015/044997 WO2016028589A1 (en) 2014-08-19 2015-08-13 Method of producing porous metal-carbon materials

Publications (3)

Publication Number Publication Date
RU2017108436A3 RU2017108436A3 (ru) 2018-09-21
RU2017108436A RU2017108436A (ru) 2018-09-21
RU2675582C2 true RU2675582C2 (ru) 2018-12-19

Family

ID=54105968

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017108436A RU2675582C2 (ru) 2014-08-19 2015-08-13 Способ производства пористых металлоуглеродных материалов

Country Status (7)

Country Link
US (2) US9653736B2 (ru)
EP (1) EP3183259B1 (ru)
JP (1) JP6317857B2 (ru)
KR (1) KR20170047279A (ru)
CN (1) CN107073440A (ru)
RU (1) RU2675582C2 (ru)
WO (1) WO2016028589A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108325549A (zh) * 2018-01-09 2018-07-27 中山大学 一种用于甲醛净化的过渡金属和氮共掺杂碳复合材料及其制备方法
JP6982244B2 (ja) * 2018-05-18 2021-12-17 日本電信電話株式会社 リチウム二次電池
CN109675635B (zh) * 2019-02-22 2020-08-04 中南大学 适用于2,3,6-三甲基苯酚氧化的非共价聚合物催化剂及其制备方法
KR102286788B1 (ko) * 2020-01-07 2021-08-05 인하대학교 산학협력단 산소환원반응용 그래핀 기반 코발트 유기 금속 화합물 촉매 및 이의 제조방법
CN111155143B (zh) * 2020-01-07 2021-06-01 中国科学院化学研究所 一种二维层状金属有机框架纳米材料的制备方法
CN112117469B (zh) * 2020-09-10 2022-02-15 广州大学 一种泡沫镍电催化剂及其制备方法
CN113121838B (zh) * 2021-03-31 2022-05-06 海南大学 一种原子层沉积辅助制备mof/碳复合材料的方法及所得产品和应用
CN113233536B (zh) * 2021-03-31 2022-05-17 浙江工业大学 一种利用乙二胺树脂基零价钯纳米复合材料定向还原水体中亚硝酸根的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753108B1 (en) * 1998-02-24 2004-06-22 Superior Micropowders, Llc Energy devices and methods for the fabrication of energy devices
WO2005036572A1 (en) * 2003-10-14 2005-04-21 Gen3 Partners, Inc. Electrode for energy storage devices and electrochemical supercapacitor based on said electrode
RU2005113151A (ru) * 2002-10-03 2005-10-10 ДженЗ Партнерс, Инк. (US) Электрохимический конденсатор и способ его использования
US20070082805A1 (en) * 2001-03-19 2007-04-12 Ube Industries, Ltd. Electrode base material for fuel cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128198B1 (ko) * 2002-01-25 2012-03-23 엔젠 그룹 인코포레이티드 에너지 저장 장치용의 고분자 개질된 전극 및 이 고분자개질된 전극에 기초한 전기화학적 슈퍼커패시터
JP2005066592A (ja) * 2003-08-05 2005-03-17 Toyota Motor Corp 触媒材料およびその製造方法
CA2647744A1 (en) * 2006-03-24 2007-10-04 Gen 3 Partners, Inc. Method for manufacturing an energy storage device
JP5151108B2 (ja) * 2006-09-29 2013-02-27 日本ケミコン株式会社 電極活物質
CN103143378B (zh) * 2013-03-04 2015-05-06 太原理工大学 一种燃料电池阴极非贵金属氧还原电催化剂的制备方法
CN103346304B (zh) * 2013-06-25 2015-04-22 南开大学 一种用于锂二次电池负极的锡碳复合材料及其制备方法
CN103811775A (zh) * 2014-03-06 2014-05-21 南开大学 一种用于燃料电池氧还原催化剂的多孔纳米复合材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753108B1 (en) * 1998-02-24 2004-06-22 Superior Micropowders, Llc Energy devices and methods for the fabrication of energy devices
US20070082805A1 (en) * 2001-03-19 2007-04-12 Ube Industries, Ltd. Electrode base material for fuel cell
RU2005113151A (ru) * 2002-10-03 2005-10-10 ДженЗ Партнерс, Инк. (US) Электрохимический конденсатор и способ его использования
WO2005036572A1 (en) * 2003-10-14 2005-04-21 Gen3 Partners, Inc. Electrode for energy storage devices and electrochemical supercapacitor based on said electrode

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEVIN O.V. et al, Charge transfer processes on electrodes modified by polymer films of metal complexes with Schiff bases, Electrochem. Acta, 2013, v. 109, p.p. 153-161. А.М.МАЛЮШЕВСКАЯ и др. Получение металлоуглеродных композиционных наномериалов электроразрядным взрывом, Электронная обработка материалов, 2013, т. 49, no. 4, с. 12-16. *
М.П.КАРУШЕВ, А.М.ТИМОНОВ. Адсорбционно-электрохимическая модификация нанопористых углеродных материалов комплексами никеля с основаниями Шиффа, Журнал прикладной химии, 2012, т. 85, вып. 6, с. 932-938. *
М.П.КАРУШЕВ, А.М.ТИМОНОВ. Адсорбционно-электрохимическая модификация нанопористых углеродных материалов комплексами никеля с основаниями Шиффа, Журнал прикладной химии, 2012, т. 85, вып. 6, с. 932-938. LEVIN O.V. et al, Charge transfer processes on electrodes modified by polymer films of metal complexes with Schiff bases, Electrochem. Acta, 2013, v. 109, p.p. 153-161. А.М.МАЛЮШЕВСКАЯ и др. Получение металлоуглеродных композиционных наномериалов электроразрядным взрывом, Электронная обработка материалов, 2013, т. 49, no. 4, с. 12-16. *

Also Published As

Publication number Publication date
CN107073440A (zh) 2017-08-18
JP2017536702A (ja) 2017-12-07
JP6317857B2 (ja) 2018-04-25
KR20170047279A (ko) 2017-05-04
EP3183259B1 (en) 2018-07-04
USRE49299E1 (en) 2022-11-15
EP3183259A1 (en) 2017-06-28
WO2016028589A1 (en) 2016-02-25
RU2017108436A3 (ru) 2018-09-21
RU2017108436A (ru) 2018-09-21
US20160190601A1 (en) 2016-06-30
US9653736B2 (en) 2017-05-16

Similar Documents

Publication Publication Date Title
RU2675582C2 (ru) Способ производства пористых металлоуглеродных материалов
Ban et al. Efficient Co–N/PC@ CNT bifunctional electrocatalytic materials for oxygen reduction and oxygen evolution reactions based on metal–organic frameworks
Hu et al. One-step conversion from core–shell metal–organic framework materials to cobalt and nitrogen codoped carbon nanopolyhedra with hierarchically porous structure for highly efficient oxygen reduction
Wang et al. Band gap-tunable porous borocarbonitride nanosheets for high energy-density supercapacitors
Parwaiz et al. Cobalt-doped ceria/reduced graphene oxide nanocomposite as an efficient oxygen reduction reaction catalyst and supercapacitor material
Lai et al. Biomass‐derived nitrogen‐doped carbon nanofiber network: a facile template for decoration of ultrathin nickel‐cobalt layered double hydroxide nanosheets as high‐performance asymmetric supercapacitor electrode
CA2899131C (en) Carbon material for catalyst support use
Chen et al. Cobalt, nitrogen-doped porous carbon nanosheet-assembled flowers from metal-coordinated covalent organic polymers for efficient oxygen reduction
Jeon et al. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors
Zhao et al. Hierarchical nanostructures of nitrogen-doped porous carbon polyhedrons confined in carbon nanosheets for high-performance supercapacitors
JP6047799B2 (ja) 蓄電デバイスの電極用活性炭及び蓄電デバイスの電極用活性炭の製造方法
Yu et al. Promising high-performance supercapacitor electrode materials from MnO2 nanosheets@ bamboo leaf carbon
EP3408012A1 (en) Hierarchically structured, nitrogen-doped carbon membranes
Sun et al. Novel bake-in-salt method for the synthesis of mesoporous Mn3O4@ C networks with superior cycling stability and rate performance
CN107265433A (zh) 三维多孔掺氮碳材料及其制备方法和应用
Han et al. Local plant-derived carbon sheets as sustainable catalysts for efficient oxygen reduction reaction
Vadiyar et al. Holey C@ ZnFe2O4 nanoflakes by carbon soot layer blasting approach for high performance supercapacitors
Gu et al. Facile synthesis of metal-loaded porous carbon thin films via carbonization of surface-mounted metal–organic frameworks
Wang et al. Highly dispersed Co-, N-, S-doped topological defect-rich hollow carbon nanoboxes as superior bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries
Duan et al. Temperature-Dependent Morphologies of Precursors: Metal–Organic Framework-Derived Porous Carbon for High-Performance Electrochemical Double-Layer Capacitors
Cong et al. Solvothermal synthesis of a high supercapacitive humate–NiCo–LDH composite material derived from the humate–ZIF-67 template
Ma et al. Metal–organic gels and their derived materials for electrochemical applications
JP2007035811A (ja) カーボンナノチューブを用いた電極およびその製造方法
Pan et al. Three-dimensional Ni foam-supported CoO nanoparticles/N-doped carbon multilayer nanocomposite electrode for oxygen evolution
Xiong et al. Discarded biomass derived ordered hierarchical porous WO3–C as advanced electrochemical materials

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200814

NF4A Reinstatement of patent

Effective date: 20220401