RU2673059C2 - Система и способы конструирования подвешенной полоской структуры возбуждения антенны - Google Patents

Система и способы конструирования подвешенной полоской структуры возбуждения антенны Download PDF

Info

Publication number
RU2673059C2
RU2673059C2 RU2015100200A RU2015100200A RU2673059C2 RU 2673059 C2 RU2673059 C2 RU 2673059C2 RU 2015100200 A RU2015100200 A RU 2015100200A RU 2015100200 A RU2015100200 A RU 2015100200A RU 2673059 C2 RU2673059 C2 RU 2673059C2
Authority
RU
Russia
Prior art keywords
circuit
circuit board
antenna array
conductive layer
conductive layers
Prior art date
Application number
RU2015100200A
Other languages
English (en)
Other versions
RU2015100200A (ru
RU2015100200A3 (ru
Inventor
Нань ВАН
Орвилль НИХУС
Чао ВАН
Original Assignee
Ханивелл Интернешнл Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ханивелл Интернешнл Инк. filed Critical Ханивелл Интернешнл Инк.
Publication of RU2015100200A publication Critical patent/RU2015100200A/ru
Publication of RU2015100200A3 publication Critical patent/RU2015100200A3/ru
Application granted granted Critical
Publication of RU2673059C2 publication Critical patent/RU2673059C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • H01P3/084Suspended microstriplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/002Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • H01Q21/0081Stripline fed arrays using suspended striplines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0251Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance related to vias or transitions between vias and transmission lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Изобретение относится к системе возбуждения антенн и способу конструирования структуры питания антенной решетки. Структура питания антенной решетки содержит одну или несколько схемных плат, на которых выполнена одна или несколько схем, один или несколько проводящих слоев, на которых смонтирована одна или несколько схемных плат, и один или несколько соединителей, подсоединенных к одной или нескольким схемам через отверстие в одном или нескольких проводящих слоях. Один или несколько проводящих слоев отделены диэлектриком от одной или нескольких схем и контактируют с одной или несколькими схемными платами, в результате чего одна или несколько схем изолированы от одного или нескольких проводящих слоев. Техническим результатом является уменьшение потерь и обеспечение защиты от удара молнии. 3 н. и 17 з.п. ф-лы, 12 ил.

Description

Уровень техники
Система возбуждения антенн играет ключевую роль в обеспечении желаемых характеристик антенны. В некоторых случаях, например, когда антенна входит в состав антенной решетки, на конструкцию системы возбуждения антенны влияют факторы эффективности, стоимости, сложности и надежности. Если антенная система находится вне помещения, в систему целесообразно включить молниезащитное оборудование с целью повышения ее эффективности и надежности на случай удара молнии. Одним из примеров обеспечения молниезащиты служит установка стержневого молниеотвода вблизи антенны. Примером другого решения является встраивание стержневого молниеотвода в систему антенной решетки.
В некоторых линейных антенных решетках система возбуждения антенны установлена внутри центральной металлической трубы, служащей опорой для антенной решетки, в результате чего система возбуждения антенны изолирована от излучателей, которые находятся снаружи центральной трубы, но вблизи нее. Внутри центральной трубы может размещаться как молниезащитное заземление, так и схемы возбуждения. При конструировании схем возбуждения внутри центральной трубы в некоторых схемах возбуждения используются РЧ кабели, а некоторых - полосковые или микрополосковые линии. Поскольку микрополосковым и полосковым линиям присущи большие потери, чем их РЧ аналогам, когда вносимые потери имеют решающее значение для характеристик системы, применение полосковой структуры с более высокими потерями ограничено в таких случаях, как рассмотрены выше, или в других случаях, в которых вносимые потери имеют решающее значение для характеристик системы.
Сущность изобретения
Предложены системы и способы конструирования структуры питания антенной решетки. По меньшей мере в одном из вариантов осуществления структура питания антенной решетки содержит одну или несколько схемных плат, на которых выполнена одна или несколько схем, один или несколько проводящих слоев, на которых смонтирована одна или несколько схемных плат, и один или несколько соединителей, подсоединенных к одной или нескольким схемам через отверстие в одном или нескольких проводящих слоях. Кроме того, один или несколько проводящих слоев отделены диэлектриком от одной или нескольких схем и контактируют с одной или несколькими схемными платами, в результате чего одна или несколько схем изолированы от одного или нескольких проводящих слоев.
Краткое описание чертежей
Поскольку на чертежах представлены лишь типичные варианты осуществления, они не должны считаться ограничивающими, и дополнительная специфика и подробности типичных вариантов осуществления будут описаны со ссылкой на сопровождающие чертежи, на которых:
на фиг.1А показана высокоуровневая функциональная блок-схема цепи питания и антенной решетки согласно одному из вариантов осуществления,
на фиг.1 В схематически показаны цепь питания и антенная решетка согласно одному из вариантов осуществления,
на фиг.2А-2Б проиллюстрированы виды в разрезе примеров осуществления структуры питания антенной решетки,
на фиг.3 проиллюстрирован пример осуществления структуры питания антенной решетки с прикрепленным к ней стержневым молниеотводом,
на фиг.4 проиллюстрирован боковой вид в разрезе примера осуществления структуры питания антенной решетки с паяным штифтом, входящим в структуру,
на фиг.5 показана блок-схема одного из примеров способа конструирования структуры питания антенной решетки,
на фиг.6А-6Д проиллюстрированы примеры осуществления способа конструирования структуры питания антенной решетки.
В соответствии с принятой практикой различные описанные признаки представлены не в масштабе, а таким образом, чтобы выделить особые признаки, имеющие отношения к примерам осуществления.
Подробное описание изобретения
Далее изложено подробное описание изобретения со ссылкой на сопровождающие чертежи, которые являются его частью и на которых проиллюстрированы конкретные наглядные варианты осуществления. Тем не менее, подразумевается, что могут использоваться другие варианты осуществления, и что могут быть внесены логические, механические и электрические изменения. Кроме того, представленный на чертежах и в описании способ не следует считать ограничивающим порядок, в котором могут выполняться его отдельные стадии. Соответственно, следующее далее подробное описание не следует трактовать в ограничительном смысле.
В описанных вариантах осуществления настоящего изобретения предложены системы и способы конструирования подвешенной полосковой системы возбуждения антенны. Чтобы подвесить полосковую систему возбуждения антенны, монтируют на одном или нескольких проводящих слоях одну или несколько схемных плат, на которых выполнена одна или несколько схемных схем. Одна или несколько схемных плат смонтированы на одном или нескольких проводящих слоях таким образом, чтобы одна или несколько схемных плат опирались на один или несколько проводящих слоев, а любые схемы, выполненные на схемных платах, были изолированы диэлектриком от одного или нескольких проводящих слоев. В этом случае термин "изолированы" означает, что поверхность одной или нескольких схем отделена диэлектриком от одного или несколько проводящих слоев. В некоторых вариантах осуществления термин "изолированы" также может означать, что одна или несколько схем электрически изолированы от одного или нескольких проводящих слоев; тем не менее, чтобы одна или несколько схем были изолированы от одного или нескольких проводящих слоев, не требуется, чтобы они были электрически изолированы. Иными словами, в некоторых других вариантах осуществления термин "изолированы" может означать, что поверхность одной или нескольких схем отделена диэлектриком от одного или нескольких проводящих слоев, но, кроме того, один или несколько проводящих слоев обеспечивают заземление одной или нескольких схем. Один из примеров того, как это может быть осуществлено, проиллюстрирован на фиг.2. Описанная выше подвешенная структура схемных плат помогает уменьшать потери вследствие использования полосковых и микрополосковых линий, поскольку подвешенная структура имеет меньшие потери, чем другие традиционные полосковые структуры. Кроме того, схема возбуждения защищена от удара молнии за счет монтажа схемной платы возбуждения на металлическом заземляющем стержне, который имеет поперечное сечение, достаточное для переноса тока при ударе молнии. Этот металлический заземляющий стержень выгодно действует как сверхвысокочастотное заземление и как молниезащитное заземление.
На фиг.1А проиллюстрирована высокоуровневая функциональная блок-схема системы 100 линейной антенной решетки 120 со встроенной полосковой цепью 110 питания согласно одному из вариантов осуществления. В систему 100 встроена полосковая цепь 110 питания антенной решетки 120. В некоторых случаях реализации цепь 110 питания содержит компонент 112 ввода-вывода питания, который принимает входной сигнал питания от источника и затем может разветвлять его по трем каналам вывода с использованием стандартного двустороннего делителя мощности, такого как делитель мощности Вилкинсона. В этом примере один из трех каналов непосредственно связан с каналом вывода цепи 110 питания, по которому передается наиболее мощный сигнал питания от компонента 112 ввода-вывода питания. По этому каналу вывода осуществляется непосредственное питание центрального элемента антенной решетки 120. Остальные два канала могут служить для питания левой или правой стороны антенной решетки 120 через схему 114 разводки питания. Эта цепь 110 питания может быть реализована приблизительно в 2-3 слоях полосковой линии на многослойной плате с печатной схемой (РСВ) 130. На фиг.1Б проиллюстрировано, как РСВ 130, в которой реализована цепь питания, встроена в несущую конструкцию 140. Сигнал питания от РСВ 130 подается в отсеки 150 и затем в излучатели 160. Эта система обеспечивает компактную, недорогую систему питания.
Дополнительная информация с описанием вариантов осуществления встроенной полосковой цепи питания, такой как цепь 110 питания, приведена в патентной заявке РСТ 13/879300 под названием "INTEGRATED STRIPLINE FEED NETWORK FOR LINEAR ANTENNA ARRAY", переведенной на национальную фазу и поданной 12 апреля 2013 г. Заявка 13/879300 во всей полноте в порядке ссылки включена в настоящую заявку.
На фиг.2А и 2Б показаны вид спереди в разрезе и боковой вид в разрезе, соответственно, одного из примеров осуществления структуры питания антенной решетки, реализованной на схемной плате. На фиг.2А и 2Б показаны две схемные платы 212, на которых выполнена схема 214, и один или несколько проводящих слоев 216, отделенных диэлектриком 218 от схемы 214. Кроме того, две схемные платы 212 смонтированы на одном или нескольких проводящих слоях 216, которые контактируют с двумя схемными платами 212 таким образом, что схема 214 изолирована от одного или нескольких проводящих слоев 216. Наконец, с одной или несколькими схемами соединен один или несколько соединителей 220 через отверстие 222 в проводящем слое, на который опирается один или несколько соединителей.
Как известно специалистам в данной области техники, схемная плата служит механической опорой и электрическим соединением для электронных компонентов за счет использования проводящего материала, наслоенного на непроводящую подложку. Схемная плата этого типа также известна как плата с печатной схемой (РСВ). В этом варианте осуществления одна или несколько схем 214 на одной или нескольких схемных платах 212 содержит компонент 112 ввода-вывода питания и схему 114 разводки питания, как в примере осуществления, описанном со ссылкой на фиг.1А. Как описано выше, поскольку в некоторых вариантах осуществления одна или несколько схемных плат 212 могут являться многослойными, на различных уровнях одной или нескольких схемных плат 212 могут находиться каналы вывода различной мощности. Иными словами, как описано выше со ссылкой на фиг.1А, компонент 112 ввода-вывода питания может принимать входной сигнал питания от источника и делить его с использованием делителя мощности на два канала вывода, один из которых распределен по первому слою для непосредственного питания центральной антенны в антенной решетке, а другой канал вывода дополнительно разделен с использованием делителя мощности еще на два канала вывода, которые проходят по второму слою. Два выходных сигнала со второго уровня могут подаваться в схему 114 разводки питания с дополнительными делителями мощности для питания левой или правой стороны антенной решетки. То, сколько раз разделен канал, зависит от числа элементов антенны, которые расположены на левой и правой сторонах антенной решетки.
Кроме того, одна или несколько схем 214, которые выполнены на одной или нескольких схемных платах 212, могут быть наслоены на схемную плату 212 таким образом, чтобы проводящие слои 216 служили механической опорой для одной или нескольких схемных плат 212 без вхождения в контакт с одной или несколькими схемами 214. Как показано на фиг.2А, это предусматривает формирование одной или нескольких схем 214 на одной или нескольких схемных платах 212, но изолированных диэлектриком 218 от проводящих слоев 216, за счет чего при контакте проводящих слоев 216 с одной или несколькими схемными платами 212 они не контактируют с одной или несколькими схемами 214. В некоторых вариантах осуществления диэлектриком 218, отделяющим один или несколько проводящих слоев 216 от одной или нескольких схем 214, может являться воздух. В некоторых вариантах осуществления одна или несколько схемных плат 212 могут содержать первую схемную плату и вторую схемную плату, как показано на фиг.2А и 2Б. В других вариантах осуществления одна или несколько схемных плат могут содержать множество схемных плат в соответствии с конструктивными требованиями к структуре питания и несущей конструкции структуры питания.
Один или несколько проводящих слоев 216 могут состоять из любого материала, который обеспечивает поток электрических зарядов. Как указано выше и показано на фиг.2А, один или несколько проводящих слоев 216 окружают одну или несколько схемных плат 212; тем не менее, проводящие слои 216 также изолированы диэлектриком 218 от одной или нескольких схем 214 на одной или несколько схемных платах 212. Соответственно, одна или несколько схемных плат 212 подвешены внутри одного или нескольких проводящих слоев 216. Как отмечено выше, в некоторых вариантах осуществления диэлектриком 218, который отделяет один или несколько проводящих слоев 216 от одной или нескольких схем 214, может являться воздух. Кроме того, в некоторых вариантах осуществления интервал между поверхностями проводящих слоев 216, соразмерный толщине одной или нескольких схемных плат 212, где d1 означает толщину 217 схемной платы 212, a D1 означает расстояние 215 между поверхностями двух проводящих слоев, как показано на фиг.2А, может определяться согласно следующей формуле:
Figure 00000001
, в которой εr означает относительную диэлектрическую проницаемость, a Z0 означает характеристический импеданс. Иными словами, расстояние 215 D1 между поверхностями двух проводящих слоев, соразмерное толщине 217 d1 схемной платы, таково, что характеристический импеданс одной или нескольких схем может соответствовать характеристическому импедансу других устройств, с которым она соединена, таких как один или несколько соединителей. В одном из примеров, если Z0=50Ω, а диэлектриком является воздух, и εr=1, то D1=2,303*d1. Иными словами, интервал между поверхностями двух проводящих слоев 216 в 2,303 раза превышает ширину одной или нескольких схемных плат 212, как показано на фиг.2Б, а характеристический импеданс схемы составляет 50Ω.
Помимо одной или нескольких схем 214, выполненных на одной или нескольких схемных платах 212 и разделенных диэлектриком 218, один или несколько проводящих слоев 216 контактирует с одной или несколькими схемными плата 212, но таким образом, что одна или несколько схем 214, выполненных на одной или нескольких схемных платах 212, изолированы от одного или нескольких проводящих слоев 216. В некоторых вариантах осуществления один или несколько проводящих слоев 216 может контактировать с одной или несколькими схемными плата 212 на краях одного или нескольких проводящих слоев 216 и служить опорой для них без контакта с одной или несколькими схемами 214, выполненными на одной или нескольких схемных платах 212, как показано на фиг.2А. Как указано выше, существуют другие варианты осуществления, в которых один или несколько проводящих слоев 216 служат опорой для одной или нескольких схемных плат 212 и при этом изолированы от одной или нескольких схем 214, выполненных на одной или несколько схемных платах 212, и, соответственно, фиг.2А не имеет целью ограничение изобретения. Кроме того, в некоторых вариантах осуществления один или несколько проводящих слоев 216 могут быть закорочены с использованием одного или нескольких закорачивающих элементов 229 с каждой стороны структуры 200 питания, как показано на фиг.2А.
На фиг.3 проиллюстрирован пример осуществления структуры 300 питания антенной решетки с прикрепленным к ней стержневым молниеотводом 323. В некоторых вариантах осуществления один или несколько проводящих слоев 216, показанных на фиг.2А и 2Б, имеют физическую геометрию, позволяющую им действовать как сверхвысокочастотное заземление цепи питания и одновременно как молниезащитное заземление антенной решетки 120, показанной на фиг.1А. В некоторых вариантах осуществления слоем, который действует как сверхвысокочастотное заземление и молниезащитное заземление цепи питания, является нижний проводящий слой 316 с структуры питания, при этом его длина примерно равна длине одной или нескольких схемных плат 312, как показано на фиг.3. Когда в некоторых вариантах осуществления нижний проводящий слой 316 с структуры питания действует как молниезащитное заземление, к нижнему проводящему слою 316а может быть прикреплен стержневой молниеотвод 323, как показано на фиг.3. В некоторых из этих вариантов осуществления нижний проводящий слой 316 с может перекрывать простираться по всей длине структуры, как показано на фиг.3.
Как упомянуто выше, один или несколько соединителей 220 соединены с одной или несколькими схема 214 через отверстие 222 в одном или нескольких проводящих слоях 216, как показано на фиг.2А и 2Б. Одним или несколькими соединителями могут являться 220 радиочастотные (РФ) соединители, коаксиальные соединители или другие волноводные соединительные структуры, которые переносят электромагнитную энергию. Устройство 224 сопряжения соединителя 220 может быть соединено с одной или несколькими схемами 214 путем пайки. Подсоединение соединителя 220 к одной или нескольким схемам 214 позволяет одной или нескольким схемам 214 распределять сигнал питания через один или несколько соединителей 220 одному или нескольким элементам антенной решетки 120. Обычно число соединителей 220 зависит от числа распределенных элементов в антенной решетке 120. Кроме того, диаметр 219 отверстия 222, через которое устройство 224 сопряжения подсоединяет соединитель 220 к одной или нескольким схемам 214, может определяться рассмотренной выше формулой. То есть,
Figure 00000002
, где D2 означает диаметр 219 отверстия 222, а d2 означает диаметр 221 устройства 224 сопряжения. Аналогичным образом, диаметр 219 D2 отверстия 222, через которое устройство 224 сопряжения подсоединяет соединитель 220 к одной или нескольким схемам 214, соразмерный диаметру 221 d2 устройства 224 сопряжения, которое подсоединяет соединитель 220 к одной или нескольким схемам 212, таков, что характеристический импеданс одного или нескольких соединителей 220 может приблизительно соответствовать характеристическому импедансу любых других устройств, к которым он подсоединен, таких как одна или несколько схем 214. В одном из примеров, если характеристический импеданс Z0=50Ω, а диэлектриком является воздух, и εr=1, то диаметр 219 D1 отверстия 224 приблизительно в 2,303 раза превышает диаметр 221 устройства 224 сопряжения.
На фиг.4 проиллюстрирован боковой вид в разрезе примера осуществления структуры 400 питания антенной решетки с паяным штифтом 426, входящим в структуру 400. В некоторых вариантах осуществления, в которых предусмотрено несколько схемных плат 212, различные схемные платы 412а-412b могут быть соединены одним или несколькими паяными штифтами 426, как показано на фиг.4. Паяный штифт 426 припоем 428 соединен со схемными платами 412а-412b. Показано, что паяный штифт 426 проходит через отверстия 431 в первой и второй схемных платах 412а-412b и через отверстие 433 в среднем проводящем слое 416b. Припой 428 нанесен таким образом, что паяный штифт 426 электрически соединяет схему, выполненную на первой схемной плате 412а, со схемой, выполненной на второй схемной плате 412b. Соотношение диаметра 425 d3 штифта 426 и диаметра 423 D3 отверстия в среднем проводящем слое 416b может определяться такой же формулой, т.е. D3=2,303*d3.
На фиг. 5 показана типичная блок-схема, иллюстрирующая один из вариантов осуществления способа конструирования структуры питания антенной решетки 500. На шаге 502, используют одну или несколько схемных плат, на которых выполнена одна или несколько схем. На шаге 504 монтируют одну или несколько схемных плат на одном или нескольких проводящих слоях. Кроме того, отделяют диэлектриком один или несколько проводящих слоев от одной или нескольких схем, чтобы изолировать схему от одного или нескольких проводящих слоев. На шаге 506 подсоединяют один или несколько соединителей к одной или нескольким схемам через отверстие в одном или нескольких проводящих слоях. Как упомянуто выше, одним или несколькими соединителями 220 могут являться радиочастотные (РФ) соединители, коаксиальные соединители или другие волноводные соединительные структуры, которые переносят электромагнитную энергию. Дополнительные подробности изготовления структуры питания приведены на фиг. 6А-6Д.
На фиг. 6А-6Д проиллюстрированы примеры осуществления способа конструирования структуры питания антенной решетки. Как показано на фиг. 6А, используют одну или несколько схемных плат 612а (на шаге 502). Одна или несколько схемных плат 612а могут иметь любые из характеристик описанных выше схемных плат (например, могут являться многослойными). Затем в некоторых вариантах осуществления монтируют по меньшей мере одну схемную плату 612а на один или несколько проводящих слоев 616а (на шаге 504) следующим образом. Крепят один или несколько проводящих слоев 616а к одной или нескольким схемным платам 612а с использованием двух коротких винтов и гаек 632, как показано на фиг. 6Б. Поскольку проводящий слой 616а может иметь U-образную форму, одна или несколько схем, выполненных на одной или нескольких схемных плат 612а, будет изолирована диэлектриком от одной или нескольких схем, как описано выше со ссылкой на фиг. 6А и 2А. Диэлектриком может являться воздух, как описано выше. Если одна или несколько схемных плат должны быть соединены пайкой, на этой стадии к схемной плате 612а может быть припаян паяный штифт 626, как показано на фиг. 6А.
На этой стадии в некоторых вариантах осуществления к одной или нескольким схемным платам 612а может быть подсоединен один или несколько соединителей 620 путем пайки 628 одного или нескольких соединителей 620 к одной или нескольким схемным платам 612а, как показано на фиг. 6В (на шаге 506). Как описано выше, одним или несколькими соединителями 220 могут являться радиочастотные (РФ) соединители, коаксиальные соединители или другие волноводные соединительные структуры, которые переносят электромагнитную энергию. В некоторых вариантах осуществления один или несколько соединителей 620 могут быть припаяны к небольшой схемной плате 612с, как показано на фиг. 6Б. Соединитель 620 выгодно монтировать на небольшой схемной плате 612с, поскольку соединитель 620, который имеет небольшой размер, иногда не снабжен кромкой. В этом случае может использоваться небольшая схемная плата 612с, чтобы обеспечить надежное сверхвысокочастотное заземление между соединителем 620 и одним или несколькими проводящими слоями 616а.
Чтобы завершить конструкцию в этом примере осуществления, с помощью длинных винтов 634 крепят средний проводящий слой 616b, вторую схемную плату 612b и нижний проводящий слой 616с, как показано на фиг. 6Г. Поскольку в некоторых вариантах осуществления средний проводящий слой 616b имеет Н-образную форму, он изолирован от верхней схемной плате 612а и нижней схемной платы 612b, как описано выше со ссылкой на фиг. 2А. В вариантах осуществления, в которых используется паяный штифт 626, соединяющий одну или несколько схемных плат 612а-612b, в среднем проводящем слое 616b может иметься одно или несколько отверстий, через которые может быть вставлен один или несколько паяных штифтов 626. Как описано выше со ссылкой на фиг. 4, диаметр отверстия, через которое проходит паяный штифт 626, может определяться согласно зависимости, описанной выше со ссылкой на фиг. 4. Иными словами, диаметр отверстия в среднем проводящем слое 616b может приблизительно в 2,303 раза превышать диаметр паяного штифта 626. Кроме того, поскольку нижний проводящий слой 616 с имеет U-образную форму, аналогично верхнему проводящему слою 616а, он изолирован от нижней схемной платы 612b, как показано на фиг. 6А и 2А. Тем не менее, в вариантах осуществления с использованием паяного штифта 626, соединяющего одну или несколько схемных плат 612а-612b, до крепления нижнего проводящего слоя 616с ко второй схемной плате 612b может быть припаян паяный штифт 626, как описано со ссылкой на фиг. 4. В некоторых вариантах осуществления диэлектриком, который изолирует схемы от проводящих слоев 616а-616с, может являться воздух. Кроме того, расстояние между проводящими слоями 616а-616с и схемными платами 612а-612b может определяться согласно зависимости, описанной выше со ссылкой на фиг. 2А. Иными словами, расстояние между поверхностями проводящих слоев может приблизительно в 2,303 раза превышать ширину одной или нескольких схемных плат 612а-612b. После конструирования этой структуры монтируют (на шаге 504) схемные платы 612а-612b на проводящих слоях 616а-616с, при этом проводящие слои 616а-616с отделены диэлектриком от одной или нескольких схем и контактируют с одной или несколькими схемными платами, в результате чего схемы изолированы от одного или нескольких проводящих слоев. Кроме того, в некоторых вариантах осуществления один или несколько проводящих слоев 616а-616с могут быть закорочены с использованием одного или нескольких закорачивающих элементов 229 на каждой стороне структуры питания, как описано выше со ссылкой на фиг. 2А.
Помимо этого, в некоторых вариантах осуществления проводящий слой 616с, который действует как сверхвысокочастотное заземление цепи питания, может также действовать как молниезащитное заземление антенной решетки. В этом случае к проводящему слою 616с может быть подсоединен стержневой молниеотвод 623, как показано на фиг. 6Д. На фиг. 3 показана готовая структура, в которую входят две схемные платы, один или несколько паяных штифтов, соединяющих две схемные платы, один или несколько соединителей, подсоединенных к схемным платам, и прикрепленный к ней стержневой молниеотвод.
Примеры
Пример 1
Структура питания антенной решетки, содержащая: по меньшей мере одну схемную плату, на которой выполнена по меньшей мере одна схема; по меньшей мере один проводящий слой, на котором смонтирована по меньшей мере одна схемная плата; при этом по меньшей мере один проводящий слой отделен диэлектриком по меньшей мере от одной схемы и контактирует по меньшей мере с одной схемной платой, в результате чего по меньшей мере одна схема изолирована по меньшей мере от одного проводящего слоя; и по меньшей мере один соединитель, подсоединенный по меньшей мере к одной схеме через отверстие по меньшей мере в одном проводящем слое.
Пример 2
Структура питания антенной решетки по Примеру 1, в которой по меньшей мере одна схемная плата содержит первую схемную плату и вторую схемную плату.
Пример 3
Структура питания антенной решетки по Примеру 2, дополнительно содержащая по меньшей мере один паяный штифт, соединяющий первую схемную плату со второй схемной платой через отверстие по меньшей мере в одном или нескольких проводящих слоях.
Пример 4
Структура питания антенной решетки по любому из Примеров 1-3, в которой по меньшей мере одной схемной платой является многослойная плата с печатной схемой.
Пример 5
Структура питания антенной решетки по любому из Примеров 1-4, дополнительно содержащая стержневой молниеотвод, подсоединенный по меньшей мере к одному проводящему слою.
Пример 6
Структура питания антенной решетки по любому из Примеров 1-5, в которой диэлектриком, отделяющим по меньшей мере один проводящий слой по меньшей мере от одной схемы, является воздух.
Пример 7
Структура питания антенной решетки по любому из Примеров 1-6, в которой диаметр отверстия, через которое соединитель подсоединен по меньшей мере к одной схеме, соразмерен диаметру устройства сопряжения, которое подсоединяет соединитель по меньшей мере к одной схеме, в результате чего характеристический импеданс соединителя приблизительно соответствует характеристическому импедансу по меньшей мере одной схемы.
Пример 8
Способ конструирования структуры питания антенной решетки, включающий: использование по меньшей мере одной схемной платы, на которой выполнена по меньшей мере одна схема; монтаж по меньшей мере одной схемной платы по меньшей мере на одном проводящем слое, который отделен диэлектриком по меньшей мере от одной схемы и контактирует по меньшей мере с одной схемной платой, в результате чего схема изолирована по меньшей мере от одного проводящего слоя; и подсоединение по меньшей мере одного соединителя по меньшей мере к одной схеме через отверстие по меньшей мере в одном проводящем слое.
Пример 9
Способ по Примеру 8, в котором по меньшей мере одна схемная плата содержит первую схемную плату и вторую схемную плату.
Пример 10
Способ по Примеру 9, дополнительно включающий использование по меньшей мере одного паяного штифта, соединяющего первую схемную плату со второй схемной платой через отверстие по меньшей мере в одном или нескольких проводящих слоях.
Пример 11
Способ по любому из Примеров 8-10, в котором по меньшей мере одной схемной платой является многослойная плата с печатной схемой.
Пример 12
Способ по любому из Примеров 8-11, дополнительно включающий подсоединение стержневого молниеотвода по меньшей мере к одному проводящему слою.
Пример 13
Способ по любому из Примеров 8-12, в котором диэлектриком, отделяющим по меньшей мере один проводящий слой по меньшей мере от одной схемы, является воздух.
Пример 14
Способ по любому из Примеров 8-13, в котором диаметр отверстия, через которое соединитель подсоединен по меньшей мере к одной схеме, соразмерен диаметру устройства сопряжения, которое подсоединяет соединитель по меньшей мере к одной схеме, в результате чего характеристический импеданс соединителя приблизительно соответствует характеристическому импедансу по меньшей мере одной схемы.
Пример 15
Возбуждающая схема антенной решетки, содержащая: по меньшей мере одну плату с печатной схемой, на которой выполнена по меньшей мере одна схема; при этом по меньшей мере одна плата с печатной схемой окружена проводящим материалом, на который она опирается, и подвешена внутри проводящего материала; и по меньшей мере один соединитель, подсоединенный по меньшей мере к одной схеме через отверстие в проводящем материале.
Пример 16
Возбуждающая схема антенной решетки по Примеру 15, в которой по меньшей мере одна плата с печатной схемой содержит первую схемную плату и вторую схемную плату.
Пример 17
Возбуждающая схема антенной решетки по Примеру 16, дополнительно содержащая по меньшей мере один паяный штифт, соединяющий первую схемную плату со второй схемной платой через отверстие в проводящем материале.
Пример 18
Возбуждающая схема антенной решетки по любому из Примеров 15-17, в которой по меньшей мере одна плата с печатной схемой является многослойной.
Пример 19
Возбуждающая схема антенной решетки по любому из Примеров 15-18, дополнительно содержащая стержневой молниеотвод, подсоединенный к проводящему материалу.
Пример 20
Возбуждающая схема антенной решетки по любому из Примеров 15-19, в которой диэлектриком, отделяющим проводящий материал по меньшей мере от одной схемы, является воздух.
Хотя рассмотрены и описаны конкретные варианты осуществления, специалистам в данной области техники следует учесть, что конкретные проиллюстрированные варианты осуществления могут быть заменены любым средством, предположительно такого же назначения. Соответственно, в прямой форме подразумевается, что настоящее изобретение ограничено лишь формулой изобретения и ее эквивалентами.

Claims (30)

1. Структура питания антенной решетки, содержащая:
по меньшей мере одну схемную плату, на которой выполнена по меньшей мере одна схема,
по меньшей мере один проводящий слой, на котором смонтирована по меньшей мере одна схемная плата,
при этом по меньшей мере один проводящий слой отделен диэлектриком по меньшей мере от одной схемы и контактирует по меньшей мере с одной схемной платой, в результате чего по меньшей мере одна схема изолирована по меньшей мере от одного проводящего слоя; и
по меньшей мере один соединитель, подсоединенный по меньшей мере к одной схеме через отверстие по меньшей мере в одном проводящем слое.
2. Структура питания антенной решетки по п. 1, в которой по меньшей мере одна схемная плата содержит первую схемную плату и вторую схемную плату.
3. Структура питания антенной решетки по п. 2, дополнительно содержащая по меньшей мере один паяный штифт, соединяющий первую схемную плату со второй схемной платой через отверстие по меньшей мере в одном или нескольких проводящих слоях.
4. Структура питания антенной решетки по п. 1, в которой по меньшей мере одной схемной платой является многослойная плата с печатной схемой.
5. Структура питания антенной решетки по п. 1, дополнительно содержащая стержневой молниеотвод, подсоединенный по меньшей мере к одному проводящему слою.
6. Структура питания антенной решетки по п. 1, в которой диэлектриком, отделяющим по меньшей мере один проводящий слой по меньшей мере от одной схемы, является воздух.
7. Структура питания антенной решетки по п. 1, в которой диаметр отверстия, через которое соединитель подсоединен по меньшей мере к одной схеме, соразмерен диаметру устройства сопряжения, которое подсоединяет соединитель по меньшей мере к одной схеме, в результате чего характеристический импеданс соединителя приблизительно соответствует характеристическому импедансу по меньшей мере одной схемы.
8. Способ конструирования структуры питания антенной решетки, включающий:
использование по меньшей мере одной схемной платы, на которой выполнена по меньшей мере одна схема,
монтаж по меньшей мере одной схемной платы по меньшей мере на одном проводящем слое, который отделен диэлектриком по меньшей мере от одной схемы и контактирует по меньшей мере с одной схемной платой, в результате чего схема изолирована по меньшей мере от одного проводящего слоя, и
подсоединение по меньшей мере одного соединителя по меньшей мере к одной схеме через отверстие по меньшей мере в одном проводящем слое.
9. Способ по п. 8, в котором по меньшей мере одна схемная плата содержит первую схемную плату и вторую схемную плату.
10. Способ по п. 9, дополнительно включающий использование по меньшей мере одного паяного штифта, соединяющего первую схемную плату со второй схемной платой через отверстие по меньшей мере в одном или нескольких проводящих слоях.
11. Способ по п. 8, в котором по меньшей мере одной схемной платой является многослойная плата с печатной схемой.
12. Способ по п. 8, дополнительно включающий подсоединение стержневого молниеотвода по меньшей мере к одному проводящему слою.
13. Способ по п. 8, в котором диэлектриком, отделяющим по меньшей мере один проводящий слой по меньшей мере от одной схемы, является воздух.
14. Способ по п. 8, в котором диаметр отверстия, через которое соединитель подсоединен по меньшей мере к одной схеме, соразмерен диаметру устройства сопряжения, которое подсоединяет соединитель по меньшей мере к одной схеме, в результате чего характеристический импеданс соединителя приблизительно соответствует характеристическому импедансу по меньшей мере одной схемы.
15. Возбуждающая схема антенной решетки, содержащая:
по меньшей мере одну плату с печатной схемой, на которой выполнена по меньшей мере одна схема,
при этом по меньшей мере одна плата с печатной схемой окружена проводящим материалом, на который она опирается, и подвешена внутри проводящего материала,
и по меньшей мере один соединитель, подсоединенный по меньшей мере к одной схеме через отверстие в проводящем материале.
16. Возбуждающая схема антенной решетки по п. 15, в которой по меньшей мере одна плата с печатной схемой содержит первую схемную плату и вторую схемную плату.
17. Возбуждающая схема антенной решетки по п. 16, дополнительно содержащая по меньшей мере один паяный штифт, соединяющий первую схемную плату со второй схемной платой через отверстие в проводящем материале.
18. Возбуждающая схема антенной решетки по п. 15, в которой по меньшей мере одна плата с печатной схемой является многослойной.
19. Возбуждающая схема антенной решетки по п. 15, дополнительно содержащая стержневой молниеотвод, подсоединенный к проводящему материалу.
20. Возбуждающая схема антенной решетки по п. 15, в которой диэлектриком, отделяющим проводящий материал по меньшей мере от одной схемы, является воздух.
RU2015100200A 2014-01-15 2015-01-13 Система и способы конструирования подвешенной полоской структуры возбуждения антенны RU2673059C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/155,920 2014-01-15
US14/155,920 US9408306B2 (en) 2014-01-15 2014-01-15 Antenna array feeding structure having circuit boards connected by at least one solderable pin

Publications (3)

Publication Number Publication Date
RU2015100200A RU2015100200A (ru) 2016-08-10
RU2015100200A3 RU2015100200A3 (ru) 2018-08-31
RU2673059C2 true RU2673059C2 (ru) 2018-11-22

Family

ID=52232120

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015100200A RU2673059C2 (ru) 2014-01-15 2015-01-13 Система и способы конструирования подвешенной полоской структуры возбуждения антенны

Country Status (4)

Country Link
US (1) US9408306B2 (ru)
EP (1) EP2897216B1 (ru)
JP (1) JP6604724B2 (ru)
RU (1) RU2673059C2 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014121515A1 (en) 2013-02-08 2014-08-14 Honeywell International Inc. Integrated stripline feed network for linear antenna array
US9728855B2 (en) 2014-01-14 2017-08-08 Honeywell International Inc. Broadband GNSS reference antenna
US10347961B2 (en) * 2016-10-26 2019-07-09 Raytheon Company Radio frequency interconnect systems and methods
US11043727B2 (en) 2019-01-15 2021-06-22 Raytheon Company Substrate integrated waveguide monopulse and antenna system
CN110994165B (zh) * 2019-11-21 2022-04-12 东南大学 一种高隔离度悬置微带线平衡馈电的双极化宽带天线阵列

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2062536C1 (ru) * 1993-12-14 1996-06-20 Евгений Александрович Соколов Двухдиапазонная совмещенная антенная решетка
US6727777B2 (en) * 2001-04-16 2004-04-27 Vitesse Semiconductor Corporation Apparatus and method for angled coaxial to planar structure broadband transition
DE102004063784A1 (de) * 2004-06-14 2006-07-13 Alexandro Lisitano Modulare Antennenanlage
RU57973U1 (ru) * 2006-06-28 2006-10-27 Федеральное государственное унитарное предприятие научно-исследовательский институт космического приборостроения Апертурно-запитываемая микрополосковая антенна с шировой диаграммой направленности
DE102005063234A1 (de) * 2005-12-19 2007-06-21 Fuß, Torsten, Dr.-Ing. Tragkonstruktion zum Aufbau von Antennenmasten und dergleichen
RU68191U1 (ru) * 2007-06-22 2007-11-10 Федеральное государственное унитарное предприятие "Российский научно-исследовательский институт космического приборостроения" Антенное устройство базовой станции беспроводной мобильной связи
RU2400880C1 (ru) * 2009-10-27 2010-09-27 Открытое акционерное общество "Московское конструкторское бюро "Компас" Печатная антенна
RU118474U1 (ru) * 2010-12-13 2012-07-20 Сергей Геннадьевич Сычугов Широкополосная полосковая антенна с двойной поляризацией

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383226A (en) 1979-03-29 1983-05-10 Ford Aerospace & Communications Corporation Orthogonal launcher for dielectrically supported air stripline
US4262265A (en) 1979-03-29 1981-04-14 Ford Aerospace & Communications Corporation Side-launch transition for air stripline conductors
FR2544920B1 (fr) 1983-04-22 1985-06-14 Labo Electronique Physique Antenne plane hyperfrequences a reseau de lignes a substrat completement suspendu
JPS6346804A (ja) * 1986-08-14 1988-02-27 Matsushita Electric Works Ltd 平面アンテナの製造方法
US5061943A (en) 1988-08-03 1991-10-29 Agence Spatiale Europenne Planar array antenna, comprising coplanar waveguide printed feed lines cooperating with apertures in a ground plane
US5471181A (en) 1994-03-08 1995-11-28 Hughes Missile Systems Company Interconnection between layers of striplines or microstrip through cavity backed slot
JPH1188016A (ja) * 1997-09-05 1999-03-30 Japan Radio Co Ltd トリプレート型平面アンテナ
US6621469B2 (en) 1999-04-26 2003-09-16 Andrew Corporation Transmit/receive distributed antenna systems
US6366185B1 (en) 2000-01-12 2002-04-02 Raytheon Company Vertical interconnect between coaxial or GCPW circuits and airline via compressible center conductors
US20040048420A1 (en) * 2002-06-25 2004-03-11 Miller Ronald Brooks Method for embedding an air dielectric transmission line in a printed wiring board(PCB)
US6965279B2 (en) 2003-07-18 2005-11-15 Ems Technologies, Inc. Double-sided, edge-mounted stripline signal processing modules and modular network
EP1886381B1 (en) 2005-05-31 2014-10-22 Powerwave Technologies Sweden AB Beam adjusting device
JP2009267502A (ja) * 2008-04-22 2009-11-12 Hitachi Cable Ltd アンテナ装置
WO2010135862A1 (zh) 2009-05-26 2010-12-02 华为技术有限公司 一种天线装置
US9054403B2 (en) * 2012-06-21 2015-06-09 Raytheon Company Coaxial-to-stripline and stripline-to-stripline transitions including a shorted center via

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2062536C1 (ru) * 1993-12-14 1996-06-20 Евгений Александрович Соколов Двухдиапазонная совмещенная антенная решетка
US6727777B2 (en) * 2001-04-16 2004-04-27 Vitesse Semiconductor Corporation Apparatus and method for angled coaxial to planar structure broadband transition
DE102004063784A1 (de) * 2004-06-14 2006-07-13 Alexandro Lisitano Modulare Antennenanlage
DE102005063234A1 (de) * 2005-12-19 2007-06-21 Fuß, Torsten, Dr.-Ing. Tragkonstruktion zum Aufbau von Antennenmasten und dergleichen
RU57973U1 (ru) * 2006-06-28 2006-10-27 Федеральное государственное унитарное предприятие научно-исследовательский институт космического приборостроения Апертурно-запитываемая микрополосковая антенна с шировой диаграммой направленности
RU68191U1 (ru) * 2007-06-22 2007-11-10 Федеральное государственное унитарное предприятие "Российский научно-исследовательский институт космического приборостроения" Антенное устройство базовой станции беспроводной мобильной связи
RU2400880C1 (ru) * 2009-10-27 2010-09-27 Открытое акционерное общество "Московское конструкторское бюро "Компас" Печатная антенна
RU118474U1 (ru) * 2010-12-13 2012-07-20 Сергей Геннадьевич Сычугов Широкополосная полосковая антенна с двойной поляризацией

Also Published As

Publication number Publication date
JP2015133702A (ja) 2015-07-23
JP6604724B2 (ja) 2019-11-13
EP2897216A1 (en) 2015-07-22
EP2897216B1 (en) 2017-06-21
RU2015100200A (ru) 2016-08-10
US9408306B2 (en) 2016-08-02
RU2015100200A3 (ru) 2018-08-31
US20150201494A1 (en) 2015-07-16

Similar Documents

Publication Publication Date Title
RU2673059C2 (ru) Система и способы конструирования подвешенной полоской структуры возбуждения антенны
TWI710163B (zh) 射頻連接設置
JP6526069B2 (ja) 多層基板における信号結合
US6243247B1 (en) Stripline transient protection device
CN101772859B (zh) 波导管的连接结构
US10148027B2 (en) Structure for connecting board and connector, board, and method for connecting board and connector
US10971806B2 (en) Broadband conformal antenna
JP2015167136A (ja) 多層回路部材とそのためのアセンブリ
CN102694245A (zh) 天线装置
JP2006024618A (ja) 配線基板
US20050224912A1 (en) Circuit and method for enhanced low frequency switching noise suppression in multilayer printed circuit boards using a chip capacitor lattice
EP2843759A1 (en) Connection structure connecting high frequency circuit and waveguide, and manufacturing method for same
US20050082087A1 (en) Dielectric structure for printed circuit board traces
US11394100B2 (en) High-frequency connection structure for connecting a coaxial line to a planar line using adhesion layers
JP2005073044A (ja) アンテナ装置
JP2002134868A (ja) 高速回路基板相互接続
JP5598761B2 (ja) アンテナ及びそれを備えた無線装置
RU2681370C2 (ru) Молниезащитная комбинированная система с полосковой схемной платой
JP4665698B2 (ja) アンテナ装置
US20150311573A1 (en) Sit on top circuit board ferrite phase shifter
US20190109382A1 (en) Transmission line coupling system
JP7245947B1 (ja) 印刷配線基板及び無線通信端末
JP2019186729A (ja) アンテナおよび測定用プローブ
JP2015226311A (ja) 配線基板
US11503714B2 (en) Thin film board, circuit element, manufacturing method of circuit element, and electric signal transmission method

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200114