RU2674358C1 - Способ финишной обработки заготовки лопатки газотурбинного двигателя и устройство для его осуществления - Google Patents

Способ финишной обработки заготовки лопатки газотурбинного двигателя и устройство для его осуществления Download PDF

Info

Publication number
RU2674358C1
RU2674358C1 RU2018104522A RU2018104522A RU2674358C1 RU 2674358 C1 RU2674358 C1 RU 2674358C1 RU 2018104522 A RU2018104522 A RU 2018104522A RU 2018104522 A RU2018104522 A RU 2018104522A RU 2674358 C1 RU2674358 C1 RU 2674358C1
Authority
RU
Russia
Prior art keywords
workpiece
processing
tool
working tool
axis
Prior art date
Application number
RU2018104522A
Other languages
English (en)
Inventor
Дмитрий Леонидович Раков
Игорь Михайлович Кондратьев
Марина Анатольевна Печейкина
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН)
Priority to RU2018104522A priority Critical patent/RU2674358C1/ru
Application granted granted Critical
Publication of RU2674358C1 publication Critical patent/RU2674358C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/14Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding turbine blades, propeller blades or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B51/00Arrangements for automatic control of a series of individual steps in grinding a workpiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

Изобретение относится к области машиностроения и может быть использовано для финишной обработки деталей сложной пространственной формы, в частности лопаток газотурбинных двигателей (ГТД). Заготовку перемещают в зону обработки и производят сканирование геометрических параметров заготовки в ортогональных координатах в поперечном, продольном и вертикальном направлениях с помощью измерительного модуля. Полученные данные передают в блок управления, в котором производят математическую обработку данных, сравнение с теоретической формой детали и определение множества областей для обработки заготовки с помощью рабочего инструмента при его перемещении по трем ортогональным координатам. Осуществляют снятие текущих параметров обработки заготовки с помощью силомоментного датчика, которые передаются в блок управления для выработки команд управления. При этом на основании устройства установлен портал с размещенными на нем заготовкой, рабочим инструментом, измерительным блоком и приводами перемещения инструмента и заготовки, связанными с измерительным блоком и блоком управления. В результате обеспечивается высокопроизводительная финишная обработка поверхностей лопаток ГТД. 2 н. и 3 з.п. ф-лы, 4 ил., 1 табл.

Description

Изобретение относится к области машиностроения, в том числе к способам и устройствам для финишной обработки деталей сложной пространственной формы, в частности заготовок лопаток газотурбинных двигателей (ГТД).
Заготовки для финишной обработки лопаток газотурбинных двигателей изготавливаются ковкой и штамповкой, затем фрезеруются. При этом удовлетворяются ограничительные требования по точности к толщине заготовки, но не обеспечивается стабильность угла ее закрутки относительно продольной оси и заданная кривизна поверхности. Поэтому для получения готовой лопатки необходима адаптивная финишная обработка абразивным инструментом, учитывающая форму заготовки и обеспечивающая плавность сопряжений между различными видами поверхностей. В качестве финишных операций используется шлифование и полирование - шлифование для обеспечения допустимых геометрических размеров, полирование - для получения требуемого качества поверхности; в настоящее время эти операции выполняются на разных станках.
Известен способ для формирования трехмерной внешней поверхности объекта (патент US 8747188 В2, МПК В24В 49/00 от 24.02.2011), включающий создание 3D-модели объекта и формирование траектории движения инструмента относительно детали по этой модели. Недостатком данного способа является отсутствие возможности обрабатывать каждую поверхность лопатки ГТД оптимальным для этой поверхности способом.
Известен 3D-принтер для послойного изготовления объемных деталей, включающий основание, печатающую головку, закрепленную на каретке, снабженной модулем ее перемещения в плоскости XY, параллельной основанию принтера; рабочий стол, оснащенный устройством подогрева рабочей поверхности, смонтированный в основании и снабженный модулем перемещения по оси Z; расположенные на основании принтера катушки с механизмами подачи расходного материала в печатающую головку, причем устройство для перемещения каретки включает две продольные рельсовые и, по крайней мере, одну поперечную направляющие, продольные направляющие расположены по оси Y и жестко закреплены на основании, поперечная направляющая расположена по оси X между двумя продольными направляющими с возможностью перемещения по ним, а каретка имеет возможность перемещения по поперечной направляющей посредством приводных ремней (патент РФ на полезную модель №164639, кл. B41F 17/00, 2016 г.).
Известно устройство для механической обработки изделий сложной пространственной формы, в которых шлифование производится методом относительного взаимного перемещения привода вращения инструмента относительно обрабатываемой детали (патент RU 2475347 С1, МПК В24В 19/14, В23С 3/18, B25J 9/00 от 23.08.2011). Недостатком данного устройства является отсутствие в нем средств измерения заготовки и, следовательно, невозможность адаптации управляющей программы к изменениям формы заготовки.
Известен также способ изготовления детали с помощью ковки и дальнейшей адаптивной шлифовки (патент RU 2550449 С2, МПК B21K 3/04, В24В 19/14, В24В 21/16 от 26.06.2009). После операции ковки измеряют геометрические характеристики заготовочной детали и сравнивают их с соответствующими размерами теоретической модели, задающей геометрические характеристики готовой детали. На поверхности заготовочной детали выделяют зоны несоответствия (рассогласования) размеров и определяют количество материала, которое необходимо удалить в каждой из таких зон для устранения этого несоответствия. Заготовочную деталь шлифуют абразивной лентой. При этом количеством удаляемого материала управляют за счет изменения скорости движения детали относительно абразивной ленты в продольном направлении детали в соответствии с заранее установленными соотношениями, полученными калибровкой.
Недостатком данного способа является отсутствие возможности обработки поверхности сопряжения замковой части и пера лопатки и отсутствие возможности бесконтактных измерений размеров заготовки оптической системой контроля.
Наиболее близким техническим решением по отношению к предложенному по совокупности существенных признаков является способ финишной обработки лопатки газотурбинного двигателя и устройство для его осуществления (патент РФ №2629419 от 25.02.2016, МПК В24В 19/14). Способ включает измерение геометрических характеристик заготовки лопатки, сравнение измеренной формы заготовки с теоретической формой готовой лопатки, определение областей заготовки лопатки для полирования, формирование траектории движения инструмента, установление режимов резания для полирования на основе измеренных данных и выполнение полирования, отличающийся тем, что геометрические параметры заготовки лопатки измеряют с помощью оптической системы контроля, а определение областей заготовки для полирования производят путем математического наложения по меньшей мере, одной из допустимых математической моделью поверхностей готовой лопатки и измеренной поверхности заготовки, при этом для полирования используют инструмент в виде полировального круга, имеющего совмещенные на нем коническую, тороидальную и вторую коническую режущие поверхности, предназначенные для обработки участков поверхности лопатки, соответственно спинки и корыта, вогнутой поверхности сопряжения полки и поверхности полки, а формирование траектории движения инструмента и установление режимов резания осуществляют для упомянутых режущих поверхностей полировального круга, причем полирование упомянутых областей на участках заготовки лопатки ведут соответствующими режущими поверхностями полировального круга с помощью двух манипуляторов для относительного перемещения заготовки и круга. Устройство, реализующее данный способ, содержит измерительный модуль, приводы перемещения заготовки лопатки и вращения инструмента для полирования, а также содержит манипуляционную систему с двумя манипуляторами для отдельного перемещения приводов вращения инструмента и перемещения заготовки, а измерительный модуль выполнен в виде оптической системы контроля геометрических характеристик заготовки, включающей систему числового управления упомянутыми манипуляторами, при этом в качестве инструмента использован полировальный круг, выполненный с совмещенными конической, тороидальной и второй конической режущими поверхностями, предназначенными для обработки соответственно спинки и корыта лопатки, вогнутой поверхности сопряжения ее полки и поверхности полки.
Недостатками перечисленных технических решений являются:
- или полное отсутствие измерительной системы, или сложность измерения геометрии заготовки, в том числе из-за разных условий закрепления заготовки для измерения, что требует адаптации измерительной системы к каждой заготовке.
- низкая производительность получения готовых деталей из-за необходимости выполнения нескольких вспомогательных операций - переустановок заготовок.
Преимуществами предлагаемого технического решения являются:
- операции финишной обработки - шлифование, полирование, а также предварительное и окончательное измерения заготовки и детали производят за один установ, что обеспечивает уменьшение ошибок базирования и увеличивает точность изготовления детали;
- высокая точность измерения геометрии заготовки за счет привязки расположения измерительного модуля к каретке и рабочему инструменту.
- высокая производительность за счет уменьшения количества технологических операций (измерения, переустановки и т.д.)
- возможность выполнять операции финишной обработки - и шлифования и полирования за одну установку;
- возможность выполнять измерения (до обработки и контрольное измерение после обработки) без переустановки заготовки-детали;
- возможность выбирать вариант установки заготовки (консоль или с двумя закрепленными концами в зависимости от жесткости или размеров лопатки);
- возможность применять разные способы (технологии) измерения геометрии заготовок;
- возможность контролировать и макрогеометрию (размеры) и микрогеометрию (шероховатость поверхности) за одну установку детали;
- более жесткая конструкция станка и всей системы СПИД, позволяющая использовать повышенные режимы обработки (или обеспечивать меньшие уровни вибрации на сравнимых по производительности режимах обработки);
- наличие встроенного инструментального магазина револьверного типа позволяет выполнять обработку деталей разными инструментами;
- большая зона сервисного обслуживания;
- более простая система управления;
- наличие в системе управления функции расчета примерного времени обработки для синхронизации подачи в зону обработки очередной заготовки;
- возможность параллельной работы двумя инструментами (одновременное шлифование и полирование);
- наличие инструментального магазина и узла правки инструмента;
- возможность использования выдвижной каретки только для перемещения детали (ручная и автоматическая установка) для ускорения подачи заготовки в зону обработки;
- возможность проводить обработку с использованием смазочно-охлаждающей жидкости и без нее;
- наличие варианта встраивания измерительной системы в стойки портала;
- возможность использования дополнительной поддерживающей нижней опоры, соединенной с кареткой, для увеличения жесткости заготовки лопатки;
- возможность поворота детали вокруг оси Z (для круга);
- возможность обработки диска с лопатками в сборе.
Задача, на решение которой направлено заявленное изобретение, заключается в выполнении высокопроизводительной финишной операции обработки поверхностей лопатки ГТД при учете особенностей геометрии детали.
Для достижения поставленной цели предложен способ финишной обработки заготовки лопатки газотурбинного двигателя, включающий измерение геометрических характеристик заготовки, сравнение измеренной формы заготовки с теоретической формой готовой детали, определение областей заготовки для финишной обработки, формирование траектории движения рабочего инструмента, установление режимов резания на основе измеренных данных и выполнение финишной обработки, при этом используют рабочий инструмент в виде круга. В предложенном способе заготовку перемещают в зону обработки и производят сканирование геометрических параметров заготовки в ортогональных координатах в поперечном, продольном и вертикальном направлениях по осям Y, X, Z с помощью измерительного модуля путем равномерного перемещения его вдоль оси вращающейся заготовки, после чего данные измеренной формы заготовки передают в блок управления, в котором производят математическую обработку данных, сравнение измеренной формы заготовки с теоретической формой детали и определение множества областей для механической обработки заготовки, на основании чего выполняют обработку заготовки рабочим инструментом путем совместного перемещения рабочего инструмента по трем ортогональным координатам Y, X, Z, при этом осуществляют снятие текущих параметров обработки заготовки при помощи силомоментного датчика, которые передаются в блок управления для выработки команд управления. При проведении всех операций рабочий инструмент вращают относительно продольной оси корпуса X, а заготовку во время обработки поворачивают относительно ее продольной оси с возможностью фиксации ее в определенном положении.
Также предлагается устройство, в котором реализуется новый способ для финишной обработки лопатки газотурбинного двигателя, содержащее основание, на котором установлен портал с размещенными на нем заготовкой, режущим инструментом, измерительным блоком и приводами перемещения инструмента и заготовки, связанные с измерительным блоком и блоком управления. Портал выполнен подвижным относительно основания с возможностью продольного перемещения по оси Y и на нем установлены манипулятор подачи заготовки, измерительный блок и каретка поперечного перемещения по оси X с закрепленным на ней корпусом под установку сменного рабочего инструмента с возможностью вертикального перемещения инструмента относительно оси Z. При этом на корпусе дополнительно установлен силомоментный датчик, связанный с блоком управления, который имеет обратную связь с приводами перемещения портала, каретки, инструмента блока и манипулятора с заготовкой, причем установленном на основании манипулятор подачи заготовки обеспечивает возможность фиксированного положения или вращения заготовки вокруг оси Y в процессе обработки.
Возможен вариант выполнения устройства по схеме с двумя подвижными порталами, на одном портале установлена каретка с обрабатывающим инструментом, а на другом манипулятор с заготовкой и измерительный модуль, причем оба портала базируются на одном основании.
Предложенный способ финишной обработки лопатки газотурбинного двигателя осуществлен в нижеописанном устройстве для обработки сложных геометрических поверхностей, в том числе для финишной обработки лопатки ГТД поясняется следующими иллюстрациями.
На фиг. 1 показан вид устройства для финишной обработки лопатки ГТД,
на фиг. 2 дана схема устройства при подаче заготовки лопатки в манипуляторе,
на фиг. 3 показано устройство с расположенным на портале измерительным оптическим модулем,
на фиг. 4 дано устройство с двумя порталами - на одном портале установлена каретка с обрабатывающим инструментом, а на другом измерительный модуль.
На основании 1 расположен портал 2 с возможностью перемещения по оси Y относительно основания 1 при помощи шарико-винтовых передач (ШВП) 3 и шаговых двигателей 4 на рельсовых линейных направляющих (на рисунке не показаны) (Фиг. 1). Каретка 5 расположена на портале 2 с возможностью перемещения по оси X при помощи ШВП 6 и шагового двигателя 7. На каретке 5 размещен корпус 8 с рабочим инструментом 9, например, шлифовальным или полировальным кругом, приводимым во вращение двигателем 10. Корпус 8 выполнен с возможностью перемещения по оси Z и поворота относительно этой оси при помощи двигателя (на рисунке не показан). На корпусе 8 размещен также силомоментый датчик (на рисунке не показан), связанный с рабочим инструментом 9. На каретке 5 размещен также датчик измерения геометрических координат 11 поверхности заготовки лопатки ГТД - детали 12. Система измерения геометрических координат детали - измерительный модуль 11 установлена с возможностью перемещения по оси Z относительно каретки 5. Измерительный модуль 11 может быть выполнен как оптическим, так и механическим. Заготовка лопатки 12 закреплена в манипуляторе подачи заготовок 13 с возможностью вращения относительно оси X и Y при помощи двигателей (на рисунке не обозначены). Силомоментный датчик, измерительный модуль 11, двигатели 4, 7 и двигатель корпуса 8 соединены с блоком управления (на рисунке не показан), который обрабатывает информацию полученную с силомоментного датчика и измерительного модуля 11 и вырабатывает управляющие команды для перемещения рабочего инструмента.
Устройство может быть выполнено с измерительным оптическим модулем с передающей и приемной частью 11 (фиг. 3) расположенным на портале 2. Устройство снабжено двумя порталами 2 и 14 (фиг. 4) - на портале 2 установлена каретка 5 с обрабатывающим инструментом 9, а на портале 14 измерительный модуль 15, выполненный, например, в виде щупа.
Способ и устройство реализуются следующим образом.
Заготовку 12 перемещают к устройству при помощи, например робота (на рисунках не показан), затем производят ее размещение в зажимном приспособлении (на рисунке не показано) манипулятора подачи заготовок 13 и осуществляют поворот на 180 градусов (фиг. 2), тем самым, перемещая ее в зону обработки. Производят измерение геометрических характеристик заготовки лопатки оптической или механической системой измерения геометрических координат детали 11 путем перемещения измерительного модуля 11 по оси Z и каретки 5 по оси X и портала 2 по оси Y (фиг. 1). Также возможно бесконтактное измерение координат поверхности детали 12 измерительным модулем 11 путем перемещения каретки 5 по оси X и портала 2 по оси Y.
Данные измеренной формы детали 12 передаются в блок управления устройством (на рисунке не показан), где производится сравнение измеренной формы заготовки 12 с теоретической формой детали и определение множества областей для обработки данной заготовки, а также определение траектории и режимов резания для рабочего инструмента 9. Затем выполняют обработку заготовки 12 рабочим инструментом 9 при движении корпуса 8, портала 2 и каретки 5. Параметры обработки заготовки 12 при помощи силомоментного датчика передаются в систему управления станком для выработки команд управления. При необходимости после обработки проводят контроль геометрических размеров заготовки при помощи измерительного модуля 11. В случае достижения необходимой точности изготовления блок управления отправляет заготовку 12 на дальнейшие технологические операции, в противном случае - на повторную обработку.
Способ реализуется также при помощи измерительного оптического модуля 11, который скрепляют с порталом 2 (фиг. 3). Измерительный оптический модуль 11 состоит из приемной и излучающей части, например лазерного излучателя и линейки фотоэлементов. Портал 2 движется относительно заготовки 12 и измерительный оптический модуль 11 сканирует геометрические параметры заготовки 12, после чего блок управления формирует управляющие команды на движение портала 2 по оси Y, движение каретки 5 по оси X, движение корпуса 8 с рабочим инструментом 9 по оси Z, а также регулирует частоту вращения и усилие прижима рабочего инструмента 9 к поверхности детали 12.
Способ реализуется также при помощи измерительного модуля 15, который скрепляют с порталом 14 (фиг. 4), который может двигаться по оси Y. Измерительный модуль 15 выполнен например в виде щупа и выполнен с возможностью перемещения вдоль оси X относительно портала 14. Вначале измерительный модуль 15 сканирует поверхность заготовки 12, с последующей выработкой управляющих команд на движение корпуса 8 с рабочим инструментом 9
Блок управления станка управляет процессом измерения и обработкой заготовок. Возможные варианты исполнения устройства приведены в таблице 1.
Figure 00000001

Claims (5)

1. Способ финишной обработки заготовки лопатки газотурбинного двигателя, включающий измерение геометрических характеристик заготовки, сравнение измеренной формы заготовки с теоретической формой готовой детали, определение областей заготовки для финишной обработки, формирование траектории движения рабочего инструмента, установление режимов резания на основе измеренных данных и выполнение финишной обработки с помощью рабочего инструмента в виде круга, отличающийся тем, что заготовку перемещают в зону обработки и производят сканирование геометрических параметров заготовки в ортогональных координатах в поперечном, продольном и вертикальном направлениях по осям Y, X, Z с помощью измерительного модуля путем равномерного перемещения его вдоль оси вращающейся заготовки, после чего данные измеренной формы заготовки передают в блок управления, в котором производят математическую обработку данных, сравнение измеренной формы заготовки с теоретической формой детали и определение множества областей для финишной обработки заготовки, на основании чего выполняют обработку заготовки упомянутым рабочим инструментом путем его перемещения по трем ортогональным координатам Y, X, Z, при этом осуществляют снятие текущих параметров обработки заготовки с помощью силомоментного датчика, которые передают в блок управления для выработки команд управления.
2. Способ по п. 1, отличающийся тем, что рабочий инструмент вращают относительно продольной оси его корпуса.
3. Способ по п. 1, отличающийся тем, что заготовку во время обработки поворачивают относительно ее продольной оси с возможностью фиксации в определенном положении.
4. Устройство для финишной обработки заготовки лопатки газотурбинного двигателя, содержащее основание, на котором установлен портал с размещенными на нем заготовкой, рабочим инструментом, измерительным блоком и приводами перемещения инструмента и заготовки, связанными с измерительным блоком и блоком управления, отличающееся тем, что портал выполнен подвижным относительно основания с возможностью продольного перемещения по оси Y, на нем установлены манипулятор подачи заготовки, измерительный блок и каретка поперечного перемещения по оси X с закрепленным на ней корпусом для установки сменного рабочего инструмента с возможностью вертикального перемещения инструмента относительно оси Z, при этом на корпусе дополнительно установлен силомоментный датчик, связанный с блоком управления, который имеет обратную связь с приводами перемещения портала, каретки, инструмента и манипулятора с заготовкой, причем установленный на основании манипулятор подачи заготовки обеспечивает возможность фиксированного положения заготовки или вращения ее вокруг оси Y в процессе обработки.
5. Устройство по п. 4, отличающееся тем, что оно снабжено установленным на основании дополнительным подвижным порталом, на котором установлен измерительный модуль.
RU2018104522A 2018-02-06 2018-02-06 Способ финишной обработки заготовки лопатки газотурбинного двигателя и устройство для его осуществления RU2674358C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018104522A RU2674358C1 (ru) 2018-02-06 2018-02-06 Способ финишной обработки заготовки лопатки газотурбинного двигателя и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018104522A RU2674358C1 (ru) 2018-02-06 2018-02-06 Способ финишной обработки заготовки лопатки газотурбинного двигателя и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2674358C1 true RU2674358C1 (ru) 2018-12-07

Family

ID=64603597

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018104522A RU2674358C1 (ru) 2018-02-06 2018-02-06 Способ финишной обработки заготовки лопатки газотурбинного двигателя и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2674358C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112476163A (zh) * 2020-11-04 2021-03-12 中材科技(萍乡)风电叶片有限公司 一种用于风电叶片打磨机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1525949A1 (fr) * 2003-10-14 2005-04-27 Snecma Moteurs Procédé de polissage automatisé de pièces mécaniques en titane ou alliage de titane
RU2504468C1 (ru) * 2012-10-25 2014-01-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли (Минпромторг России) Способ шлифования пера лопатки газотурбинного двигателя
RU2550449C2 (ru) * 2009-06-26 2015-05-10 Снекма Способ изготовления кованой детали с адаптивной шлифовкой
RU2629419C1 (ru) * 2016-02-25 2017-08-29 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ финишной обработки лопатки газотурбинного двигателя и устройство для его осуществления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1525949A1 (fr) * 2003-10-14 2005-04-27 Snecma Moteurs Procédé de polissage automatisé de pièces mécaniques en titane ou alliage de titane
RU2550449C2 (ru) * 2009-06-26 2015-05-10 Снекма Способ изготовления кованой детали с адаптивной шлифовкой
RU2504468C1 (ru) * 2012-10-25 2014-01-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли (Минпромторг России) Способ шлифования пера лопатки газотурбинного двигателя
RU2629419C1 (ru) * 2016-02-25 2017-08-29 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ финишной обработки лопатки газотурбинного двигателя и устройство для его осуществления

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112476163A (zh) * 2020-11-04 2021-03-12 中材科技(萍乡)风电叶片有限公司 一种用于风电叶片打磨机

Similar Documents

Publication Publication Date Title
US4993896A (en) Edge contouring system
US6663465B2 (en) Grinding machine and method of sharpening blades
US8522654B2 (en) Cutting-edge position detecting method and cutting-edge position detecting apparatus
RU2417148C2 (ru) Способ шлифования стержневидных обрабатываемых деталей, шлифовальный станок (варианты) и шлифовальная секция спаренного расположения
JP4456520B2 (ja) 多軸球面研削装置及び研削方法
WO1991012111A1 (en) Computer-controlled grinding machine for producing objects with complex shapes
US20090133461A1 (en) Machining method, program, machining-program generating program and machining apparatus of press die
JP2010225141A (ja) 工作機械で工具を制御するための変換された制御データを発生するための方法および装置
KR20100009503A (ko) V홈 가공 방법 및 장치
JP5401757B2 (ja) 加工装置
CN104029126B (zh) 用于确认修整工具的构形偏离的方法及相应装备的磨削机
CN110744406A (zh) 一种叶片型面机器人磨抛自适应加工***及方法
GB2417449A (en) Process and device for grinding a profile of a workpiece
CN106363475B (zh) 一种高效双端面磨床及其控制方法
KR102542333B1 (ko) 중심 공작물 영역을 지지 및 측정하기 위한 측정 스테디 레스트, 이 측정 스테디 레스트를 갖는 연삭기, 및 중심 공작물 영역을 지지 및 측정하기 위한 방법
Hähnel et al. Reconfigurable robotic solution for effective finishing of complex surfaces
US4643622A (en) Automatic C-axis feedrate control for machine tools
RU2674358C1 (ru) Способ финишной обработки заготовки лопатки газотурбинного двигателя и устройство для его осуществления
JP2010017769A (ja) 薄板形状ワーク加工方法
JP2010029947A (ja) 複合エンドミル及び複合エンドミルを用いた加工方法
JP2010076032A (ja) テーパホーニング加工方法およびテーパホーニング盤
JP5202179B2 (ja) ねじ研削方法及びねじ研削盤
CN113245636A (zh) 一种机器人自动磨削精密齿轮齿廓圆角的装备及工艺方法
CN110919468A (zh) 一种新型蠕动磨床
RU2629419C1 (ru) Способ финишной обработки лопатки газотурбинного двигателя и устройство для его осуществления