WO2010135862A1 - 一种天线装置 - Google Patents

一种天线装置 Download PDF

Info

Publication number
WO2010135862A1
WO2010135862A1 PCT/CN2009/071973 CN2009071973W WO2010135862A1 WO 2010135862 A1 WO2010135862 A1 WO 2010135862A1 CN 2009071973 W CN2009071973 W CN 2009071973W WO 2010135862 A1 WO2010135862 A1 WO 2010135862A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
unit
transceiver
signal
network
Prior art date
Application number
PCT/CN2009/071973
Other languages
English (en)
French (fr)
Inventor
赵明
陈建军
刘学儒
何平华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09832681.2A priority Critical patent/EP2343777B1/en
Priority to PCT/CN2009/071973 priority patent/WO2010135862A1/zh
Priority to CN2009801559049A priority patent/CN102308437B/zh
Publication of WO2010135862A1 publication Critical patent/WO2010135862A1/zh
Priority to US13/240,910 priority patent/US8346092B2/en
Priority to US13/669,014 priority patent/US8965213B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an antenna device. Background technique
  • a macro base station In a mobile communication system, a macro base station is generally installed in a machine room under the tower, or outside the tower (no machine room). In this way, there must be a long high-power RF cable (feeder) connection between the macro base station under the tower and the antenna on the tower. However, the longer the feeder, the larger the loss, which is about 3 dB.
  • the base station In order to minimize the loss of the feeder, the base station has a tendency to move to the tower.
  • the current Radio Remote Unit (RRU) and the future integrated antenna (RRU+ Antenna) are such product forms, and more advanced product forms. It is an active antenna and a smart antenna.
  • the RRU is located on a link between the passive antenna and the indoor baseband unit (BBU), wherein the interface signal between the passive antenna and the passive antenna is a radio frequency signal, and the passive antenna is passed through the feeder and the passive antenna.
  • the interface between the BBU and the BBU is CPRI or other digital signals, which can be connected through optical fibers (of course, through digital signals such as electrical interfaces); as shown in Figure 2, the external interface of the integrated antenna, active antenna or smart antenna is CPRI or other digital signals can be connected to the BBU via fiber optics.
  • the macro base station that the operator invested in early, and the RRU product form that is now popular, will not be easily retired due to the emergence of integrated antennas (or active antennas), because operators' early investments are huge, and investment returns should be considered to maximize.
  • the macro base station and RRU products do not leave the network, which affects the commercialization process of integrated antennas and even more powerful active antennas and smart antennas.
  • the integrated antenna, the active antenna, and the smart antenna integrate the functions of the macro base station and the RRU, and are more powerful, in the process of creating a new communication network. If an integrated antenna, an active antenna, or a smart antenna is used to replace a passive antenna connected to a macro base station or an RRU in an existing network, since the interface signals connected to the macro base station or the RRU and the passive antenna are both radio frequency signals, the integrated antenna After the passive antenna is replaced by the active antenna and the smart antenna, and the interface with the existing macro base station or RRU is not compatible, the macro base is replaced. Stations or RRUs become redundant devices, causing waste of resources. Summary of the invention
  • the embodiment of the invention provides an antenna device, which can replace the existing passive antenna, and the RRU or the macro base station of the original network can continue to be used, thereby reducing waste of resources.
  • An embodiment of the present invention provides an antenna device, including a first antenna unit and a second antenna unit, where the first antenna unit includes a first radiation module, a power splitting network connected to the first radiation module, and a device a feeder interface connected to the network connection, the feeder interface is configured to be connected to the RRU or the macro base station by using a feeder, and the second antenna unit includes a second radiation module and a transceiver connected to the second radiation module.
  • the embodiment of the present invention further provides an antenna device, including a first antenna unit and a second antenna unit, where the first antenna unit includes a first radiation module, and a first power split network connected to the first radiation module. And a feeder interface connected to the first power splitting network, the feeder interface is configured to be connected to the RRU or the macro base station by using a feeder, the second antenna unit includes a second radiating unit, and the second radiating unit a connected second power splitting network, a transceiver unit connected to the second power split network, a baseband processing unit connected to the transceiver unit, and an optical fiber interface, wherein the optical fiber interface is used to pass the optical fiber Connected to the baseband unit.
  • the first antenna unit of the antenna device of the embodiment of the present invention may be connected to the RRU or the macro base station through the feeder interface, and the second antenna unit may be connected to the baseband unit through the optical fiber interface, thereby integrating the two antenna units into one device.
  • the antenna device of the embodiment of the present invention replaces the existing passive antenna, and the RRU or the macro base station in the existing network can be connected to the first antenna unit, so that the first antenna unit uses the existing frequency band.
  • the second antenna unit can be connected to the baseband unit through the optical fiber interface. After replacing the original passive antenna, the RRU or the macro base station of the original network can continue to be used, thereby reducing resource waste.
  • FIG. 1 is a schematic diagram of installation of a prior art passive antenna and an RRU and a BBU;
  • FIG. 2 is a schematic view showing the installation of an integrated antenna, an active antenna, a smart antenna, and a BBU in the prior art
  • FIG. 3 is a schematic structural view of an antenna device according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of an antenna device according to Embodiment 2 of the present invention.
  • Figure 5 is a side elevational view of a coaxial antenna device in accordance with an embodiment of the present invention.
  • Figure 6 is a side elevational view of a non-coaxial antenna device in accordance with an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the installation of an antenna device and a base station according to an embodiment of the present invention. detailed description
  • FIG. 3 is a schematic structural diagram of an antenna apparatus according to an embodiment of the present invention.
  • the antenna apparatus includes a first antenna unit and a second antenna unit.
  • the first antenna unit includes a first radiating module 10, a power splitting network 12 connected to the first radiating module 10, and a feeder interface 14 connected to the power splitting network.
  • the first radiating module 10 may be an array of antenna elements composed of a plurality of antenna elements.
  • the feeder interface 14 is configured to connect to the RRU or the macro base station by using a feeder, and receive the radio frequency signal transmitted by the RRU or the macro base station through the feeder, where the power splitting and combining network 12 is configured to send the radio frequency signal into multiple radio frequency signals to a plurality of antenna elements of the first radiation module 10, the first radiation mode
  • the block 10 transmits the radio frequency signal converted electromagnetic wave signal sent by the power split combination network 12.
  • the plurality of antenna elements of the first radiation module 10 convert the received electromagnetic wave signal into multiple RF signals and send the signals to the power splitting network 12, and the power splitting network 12
  • the plurality of radio frequency signals are combined to form a radio frequency signal, and then the synthesized radio frequency signal is transmitted to the feeder through the feeder interface 14.
  • the first antenna unit is a passive antenna, which can be connected to a feeder through the feeder interface 14, and the feeder is connected to a Radio Remote Unit (RRU) or a macro base station, and the RRU or the macro base station passes The fiber is connected to a Base Band Unite (BBU).
  • RRU Radio Remote Unit
  • BBU Base Band Unite
  • the second antenna unit includes a second radiation module 20, a transceiver array 22 connected to the second radiation module 20, a baseband processing unit 24 connected to the transceiver array 22, and the baseband processing unit 24 connected fiber optic interface 26.
  • the two radiation modules 20 may be an array of antenna elements composed of a plurality of antenna elements
  • the transceiver array 22 includes a plurality of transceiver units.
  • the plurality of antenna elements of the second radiating module 20 are respectively connected to the transceiver unit of the transceiver array 22, that is, each antenna element of the second radiating module 20 is connected to the transceiver array.
  • a transceiver unit of 22 is respectively connected to the transceiver unit of the transceiver array 22.
  • the fiber optic interface 26 is configured to connect to a baseband unit via an optical fiber, receive a digital signal transmitted by the baseband unit (BBU) through an optical fiber, and the baseband processing unit 24 is configured to digitally process the received digital signal for transmission.
  • An analog signal, and the analog signal for transmission is sent to the transceiver array 22, each transceiver unit of the transceiver array 22 passes the processed analog signal for transmission.
  • the radio frequency signal for modulation is up-converted to be transmitted to the antenna element corresponding to the second radiation module 20, and the antenna element converts the radio frequency signal for transmission into an electromagnetic wave signal and sends it out.
  • the step of the baseband processing unit 24 digitally processing the received digital signal into an analog signal for transmission may include amplitude factoring of a digital signal output from the BBU to the fiber optic interface 26 (eg, a CPRI interface) Crest Factor Reduction (CFR) Clipping Process, Output Multiple Iq Signals via Bus Driver to DBF Module for Digital Beamforming (Digital Beam Forming), which is then pre-distorted by DPD, is finally converted to an analog signal for transmission by the D/A converter and sent to the transceiver array 22.
  • a digital signal output from the BBU to the fiber optic interface 26 eg, a CPRI interface
  • CFR Crest Factor Reduction
  • the antenna element of the second radiation module 20 After receiving the electromagnetic wave signal, the antenna element of the second radiation module 20 converts the received electromagnetic wave signal into a radio frequency signal for receiving, and sends the signal to the transceiver unit of the transceiver array 22, the transceiver The unit unit down-converts and demodulates the radio frequency signal for receiving into an analog signal for receiving, and sends the analog signal for receiving to the baseband processing unit.
  • the baseband processing unit 24 digitally processes the analog signal for receiving into a digital signal for receiving, and then sends the processed digital signal for receiving to the baseband unit through the fiber interface 26. .
  • the step of the baseband processing unit 24 performing digital signal processing on the received analog signal into a received digital signal may include: outputting an analog signal for receiving to the transceiver array 22 via A
  • the /D converter converts the digital signal for reception, and then performs digital filtering (including FIR finite impulse response filter, CIC coefficient decimation filter, HBF half-band filter) and Digital Beam Forming (DBF).
  • DBF Digital Beam Forming
  • the digital signals for reception are correlated and accumulated in the associated accumulator, and then transmitted to the BBU through the fiber interface 26 (for example, a CPRI interface).
  • the second antenna unit can further comprise a power interface 28 connected to the transceiver array 22 and the baseband processing unit 24 for powering the transceiver array 22 and the baseband processing unit 24.
  • the first antenna unit in the embodiment of the present invention may further comprise a phase shifting network for implementing analog beamforming, and the phase shifting network may be integrated with the power splitting network 12 .
  • the antenna elements of the first radiating module 10 and the second radiating module 20 are coaxially arranged (the operating frequency band of the second antenna unit (typical value 1710-2170 MHz) is the operating frequency band of the first antenna unit ( In another embodiment, the antenna elements of the first radiation module 10 and the second radiation module 20 may be non-coaxial.
  • the transceiver array 22 and the baseband processing unit 24 in the second antenna unit form a single shot
  • the radio remote unit (RRU) of the second antenna unit may be an integrated antenna, an active antenna, or a smart antenna.
  • the active antenna is taken as an example in the embodiment of the present invention.
  • the second antenna unit can be connected to an optical fiber through the optical fiber interface 26, and the optical fiber is connected to a baseband unit (BBU).
  • BBU baseband unit
  • the first antenna unit of the antenna device of the embodiment of the present invention may be connected to the RRU or the macro base station through the feeder interface, and the second antenna unit may be connected to the baseband unit through the optical fiber interface, thereby integrating the two antenna units into one device.
  • the antenna device of the embodiment of the present invention replaces the existing passive antenna, and the RRU or the macro base station in the existing network can be connected to the first antenna unit, so that the first antenna unit uses the existing frequency band.
  • the second antenna unit can be connected to the baseband unit of another frequency band through the optical fiber interface, so that two antennas share one antenna unit; when expanding in the same network and/or the same frequency band
  • the second antenna unit can be connected to the baseband unit of the original network through the optical fiber interface, that is, the RRU of the original network shares the BBU with the antenna device of the embodiment of the present invention, and after replacing the original passive antenna, the RRU of the original network Or the macro base station can still continue to use, reducing the waste of resources.
  • the tower and the site can be shared.
  • the operator does not have to newly build a new tower or site, and does not have to pay extra rent, which effectively reduces the cost of the new network.
  • FIG. 4 is a schematic structural diagram of an antenna device according to an embodiment of the present invention.
  • the antenna device includes a first antenna unit and a second antenna unit.
  • the first antenna unit is the same as the first antenna unit in the antenna device of the embodiment of the present invention, and includes a first radiation module 50, a first power split network 52 connected to the first radiation module 50, and a The feeder interface 54 to which the first power split network 52 is connected is described.
  • the first radiation module 50 can be an array of antenna elements composed of a plurality of antenna elements.
  • the operation mode of the first antenna unit is the same as that of the first antenna unit in the antenna device of the embodiment of the present invention, and details are not described herein again.
  • the second antenna unit includes a second radiating module 60, a second power splitting network 62 connected to the second radiating module 60, and a transceiver unit 64 connected to the second splitting network 62.
  • the baseband processing unit 66 and the fiber optic interface 68 are connected to the transceiver unit 64.
  • the second radiation module 60 may be an array of antenna elements composed of a plurality of antenna elements.
  • the fiber optic interface 68 is configured to connect to a baseband unit via an optical fiber, receive a digital signal transmitted by the baseband unit (BBU) through an optical fiber, and the baseband processing unit 66 digitally processes the digital signal into a simulation for transmission.
  • BBU baseband unit
  • the transceiver unit 64 modulating, upconverting the processed analog signal for transmission into a radio frequency for transmission Transmitting, by the internal feeder of the second antenna unit, the second power splitting network 62, the second power splitting network 62 splitting the RF signal for transmitting into multiple channels and transmitting the signal to the The antenna element of the second radiating unit 60, wherein the antenna element converts the shunted radio frequency signal into an electromagnetic wave signal and transmits the signal.
  • the step of the baseband processing unit 66 digitally processing the digital signal into an analog signal for transmission may include CFR clipping of a digital signal output from the BBU to the fiber optic interface 68 (eg, a CPRI interface) Then, the DPD digital pre-distortion is finally converted into an analog signal for transmission in the D/A converter, and sent to the transceiver unit 64.
  • CFR clipping of a digital signal output from the BBU to the fiber optic interface 68 (eg, a CPRI interface)
  • the DPD digital pre-distortion is finally converted into an analog signal for transmission in the D/A converter, and sent to the transceiver unit 64.
  • the antenna element of the second radiating unit 60 After receiving the electromagnetic wave signal, the antenna element of the second radiating unit 60 converts the received electromagnetic wave signal into multiple multiplexed radio frequency signals for transmission to the second power splitting network 62, and the second power component
  • the combining network 62 synthesizes the plurality of radio frequency signals for reception into a received radio frequency signal, and then transmits the radio frequency signals to the transmitter unit 64, and the transmitter unit 64 transmits the radio frequency for reception.
  • the signal is downconverted, demodulated into an analog signal for reception, and sent to the baseband processing unit 66 for digital signal processing to become a digital signal, which is then transmitted through the fiber optic interface 68 to the baseband unit.
  • the step of the digital signal processing of the analog signal for receiving into the digital signal by the baseband processing unit 66 may include: performing A/D conversion on the analog signal output by the transceiver unit 64 for receiving,
  • the filtering (including the FIR finite impulse response filter, the CIC coefficient decimation filter, the HBF half-band filter) is transmitted to the BBU through the fiber optic interface 68 (e.g., CPRI interface).
  • the second antenna unit may further include a power interface 69, and the transceiver Unit 64 is coupled to the baseband processing unit 66 for powering the transceiver unit 64 and the baseband processing unit 66.
  • the first antenna unit in the embodiment of the present invention may further include a first phase shifting network for implementing analog beamforming, and the first phase shifting network may be integrated with the first power splitting network 52.
  • the second antenna unit in the embodiment of the present invention may further include a second phase shifting network for implementing analog beamforming, and the second phase shifting network may be integrated with the second power splitting network 62.
  • the antenna elements of the first radiation module 50 and the second radiation module 60 are not coaxially arranged. In another embodiment, the antennas of the first radiation module 50 and the second radiation module 60 are disposed.
  • the vibrators can be coaxial.
  • the transceiver unit 64 and the baseband processing unit 66 of the second antenna unit form a radio remote unit (RRU), and the product form of the second antenna unit may be an integrated antenna, an active antenna, or A smart antenna or the like, an embodiment of the present invention takes an integrated antenna as an example.
  • the second antenna unit can be connected to an optical fiber through the optical fiber interface 68, and the optical fiber is connected to a baseband unit (BBU).
  • BBU baseband unit
  • the first antenna unit of the antenna device of the embodiment of the present invention may be connected to the RRU or the macro base station through the feeder interface, and the second antenna unit may be connected to the baseband unit through the optical fiber interface, thereby integrating the two antenna units into one device.
  • the antenna device of the embodiment of the present invention replaces the existing passive antenna, and the RRU or the macro base station in the existing network can be connected to the first antenna unit, so that the first antenna unit uses the existing frequency band.
  • the second antenna unit can be connected to the baseband unit of another frequency band through the optical fiber interface, so that two antennas share one antenna unit; when expanding in the same network and/or the same frequency band
  • the second antenna unit can be connected to the baseband unit of the original network through the optical fiber interface, that is, the RRU of the original network shares the BBU with the antenna device of the embodiment of the present invention, and after replacing the original passive antenna, the RRU of the original network Or the macro base station can still continue to use, reducing the waste of resources.
  • the sharing of the tower and the site can be realized, and the operator does not have to newly build a new tower or a station, and does not have to pay extra rent, thereby effectively reducing the cost of the new network.
  • FIG. 5 is a side view of a coaxial antenna device according to an embodiment of the present invention.
  • the radiating elements of the first antenna unit and the second antenna unit are antenna oscillator arrays, and the antenna elements are set to be coaxial.
  • the coaxial oscillator is mounted on the reflector in a space formed by the radome (not shown) and the reflector.
  • the I-shaped skeleton and the reflecting plate form a shielding cavity of the first antenna unit (passive antenna), and the power splitting network and the phase shifter are located in the shielding cavity, and the power splitting phase shifter single board is closely attached to the reflecting plate. back.
  • the I-shaped skeleton and the heat sink constitute a shielding cavity of the second antenna unit (active circuit), and the transceiver (array) board is located in the shielding cavity.
  • the transceiver (array) board is located in the shielding cavity.
  • the pins of the coaxial oscillator are soldered on the power split and phase shifter boards, and the transceiver (array) board is interconnected with the power split and the phase shifter boards by cables or connectors.
  • the transceiver (array) board is connected to the coaxial oscillator via the splitter phase shifter board.
  • coaxial oscillator can also be directly led out of the cable, interconnected with the transceiver (array) board and the power split phase shifter board.
  • FIG. 6 is a side view of a non-coaxial antenna device according to an embodiment of the present invention.
  • the difference from FIG. 5 is as follows:
  • the skeleton is omitted, and the reflector and the heat sink form a single-layer shielding cavity, but on the bottom of the reflector
  • the barrier layer is subdivided into two large shielding cavities, one of which is a shielding unit of the first antenna unit (passive antenna) and the other is a shielding cavity of the second antenna unit (active circuit).
  • the shield cavity can be further subdivided.
  • the power split circuit board, the phase shifter board, and the transceiver array board are all mounted on the heat sink. If the boards are coplanar, the boards are one board, as shown in FIG. 6. If not coplanar, these boards are each divided It's open. These boards are connected to the antenna element through cables and connectors.
  • FIG. 7 is a schematic diagram of the installation of the antenna device 100 and the base station according to the embodiment of the present invention.
  • the antenna device 100 of the embodiment of the present invention includes a first antenna unit and a second antenna unit, and after replacing the existing passive antenna, The first antenna is connected to the feeder through a feeder interface, and the feeder is connected to the RRU or the macro base station in the existing network; the second antenna unit is connected to the optical fiber through the optical fiber interface, and when the network of the new license plate is set, the optical fiber can be connected with The BBU connection in another frequency band can realize the network of newly licensed licenses, and can continue to use the original RRU or macro base station, which effectively reduces the waste of resources. When the original network is expanded, the optical fiber can be compared with the original network.
  • the BBU is connected to implement the original network RRU and the antenna device 100 of the embodiment of the present invention shares the BBU.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Optical Communication System (AREA)
  • Details Of Aerials (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种天线装置
技术领域
本发明涉及通信技术领域, 尤其涉及一种天线装置。 背景技术
在移动通信***中,宏基站一般安装在塔下的机房内,或者塔下室外(无 机房)。 这样塔下的宏基站与塔上的天线之间, 要有一根很长的大功率射频电 缆(馈线)连接, 但是馈线越长, 则损耗越大, 一般有 3dB左右。
为了尽可能减小馈线损耗, 基站有向塔上移动的趋势, 现在的射频拉远 模块( Radio Remote Unit, RRU )、 未来的集成天线( RRU+ Antenna )就是这 样的产品形态, 更加先进的产品形态就是有源天线、 智能天线。
如图 1所示, RRU位于无源天线与室内基带单元(Base band Unite, BBU ) 之间的链路上, 其中与无源天线之间的接口信号都是射频信号, 通过馈线与 无源天线连接, 与 BBU之间的接口是 CPRI或其它数字信号, 可通过光纤连 接(当然也可通过电接口等数字信号连接); 如图 2所示, 集成天线、 有源天 线或智能天线对外接口是 CPRI或其它数字信号, 可通过光纤与 BBU连接。
运营商早期投资建设的宏基站、 现在正流行的 RRU产品形态, 不会因为 集成天线 (或有源天线) 的出现而轻易退网, 因为运营商早期的投资巨大, 要考虑投资收益最大化。 宏基站、 RRU产品不退网, 就影响了集成天线、 甚 至功能更强大的有源天线、 智能天线的商用化进程。
在实现本发明的过程中, 发明人发现现有技术中至少存在如下问题: 集成天线、 有源天线、 智能天线本身集成了宏基站、 RRU的功能, 并且 功能更强大, 在新建通信网络过程中, 如果采用集成天线、 有源天线、 智能 天线替换现有网络中的与宏基站或 RRU连接的无源天线,因为宏基站或 RRU 与无源天线连接的接口信号都是射频信号, 所以集成天线、 有源天线、 智能 天线替换无源天线后, 与现有的宏基站或 RRU的接口不兼容, 则替换后宏基 站或 RRU就成了多余的设备, 造成资源的浪费。 发明内容
本发明实施例提供一种天线装置, 可以实现替换现有的无源天线后, 原 有网络的 RRU或宏基站依然可以继续使用, 减少了资源的浪费。
本发明实施例提供一种天线装置, 包括第一天线单元及第二天线单元, 所述第一天线单元包括第一辐射模块、 与所述第一辐射模块连接的功分合路 网络及与所述功分合路网络连接的馈线接口, 所述馈线接口用于通过馈线与 RRU或宏基站连接, 所述第二天线单元包括第二辐射模块、 与所述第二辐射 模块连接的收发信机阵列、 与所述收发信机阵列连接的基带处理单元及与所 述基带处理单元连接的光纤接口, 所述光纤接口用于通过光纤与基带单元连 接。
本发明实施例还提供一种天线装置, 包括第一天线单元及第二天线单元, 所述第一天线单元包括第一辐射模块、 与所述第一辐射模块连接的第一功分 合路网络及与所述第一功分合路网络连接的馈线接口, 所述馈线接口用于通 过馈线与 RRU或宏基站连接, 所述第二天线单元包括第二辐射单元、 与所述 第二辐射单元连接的第二功分合路网络、 与所述第二功分合路网络连接的收 发信机单元、 所述收发信机单元连接的基带处理单元及光纤接口, 所述光纤 接口用于通过光纤与基带单元连接。
本发明实施例天线装置的第一天线单元可通过所述馈线接口与 RRU或宏 基站连接, 第二天线单元可通过所述光纤接口与基带单元连接, 从而将两种 天线单元集成在一个装置中, 将本发明实施例的天线装置替换现有的无源天 线, 则现有网络中的 RRU或宏基站可与所述第一天线单元连接, 使得所述第 一天线单元使用现有的频段进行工作; 而所述第二天线单元可通过所述光纤 接口与基带单元连接, 在替换原来的无源天线后, 原有网络的 RRU或宏基站 依然可以继续使用, 减少了资源的浪费。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作一筒单地介绍, 显而易见地, 下面描述中的附 图仅仅是本发明一部分实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术无源天线与 RRU、 BBU的安装示意图;
图 2是现有技术集成天线、 有源天线、 智能天线与 BBU的安装示意图; 图 3是本发明实施例一天线装置的结构示意图;
图 4是本发明实施例二天线装置的结构示意图;
图 5是本发明实施例共轴天线装置的侧视图;
图 6是本发明实施例不共轴天线装置的侧视图;
图 7是本发明实施例天线装置与基站的安装示意图。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及 实施方式, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实 施方式仅仅用于解释本发明, 并不用于限定本发明。
请参考图 3 , 为本发明实施例一天线装置的结构示意图, 所述天线装置包 括第一天线单元及第二天线单元。
所述第一天线单元包括第一辐射模块 10、与所述第一辐射模块 10连接的 功分合路网络 12及与所述功分合路网络连接的馈线接口 14。所述第一辐射模 块 10可以是多个天线振子组成的天线振子阵列。
所述馈线接口 14用于通过馈线与 RRU或宏基站连接,接收所述 RRU或 宏基站通过馈线传送的射频信号, 所述功分合路网络 12用于将射频信号分成 多路射频信号发送至所述第一辐射模块 10的多个天线振子, 所述第一辐射模 块 10将所述功分合路网络 12发送的射频信号转换电磁波信号发送出去。 所述第一辐射模块 10的多个天线振子接收到电磁波信号后, 将接收的电 磁波信号转换为多路射频信号发送至所述功分合路网络 12, 所述功分合路网 络 12将所述多路射频信号合成一路射频信号, 然后通过所述馈线接口 14将 所述合成的射频信号发送至所述馈线。
所述第一天线单元即为无源天线, 其可通过所述馈线接口 14与一馈线连 接, 所述馈线与射频拉远模块 ( Radio Remote Unit, RRU )或宏基站连接, RRU或宏基站通过光纤与基带单元(Base band Unite, BBU )连接。
所述第二天线单元包括第二辐射模块 20、与所述第二辐射模块 20连接的 收发信机阵列 22、 与所述收发信机阵列 22连接的基带处理单元 24及与所述 基带处理单元 24连接的光纤接口 26。 所述二辐射模块 20可以是多个天线振 子组成的天线振子阵列, 所述收发信机阵列 22包括多个收发信机单元。 所述 第二辐射模块 20的多个天线振子分别与所述收发信机阵列 22的收发信机单 元对应连接, 即所述第二辐射模块 20的每一天线振子对应连接所述收发信机 阵列 22的一个收发信机单元。
所述光纤接口 26 用于通过光纤与基带单元连接, 接收所述基带单元 ( BBU )通过光纤传送的数字信号, 所述基带处理单元 24用于将接收的数字 信号进行数字信号处理成用于发射的模拟信号, 并将所述用于发射的模拟信 号发送至所述收发信机阵列 22,所述收发信机阵列 22的每一收发信机单元将 所述处理的用于发射的模拟信号经过调制、 上变频成用于发射的射频信号, 发送至所述第二辐射模块 20对应的天线振子, 所述天线振子将所述用于发射 的射频信号转换成电磁波信号发送出去。
所述基带处理单元 24将所述接收的数字信号进行数字信号处理成用于发 射的模拟信号的步骤可以包括:对从 BBU输出到所述光纤接口 26(例如 CPRI 接口 )的数字信号经振幅因素衰减( Crest Factor Reduction, CFR )削波处理、 通过总线驱动器输出多路 IQ信号给 DBF模块实现数字波束成形 (Digital Beam Forming), 再经 DPD数字预失真, 最后经 D/A转换器转换成用于发射的模拟 信号, 送至所述收发信机阵列 22。
所述第二辐射模块 20的天线振子接收到电磁波信号后, 将接收的电磁波 信号转换为用于接收的射频信号, 并发送至所述收发信机阵列 22的收发信机 单元, 所述收发信机单元将所述用于接收的射频信号经过下变频、 解调成用 于接收的模拟信号, 再将所述用于接收的模拟信号发送至所述基带处理单元
24, 所述基带处理单元 24对所述用于接收的模拟信号进行数字信号处理成用 于接收的数字信号, 然后将处理得到的用于接收的数字信号通过所述光纤接 口 26发送给基带单元。
所述基带处理单元 24对所述用于接收的模拟信号进行数字信号处理成用 于接收的数字信号的步骤可以包括: 对所述收发信机阵列 22输出的用于接收 的模拟信号,经 A/D转换器转换成用于接收的数字信号,再进行数字滤波(包 括 FIR有限冲击响应滤波器、 CIC系数抽取滤波器、 HBF半波带滤波器)和 数字波束成形 (Digital Beam Forming, DBF), 把每个用于接收的数字信号在 相关累加器内相关累加后, 通过所述光纤接口 26 (例如 CPRI接口 )传送给 BBU。
可以理解, 所述第二天线单元还可以包括电源接口 28, 与所述收发信机 阵列 22和基带处理单元 24连接, 用于给所述收发信机阵列 22和基带处理单 元 24供电。
可以理解, 本发明实施例第一天线单元还可以包括移相网络, 用于实现 模拟波束成形, 所述移相网络可与所述功分合路网络 12集成设置。
本发明实施例中所述第一辐射模块 10和第二辐射模块 20的天线振子是 共轴设置的(第二天线单元的工作频段(典型值 1710-2170MHZ )是第一天线 单元的工作频段(典型值 824-960MHZ ) 的两倍左右), 在另一实施例中, 所 述第一辐射模块 10和第二辐射模块 20的天线振子可以是不共轴的。
所述第二天线单元中的收发信机阵列 22和基带处理单元 24组成一个射 频拉远模块( Radio Remote Unit, RRU ) , 所述第二天线单元的产品形态可以 是集成天线、 有源天线或者智能天线等, 本发明实施例是以有源天线为例。 所述第二天线单元可通过所述光纤接口 26与一光纤连接, 所述光纤与基带单 元 ( Base band Unite, BBU )连接。
本发明实施例天线装置的第一天线单元可通过所述馈线接口与 RRU或宏 基站连接, 第二天线单元可通过所述光纤接口与基带单元连接, 从而将两种 天线单元集成在一个装置中, 将本发明实施例的天线装置替换现有的无源天 线, 则现有网络中的 RRU或宏基站可与所述第一天线单元连接, 使得所述第 一天线单元使用现有的频段进行工作; 在新建网络时, 所述第二天线单元可 通过所述光纤接口与另一频段的基带单元连接, 从而实现两个网络共用一个 天线单元; 在同一个网络和 /或同一个频段扩容时, 所述第二天线单元可通过 所述光纤接口与原网络的基带单元连接, 即原网络的 RRU和本发明实施例天 线装置共用 BBU,在替换原来的无源天线后,原有网络的 RRU或宏基站依然 可以继续使用, 减少了资源的浪费。
另外, 由于共用一个天线装置, 可以实现铁塔、 站点的共用, 运营商不 必另外新建铁塔、 站点, 不必付出额外的租金, 有效降低了新建网络的成本 开销。
请参考图 4, 为本发明实施例二天线装置的结构示意图, 所述天线装置包 括第一天线单元及第二天线单元。
所述第一天线单元与本发明实施例一天线装置中的第一天线单元相同, 包括第一辐射模块 50、 与所述第一辐射模块 50连接的第一功分合路网络 52 及与所述第一功分合路网络 52连接的馈线接口 54。 所述第一辐射模块 50可 以是多个天线振子组成的天线振子阵列。 所述第一天线单元的工作模式也与 本发明实施例一天线装置中的第一天线单元相同, 在此不再赘述。
所述第二天线单元包括第二辐射模块 60、与所述第二辐射模块 60连接的 第二功分合路网络 62、 与所述第二功分合路网络 62连接的收发信机单元 64、 所述收发信机单元 64连接的基带处理单元 66及光纤接口 68。 所述第二辐射 模块 60可以是多个天线振子组成的天线振子阵列。
所述光纤接口 68 用于通过光纤与基带单元连接, 接收所述基带单元 ( BBU )通过光纤传送的数字信号, 所述基带处理单元 66将所述数字信号进 行数字信号处理成用于发射的模拟信号, 并将所述用于发射的模拟信号发送 至所述收发信机单元 64,所述收发信机单元 64将所述处理的用于发射的模拟 信号调制、 上变频成用于发射的射频信号, 通过第二天线单元的内部馈线发 送至所述第二功分合路网络 62,所述第二功分合路网络 62将所述用于发射的 射频信号分成多路后传送给所述第二辐射单元 60的天线振子, 所述天线振子 将分路后的射频信号转换成电磁波信号发送出去。
所述基带处理单元 66将所述数字信号进行数字信号处理成用于发射的模 拟信号的步骤可以包括:对从 BBU输出到所述光纤接口 68 (例如 CPRI接口 ) 的数字信号经 CFR削波处理、 再经 DPD数字预失真, 最后在 D/A转换器中 转换成用于发射的模拟信号, 送至所述收发信机单元 64。
所述第二辐射单元 60的天线振子接收到电磁波信号后, 将接收的电磁波 信号转换为多路用于接收的射频信号发送至所述第二功分合路网络 62, 所述 第二功分合路网络 62将所述多路用于接收的射频信号合成一路用于接收的射 频信号, 然后发送至所述发信机单元 64, 所述发信机单元 64将所述用于接收 的射频信号下变频、 解调成用于接收的模拟信号, 并发送至所述基带处理单 元 66进行数字信号处理变成数字信号, 然后通过所述光纤接口 68发送至基 带单元。
所述基带处理单元 66对所述用于接收的模拟信号进行数字信号处理成数 字信号的步骤可以包括:对所述收发信机单元 64输出的用于接收的模拟信号, 进行 A/D转换, 滤波(包括 FIR有限冲击响应滤波器、 CIC系数抽取滤波器、 HBF半波带滤波器), 通过所述光纤接口 68 (例如 CPRI接口 )传送给 BBU。
可以理解, 所述第二天线单元还可以包括电源接口 69, 与所述收发信机 单元 64和所述基带处理单元 66连接, 用于给所述收发信机单元 64和所述基 带处理单元 66供电。
可以理解, 本发明实施例第一天线单元还可以包括第一移相网络, 用于 实现模拟波束成形, 所述第一移相网络可与所述第一功分合路网络 52集成设 置。
可以理解, 本发明实施例第二天线单元还可以包括第二移相网络, 用于 实现模拟波束成形, 所述第二移相网络可与所述第二功分合路网络 62集成设 置。
本发明实施例中所述第一辐射模块 50和第二辐射模块 60的天线振子是 不共轴设置的, 在另一实施例中, 所述第一辐射模块 50和第二辐射模块 60 的天线振子可以是共轴的。
所述第二天线单元中的收发信机单元 64和基带处理单元 66组成一个射 频拉远模块( Radio Remote Unit, RRU ) , 所述第二天线单元的产品形态可以 是集成天线、 有源天线或者智能天线等, 本发明实施例以集成天线为例。 所 述第二天线单元可通过所述光纤接口 68与一光纤连接, 所述光纤与基带单元 ( Base band Unite, BBU )连接。
本发明实施例天线装置的第一天线单元可通过所述馈线接口与 RRU或宏 基站连接, 第二天线单元可通过所述光纤接口与基带单元连接, 从而将两种 天线单元集成在一个装置中, 将本发明实施例的天线装置替换现有的无源天 线, 则现有网络中的 RRU或宏基站可与所述第一天线单元连接, 使得所述第 一天线单元使用现有的频段进行工作; 在新建网络时, 所述第二天线单元可 通过所述光纤接口与另一频段的基带单元连接, 从而实现两个网络共用一个 天线单元; 在同一个网络和 /或同一个频段扩容时, 所述第二天线单元可通过 所述光纤接口与原网络的基带单元连接, 即原网络的 RRU和本发明实施例天 线装置共用 BBU,在替换原来的无源天线后,原有网络的 RRU或宏基站依然 可以继续使用, 减少了资源的浪费。 另外, 由于共用一个天线装置, 可以实现铁塔、 站点的共用, 运营商不 必另外新建铁塔、 站点, 不必付出额外的租金, 有效降低了新建网络的成本 开销。
请参考图 5 , 为本发明实施例共轴天线装置的侧视图, 第一天线单元与第 二天线单元的的辐射单元为天线振子阵列, 且天线振子设置为共轴。
如图 5 所示, 共轴振子安装在反射板上, 位于天线罩(图中未绘出) 与 反射板形成的空间内。
工字形骨架与反射板构成第一天线单元 (无源天线)屏蔽腔, 功分合路 网络、 移相器就位于这个屏蔽腔内, 功分合路移相器单板紧贴在反射板的背 面。
工字形骨架与散热器构成第二天线单元 (有源电路)屏蔽腔, 收发信机 (阵列)板位于这个屏蔽腔内。 如果是集成天线, 则只有收发信机单元和基 带处理单元。 如果是有源天线, 则是 N个收发信机单元构成的收发信机阵列 和基带处理单元, 收发信机单元(或者收发信机阵列)板紧贴在散热器上。
共轴振子的引脚焊接在功分合路、 移相器单板上, 而收发信机(阵列) 板与功分合路、 移相器单板间通过电缆或连接器互连。 这样收发信机(阵列) 板就与共轴振子间通过功分合路移相器板连接起来。
可以理解, 共轴振子也可直接引出电缆, 与收发信机(阵列)板互连和 功分合路移相器板互连。
请参考图 6, 为本发明实施例不共轴天线装置的侧视图, 其与图 5的区别 在于: 省略了骨架, 反射板与散热器构成单层的屏蔽腔, 但在反射板底部上 有隔筋, 将这个单层屏蔽腔再分为两个大的屏蔽腔, 其中一个是第一天线单 元(无源天线)屏蔽腔, 另一个是第二天线单元(有源电路)屏蔽腔。 当然, 只要反射板底部有更多的隔筋, 还可进一步细分屏蔽腔。
功分合路板、 移相器板、 收发信机阵列板均安装在散热器上, 如果这些 单板共面, 这些板就是一块板, 如图 6所示。 如果不共面, 这些板就各自分 开的。 这些单板均通过电缆、 连接器与天线振子相连接。
请参考图 7, 为本发明实施例天线装置 100与基站的安装示意图, 由于本 发明实施例的天线装置 100 包括第一天线单元和第二天线单元, 替换现有的 无源天线后, 所述第一天线通过馈线接口与馈线连接, 所述馈线再与现有网 络中的 RRU或宏基站连接; 所述第二天线单元通过光纤接口与光纤连接, 在 架设新牌照的网络时, 光纤可与另一频段的 BBU连接, 可以实现架设新发牌 照的网络, 对原有建设的 RRU或宏基站可以实现继续使用, 有效降低了资源 浪费; 在进行原网络的扩容时, 光纤可与原网络的 BBU 连接, 实现原网络 RRU和本发明实施例天线装置 100共用 BBU。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应该以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种天线装置, 包括第一天线单元及第二天线单元, 所述第一天线单 元包括第一辐射模块、 与所述第一辐射模块连接的功分合路网络及与所述功 分合路网络连接的馈线接口, 所述馈线接口用于通过馈线与 RRU 或宏基站 连接, 所述第二天线单元包括第二辐射模块、 与所述第二辐射模块连接的收 发信机阵列、 与所述收发信机阵列连接的基带处理单元及与所述基带处理单 元连接的光纤接口, 所述光纤接口用于通过光纤与基带单元连接。
2、 如权利要求 1所述的天线装置, 其特征在于: 所述第一辐射模块为天 线振子阵列, 包括至少两个天线振子。
3、 如权利要求 1所述的天线装置, 其特征在于: 所述馈线接口通过馈线 接收所述 RRU 或宏基站传送的射频信号, 所述功分合路网络用于将射频信 号分成多路射频信号发送至所述第一辐射模块, 所述第一辐射模块将所述功 分合路网络发送的射频信号转换电磁波信号发送出去。
4、 如权利要求 1所述的天线装置, 其特征在于: 所述光纤接口接收所述 基带单元通过光纤传送的数字信号, 所述基带处理单元用于将接收的数字信 号进行数字信号处理成用于发射的模拟信号, 并将所述用于发射的模拟信号 发送至所述收发信机阵列。
5、 如权利要求 4所述的天线装置, 其特征在于: 所述收发信机阵列包括 至少两个收发信机单元, 所述第二辐射模块为天线振子阵列, 包括与所述至 少两个收发信机单元对应的至少两个天线振子, 每一收发信机单元将所述处 理的用于发射的模拟信号经过调制、 上变频成用于发射的射频信号, 发送至 所述第二辐射模块对应的天线振子, 所述天线振子将所述用于发射的射频信 号转换成电磁波信号发送出去。
6、 如权利要求 1所述的天线装置, 其特征在于: 所述第二天线单元还包 括电源接口, 与所述收发信机阵列和基带处理单元连接, 用于给所述收发信 机阵列和基带处理单元供电。
7、 一种天线装置, 包括第一天线单元及第二天线单元, 所述第一天线单 元包括第一辐射模块、 与所述第一辐射模块连接的第一功分合路网络及与所 述第一功分合路网络连接的馈线接口, 所述馈线接口用于通过馈线与 RRU 或宏基站连接, 所述第二天线单元包括第二辐射单元、 与所述第二辐射单元 连接的第二功分合路网络、 与所述第二功分合路网络连接的收发信机单元、 所述收发信机单元连接的基带处理单元及光纤接口, 所述光纤接口用于通过 光纤与基带单元连接。
8、 如权利要求 7所述的天线装置, 其特征在于: 所述第一辐射模块为天 线振子阵列, 包括至少两个天线振子。
9、 如权利要求 7所述的天线装置, 其特征在于: 所述第二辐射模块为天 线振子阵列, 包括至少两个天线振子。
10、 如权利要求 9所述的天线装置, 其特征在于: 所述光纤接口通过光 纤接收所述基带单元传送的数字信号, 所述基带处理单元用于将所述数字信 号进行数字信号处理成用于发射的模拟信号, 并将所述用于发射的模拟信号 发送至所述收发信机单元。
11、 如权利要求 10所述的天线装置, 其特征在于: 所述收发信机单元将 所述处理的用于发射的模拟信号调制、 上变频成用于发射的射频信号, 通过 第二天线单元的内部馈线发送至所述第二功分合路网络, 所述第二功分合路 网络将所述用于发射的射频信号分成多路后传送给所述第二辐射单元的天线 振子, 所述天线振子将分路后的射频信号转换成电磁波信号发送出去。
12、 如权利要求 7所述的天线装置, 其特征在于: 所述第二天线单元还 包括电源接口, 与所述收发信机单元和所述基带处理单元连接, 用于给所述 收发信机单元和所述基带处理单元供电。
PCT/CN2009/071973 2009-05-26 2009-05-26 一种天线装置 WO2010135862A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09832681.2A EP2343777B1 (en) 2009-05-26 2009-05-26 Antenna device
PCT/CN2009/071973 WO2010135862A1 (zh) 2009-05-26 2009-05-26 一种天线装置
CN2009801559049A CN102308437B (zh) 2009-05-26 2009-05-26 一种天线装置
US13/240,910 US8346092B2 (en) 2009-05-26 2011-09-22 Antenna device
US13/669,014 US8965213B2 (en) 2009-05-26 2012-11-05 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/071973 WO2010135862A1 (zh) 2009-05-26 2009-05-26 一种天线装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/240,910 Continuation US8346092B2 (en) 2009-05-26 2011-09-22 Antenna device

Publications (1)

Publication Number Publication Date
WO2010135862A1 true WO2010135862A1 (zh) 2010-12-02

Family

ID=43222112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071973 WO2010135862A1 (zh) 2009-05-26 2009-05-26 一种天线装置

Country Status (4)

Country Link
US (2) US8346092B2 (zh)
EP (1) EP2343777B1 (zh)
CN (1) CN102308437B (zh)
WO (1) WO2010135862A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509852A (zh) * 2011-09-28 2012-06-20 华为技术有限公司 天线装置
CN102570064A (zh) * 2011-12-31 2012-07-11 中兴通讯股份有限公司 有源天线装置及其收发信号的方法
WO2012103821A2 (zh) * 2012-03-09 2012-08-09 华为技术有限公司 天线***、基站和通信***
CN102740509A (zh) * 2012-06-14 2012-10-17 华为技术有限公司 一种有源天线及基站
WO2012103830A3 (zh) * 2012-03-20 2013-02-28 华为技术有限公司 天线***、基站***和通信***
EP2713527A2 (en) * 2011-05-25 2014-04-02 Huawei Technologies Co., Ltd. Base station device and signal transmission method thereof
US8965213B2 (en) 2009-05-26 2015-02-24 Huawei Technologies Co., Ltd. Antenna device
WO2015043469A1 (zh) * 2013-09-24 2015-04-02 华为技术有限公司 天线***及处理方法
RU2575049C1 (ru) * 2012-03-20 2016-02-10 Хуавэй Текнолоджиз Ко., Лтд. Антенная система, система базовой станции и система связи
CN106559110A (zh) * 2015-09-29 2017-04-05 中国电信股份有限公司 有源天线、载波聚合方法和***
CN107039776A (zh) * 2017-04-28 2017-08-11 广州司南天线设计研究所有限公司 一种有源天线反射板

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740508B (zh) * 2012-05-18 2016-04-06 京信通信***(中国)有限公司 有源覆盖阵列
CN103428738B (zh) * 2012-05-18 2018-01-02 中兴通讯股份有限公司 检测射频拉远单元链路异常的方法及射频拉远单元
DE102012011892A1 (de) 2012-06-15 2013-12-19 Kathrein-Werke Kg Halterungssystem für eine Mobilfunk-Antenne und eine Mobilfunk-Komponente
IN2014MN02586A (zh) 2012-06-22 2015-09-11 Andrew Llc
KR101868869B1 (ko) * 2012-08-07 2018-06-19 주식회사 케이엠더블유 이동통신 시스템의 소형 기지국
DE102012217113B4 (de) 2012-09-24 2019-12-24 Continental Automotive Gmbh Antennenstruktur einer zirkularpolarisierten Antenne für ein Fahrzeug
US9843105B2 (en) 2013-02-08 2017-12-12 Honeywell International Inc. Integrated stripline feed network for linear antenna array
CN104780743B (zh) 2013-03-06 2018-04-20 华为技术有限公司 射频拉远模块以及通信设备
US9728855B2 (en) 2014-01-14 2017-08-08 Honeywell International Inc. Broadband GNSS reference antenna
US9408306B2 (en) 2014-01-15 2016-08-02 Honeywell International Inc. Antenna array feeding structure having circuit boards connected by at least one solderable pin
CN104901025B (zh) 2014-03-04 2019-07-09 中兴通讯股份有限公司 一种天线模块化的实现方法及装置、天线模块
CN104955087B (zh) * 2014-03-25 2019-03-01 华为技术有限公司 一种无线基站的控制***及方法、相关设备
CN103997352B (zh) * 2014-05-14 2016-02-24 电信科学技术研究院 有源天线相关设备、***及收发校准方法
WO2016004589A1 (zh) * 2014-07-09 2016-01-14 华为技术有限公司 一种信号传输方法及设备
US20160337041A1 (en) * 2015-05-15 2016-11-17 Futurewei Technologies, Inc. Polarization Independent Reflective Modulator
CN106376074A (zh) * 2015-07-22 2017-02-01 成都鼎桥通信技术有限公司 小区功率配置方法和装置
WO2017015430A1 (en) * 2015-07-22 2017-01-26 Blue Danube Systems, Inc. A modular phased array
DE102016108867A1 (de) 2016-05-13 2017-11-16 Kathrein Werke Kg Schirmgehäuse für HF-Anwendungen
US10455435B2 (en) * 2016-09-08 2019-10-22 Commscope Technologies Llc Mobile site platform with descending capability
US10551640B2 (en) 2016-11-21 2020-02-04 Futurewei Technologies, Inc. Wavelength division multiplexed polarization independent reflective modulators
CN106505297A (zh) * 2016-12-20 2017-03-15 中电科航空电子有限公司 一种机载电子设备与天线的连接结构
US10222676B2 (en) 2017-01-27 2019-03-05 Futurewei Technologies, Inc. Polarization insensitive integrated optical modulator
US11417943B2 (en) 2017-03-06 2022-08-16 Commscope Technologies Llc Modular monopole for wireless communications
US10330959B2 (en) 2017-05-22 2019-06-25 Futurewei Technologies, Inc. Polarization insensitive micro ring modulator
US10243684B2 (en) 2017-05-23 2019-03-26 Futurewei Technologies, Inc. Wavelength-division multiplexed polarization-insensitive transmissive modulator
CN111066200B (zh) * 2017-10-30 2021-11-19 华为技术有限公司 天线、天线组件及基站
CN111373838B (zh) * 2017-11-24 2022-07-19 华为技术有限公司 一种传输上行信号的方法、基站及***
CN114731734A (zh) * 2019-11-19 2022-07-08 华为技术有限公司 一种gnss信号分发***和gnss基站
US20220102857A1 (en) * 2020-09-29 2022-03-31 T-Mobile Usa, Inc. Multi-band millimeter wave (mmw) antenna arrays
CN213460078U (zh) 2020-12-21 2021-06-15 康普技术有限责任公司 基站天线和用于基站天线的板组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030092403A1 (en) * 2001-10-23 2003-05-15 Joseph Shapira Time-delay transmit diversity add-on to a multicarrier base transceiver system
CN1503587A (zh) * 2002-09-30 2004-06-09 ��³������ɷ����޹�˾�����Ϲ�˾ 用于波束形成的有源天线阵和***
WO2006094441A1 (fr) * 2005-03-07 2006-09-14 Datang Mobile Communications Equipment Co., Ltd Systeme de station de base
WO2007004048A1 (en) * 2005-07-01 2007-01-11 Nokia Corporation A mobile communications network with multiple radio units
CN101043238A (zh) * 2007-04-10 2007-09-26 福建邮科通信技术有限公司 3g基站信号数字化延伸方法与装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19823749C2 (de) 1998-05-27 2002-07-11 Kathrein Werke Kg Dualpolarisierte Mehrbereichsantenne
JP2003513496A (ja) * 1999-10-26 2003-04-08 フラクトゥス・ソシエダッド・アノニマ インタレースマルチバンドアンテナアレイ
US6480155B1 (en) 1999-12-28 2002-11-12 Nokia Corporation Antenna assembly, and associated method, having an active antenna element and counter antenna element
US6342867B1 (en) * 2000-03-31 2002-01-29 Navcom Technology, Inc. Nested turnstile antenna
KR100352852B1 (ko) * 2000-12-22 2002-09-16 엘지전자 주식회사 광기지국용 수신신호 전송장치
US7639196B2 (en) * 2001-07-10 2009-12-29 Andrew Llc Cellular antenna and systems and methods therefor
CN101026266A (zh) 2001-11-09 2007-08-29 Ipr特许公司 使用空间二次谐波的双频带相控阵
JP3824260B2 (ja) 2001-11-13 2006-09-20 任天堂株式会社 ゲームシステム
FR2841391B3 (fr) 2002-06-25 2004-09-24 Jacquelot Technologies Dispositif rayonnant bi-bande a double polarisation
EP1537677A1 (en) * 2002-08-29 2005-06-08 Koninklijke Philips Electronics N.V. Transceiver apparatus for use in a multi-frequency communication system, base station of a multi-frequency communication system, method for use of the transceiver apparatus, method of transceiving a multi-frequency signal in a multi-frequency communication system
CN1679649A (zh) 2004-04-10 2005-10-12 毛友昌 一种治疗***、***炎的药物组合物及其制备方法
CN2744003Y (zh) * 2004-06-02 2005-11-30 烟台高盈科技有限公司 一种双频共用90°双极化赋形波束基站天线
US20060025812A1 (en) 2004-07-28 2006-02-02 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated pivoting articulation mechanism
KR20080051180A (ko) * 2005-09-23 2008-06-10 캘리포니아 인스티튜트 오브 테크놀로지 칩 안테나 상 ㎜-파 완전 집적 위상 어레이 수신기 및송신기
JPWO2007040048A1 (ja) 2005-09-30 2009-04-16 不二製油株式会社 易分散性粉末状大豆蛋白の製造方法
GB2440192B (en) * 2006-07-17 2011-05-04 Ubidyne Inc Antenna array system
US7627250B2 (en) * 2006-08-16 2009-12-01 Corning Cable Systems Llc Radio-over-fiber transponder with a dual-band patch antenna system
US8064533B2 (en) * 2006-12-29 2011-11-22 Broadcom Corporation Reconfigurable MIMO transceiver and method for use therewith
KR101162125B1 (ko) * 2007-03-02 2012-07-04 퀄컴 인코포레이티드 신호 무결성 및 증폭을 증진시키기 위한 실시간 측정 메트릭 및 적응형 안테나 어레이를 이용하는 물리 계층 중계기
US8175459B2 (en) * 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8032030B2 (en) * 2008-05-30 2011-10-04 Freescale Semiconductor, Inc. Multiple core system
US8346091B2 (en) * 2009-04-29 2013-01-01 Andrew Llc Distributed antenna system for wireless network systems
WO2010135862A1 (zh) 2009-05-26 2010-12-02 华为技术有限公司 一种天线装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030092403A1 (en) * 2001-10-23 2003-05-15 Joseph Shapira Time-delay transmit diversity add-on to a multicarrier base transceiver system
CN1503587A (zh) * 2002-09-30 2004-06-09 ��³������ɷ����޹�˾�����Ϲ�˾ 用于波束形成的有源天线阵和***
WO2006094441A1 (fr) * 2005-03-07 2006-09-14 Datang Mobile Communications Equipment Co., Ltd Systeme de station de base
WO2007004048A1 (en) * 2005-07-01 2007-01-11 Nokia Corporation A mobile communications network with multiple radio units
CN101043238A (zh) * 2007-04-10 2007-09-26 福建邮科通信技术有限公司 3g基站信号数字化延伸方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2343777A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8965213B2 (en) 2009-05-26 2015-02-24 Huawei Technologies Co., Ltd. Antenna device
EP2713527A4 (en) * 2011-05-25 2014-05-21 Huawei Tech Co Ltd BASISSTATION DEVICE AND SIGNAL TRANSMISSION METHOD THEREFOR
EP2713527A2 (en) * 2011-05-25 2014-04-02 Huawei Technologies Co., Ltd. Base station device and signal transmission method thereof
WO2013044847A1 (zh) * 2011-09-28 2013-04-04 华为技术有限公司 天线装置
CN102509852A (zh) * 2011-09-28 2012-06-20 华为技术有限公司 天线装置
CN102570064A (zh) * 2011-12-31 2012-07-11 中兴通讯股份有限公司 有源天线装置及其收发信号的方法
CN102570064B (zh) * 2011-12-31 2016-08-24 南京中兴软件有限责任公司 有源天线装置及其收发信号的方法
WO2013097395A1 (zh) * 2011-12-31 2013-07-04 中兴通讯股份有限公司 有源天线装置及其收发信号的方法
WO2012103821A2 (zh) * 2012-03-09 2012-08-09 华为技术有限公司 天线***、基站和通信***
CN102714345A (zh) * 2012-03-09 2012-10-03 华为技术有限公司 天线***、基站和通信***
WO2012103821A3 (zh) * 2012-03-09 2013-02-28 华为技术有限公司 天线***、基站和通信***
CN102714345B (zh) * 2012-03-09 2014-11-05 华为技术有限公司 天线***、基站和通信***
US8588856B2 (en) 2012-03-20 2013-11-19 Huawei Technologies Co., Ltd. Antenna system and base station system
CN103329355A (zh) * 2012-03-20 2013-09-25 华为技术有限公司 天线***、基站***和通信***
WO2012103830A3 (zh) * 2012-03-20 2013-02-28 华为技术有限公司 天线***、基站***和通信***
CN103329355B (zh) * 2012-03-20 2016-01-20 华为技术有限公司 天线***、基站***和通信***
RU2575049C1 (ru) * 2012-03-20 2016-02-10 Хуавэй Текнолоджиз Ко., Лтд. Антенная система, система базовой станции и система связи
CN102740509B (zh) * 2012-06-14 2015-11-25 华为技术有限公司 一种有源天线及基站
CN102740509A (zh) * 2012-06-14 2012-10-17 华为技术有限公司 一种有源天线及基站
WO2015043469A1 (zh) * 2013-09-24 2015-04-02 华为技术有限公司 天线***及处理方法
CN106559110A (zh) * 2015-09-29 2017-04-05 中国电信股份有限公司 有源天线、载波聚合方法和***
CN107039776A (zh) * 2017-04-28 2017-08-11 广州司南天线设计研究所有限公司 一种有源天线反射板

Also Published As

Publication number Publication date
US8965213B2 (en) 2015-02-24
EP2343777A4 (en) 2013-12-04
US8346092B2 (en) 2013-01-01
EP2343777B1 (en) 2015-10-07
CN102308437B (zh) 2013-09-11
US20120014697A1 (en) 2012-01-19
CN102308437A (zh) 2012-01-04
US20130070819A1 (en) 2013-03-21
EP2343777A1 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
WO2010135862A1 (zh) 一种天线装置
US10771123B2 (en) Distributed phased arrays based MIMO (DPA-MIMO) for next generation wireless user equipment hardware design and method
CN106953658B (zh) 高集成度有源相控阵收发组件
US10594043B2 (en) Antenna device and system having active modules
US20020103012A1 (en) Distributed antenna device for intermediate frequency conversion / process
WO2017044986A1 (en) Antenna-integrated radio with wireless fronthaul
WO2013097395A1 (zh) 有源天线装置及其收发信号的方法
US20140213322A1 (en) Antenna apparatus
US8433242B2 (en) Active antenna array for a mobile communications network with multiple amplifiers using separate polarisations for transmission and a combination of polarisations for reception of separate protocol signals
KR20160126612A (ko) 분산 안테나 시스템
EP3065310B1 (en) Donor unit, remote unit, and mobile communication base station system having same
CN114094347A (zh) 多频段天线***和基站
WO2015131514A1 (zh) 一种天线模块化的实现方法及装置、天线模块
WO2013187811A1 (en) Calibration coupleing unit, ccu, and a method therein for enabling calibration of base station
EP3138356B1 (en) Multi-sector antenna integrated radio unit
CN213879818U (zh) 一种支持mimo的5g室分装置
WO2018001029A1 (zh) 一种射频拉远单元和大规模多输入多输出射频拉远单元
EP4068500A1 (en) Antenna in package device and wireless communication apparatus
CN106463843A (zh) 一种多波束成型装置及基站
CN110492217A (zh) 一种5g移动通信有源相控阵基站天馈***
US11716145B2 (en) DAS for multi-frequency band and multi-carrier based on O-RAN standard
CN105141362B (zh) 实现多路异址信源接入的光纤分布***及方法
US20220200690A1 (en) Repeater system
CN202103169U (zh) 智能天线及其校准装置
EP4381612A1 (en) System and design method of massive mimo radio unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980155904.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009832681

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09832681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE