RU2672357C1 - Катализатор для получения синтетических углеводородов с высоким содержанием изоалканов и способ его получения - Google Patents

Катализатор для получения синтетических углеводородов с высоким содержанием изоалканов и способ его получения Download PDF

Info

Publication number
RU2672357C1
RU2672357C1 RU2017128143A RU2017128143A RU2672357C1 RU 2672357 C1 RU2672357 C1 RU 2672357C1 RU 2017128143 A RU2017128143 A RU 2017128143A RU 2017128143 A RU2017128143 A RU 2017128143A RU 2672357 C1 RU2672357 C1 RU 2672357C1
Authority
RU
Russia
Prior art keywords
catalyst
zeolite
fischer
hours
followed
Prior art date
Application number
RU2017128143A
Other languages
English (en)
Inventor
Михаил Николаевич Михайлов
Дмитрий Александрович Григорьев
Николай Александрович Мамонов
Алексей Эдуардович Бессуднов
Александр Васильевич Сандин
Гиляна Евгеньевна Джунгурова
Сергей Александрович Михайлов
Original Assignee
Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") filed Critical Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть")
Priority to RU2017128143A priority Critical patent/RU2672357C1/ru
Application granted granted Critical
Publication of RU2672357C1 publication Critical patent/RU2672357C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Abstract

Изобретение относится к катализатору для получения синтетических углеводородов с высоким содержанием изоалканов, представляющему собой смесь цеолита и базового катализатора синтеза Фишера-Тропша, носителем которого служит оксид алюминия. При этом цеолит имеет мезопористую мелкокристаллическую структуру с порами типа MFI или ВЕА с объемом мезопор не менее 0,2 см/г, долей мезопор от общего объема пор цеолита не менее 50%, удельной поверхностью не менее 350 м/г и размер кристаллитов не более 0,2 мкм. Также при этом базовый катализатор синтеза Фишера-Тропша содержит 46-50 мас. % кобальта, а его носитель имеет мезопористую структуру с общим объемом пор не менее 0,8 см/г, долей мезопор не менее 80% и удельной площадью поверхности не менее 250 м/г, а содержание цеолита в катализаторе составляет 31-50 мас. %. Изобретение также относится к способу получения вышеописанного катализатора, способу получения базового катализатора синтеза Фишера-Тропша и способу получения мезопористого мелкокристаллического цеолита. Технический результат заключается в достижении производительности предлагаемого катализатора более 1000 кг/м⋅ч по синтетическим жидким углеводородам, содержащим более 30 мас. % изоалканов и имеющим температуру застывания не выше минус 21°С, что обеспечит их совместимость при транспортировке и хранении совместно с минеральной нефтью. 4 н.п. ф-лы, 1 табл., 10 пр.

Description

Изобретение относится к газохимии, а именно к катализаторам синтеза углеводородов.
Многие компании занимаются реализацией компактных мобильных технологий переработки природного газа в синтетические углеводороды. Основным преимуществом таких технологий является возможность их использования на небольших и удаленных месторождениях углеводородных ресурсов. В частности, они ориентированы на переработку попутного нефтяного газа, значительная доля которого сжигается на месторождениях. Технология осуществления синтеза Фишера-Тропша в компактном варианте позволит повысить утилизацию ПНГ и природного газа на небольших и удаленных месторождениях, что увеличит рентабельность их разработки.
Использование традиционных катализаторов с высоким содержанием кобальта на оксидных носителях при осуществлении синтеза Фишера-Тропша в компактном варианте приводит к получению синтетической нефти с высоким содержанием нормальных алканов (более 70 мас. %), имеющей высокую температуру начала застывания. Это затрудняет процесс транспортировки синтетической нефти в смеси с минеральной по системе магистральных нефтепроводов, поскольку содержащиеся в синтетической нефти парафины могут отлагаться на стенках трубопроводов, а их высокое содержание при смешивании с минеральной нефтью может приводить к нарушению коллоидной стабильности таких смесей в результате разрушения комплексов асфальто-смолистых веществ.
С целью обеспечения стабильности при транспортировке и хранении смесей синтетической и минеральной нефти актуальным является вопрос повышения содержания изоалканов и уменьшения доли линейных углеводородов в составе синтетической нефти.
Повышенного содержания изоалканов в синтетической нефти целесообразно достигать непосредственно на стадии получения синтетической нефти с использованием бифункционального цеолитсодержащего катализатора, который должен быть пригоден для осуществления процесса Фишера-Тропша в компактном варианте с высокой производительностью. Такой высокопроизводительный бифункциональный катализатор должен обеспечивать максимальную производительность процесса Фишера-Тропша не менее 1000 кг/м3 ч и содержание изоалканов в составе синтетической нефти не менее 30 мас. %, а также температуру начала застывания синтетической нефти не выше минус 21°С.
Известен капсульный катализатор синтеза Фишера-Тропша, позволяющий получать жидкие углеводороды с высоким содержанием изоалканов из синтез-газа в одну стадию (Патент Японии JP 2007197628). Капсульный катализатор состоит из ядра, представляющего катализатор синтеза углеводородов из СО и Н2, и оболочки - цеолитной мембраны. В процессе синтеза сырьевая смесь СО+Н2 проходит через цеолитную мембрану к ядру, на котором происходит образование высокомолекулярных углеводородов и десорбция их с поверхности катализатора, после чего они попадают в поры и каналы цеолита, где происходят реакции гидрокрекинга и гидроизомеризации.
Существенным недостатком капсульных катализаторов является очень узкое распределение продуктов реакции по числу углеводородных атомов (углеводороды С9-С12), не позволяющее получать широкий спектр продуктов реакции. Другим недостатком является невозможность использования капсульных катализаторов в высокопроизводительных компактных реакторах и их ограниченная производительность катализатора (не более 200 кг/м3⋅ч), превышение которой может привести к разрушению цеолитной оболочки.
Известен катализатор для получения синтетической нефти с повышенным содержанием изоалканов, описанный в патенте RU 2524217 С2, 07.08.2012. Катализатор представляет собой гранулированный пористый композиционный материал, содержащий пространственную теплопроводящую сеть из металлического алюминия и кобальта Ренея, и связующий компонент, который содержит цеолит в Н-форме. Непосредственное соприкосновение частиц кобальта Ренея с частицами цеолита в Н-форме обеспечивает улучшение массопереноса молекул реагентов и увеличивает содержание изопарафинов в производимой синтетической нефти.
Катализатор содержит кобальт Ренея, представляющий собой мелкодисперсный порошок с размерами частиц не более 80 мкм, в количестве 10-50% от массы катализатора. Содержание металлического алюминия в виде дисперсного порошка составляет 10-50% от массы катализатора, связующего компонента - 15-80% от массы катализатора. Связуюший компонент содержит цеолит в Н-форме в количестве 20-70 мас. %. В качестве цеолита используют микропористые цеолиты Бета, и/или морденит, и/или ZSM-5 в Н-форме.
Способ получения катализатора включает в себя смешивание порошков связующего компонента, пептизацию полученной смеси раствором азотной кислоты с получением связующего компонента в виде однородного геля, смешивание однородного геля с мелкодисперсным порошком кобальта Ренея, порошком металлического алюминия и жидкой фазой до получения однородной пасты, экструзию полученной пасты с получением гранул. Гранулы катализатора прокаливают на воздухе или в инертной атмосфере при 450°С в течение 24-48 ч, предпочтительно 20-30 ч.
Недостатком данного катализатора является низкая производительность по целевым продуктам (190 кг/м3⋅ч).
Известен гибридный катализатор для получения синтетической нефти, не содержащей воски, описанный в патенте US 9586198 В2, 07.03.2017. Катализатор представляет собой металлическую структуру, равномерно покрытую тонким слоем смеси цеолита и оксида кобальта.
Катализатор содержит оксид кобальта, размер частиц которого составляет 5-50 нм, в количестве 15-40% от массы катализатора. В качестве носителей могут быть использованы оксиды кремния и алюминия (объем пор ≥ 0,4 см3/г, удельная площадь поверхности ≥ 100 м2/г). Содержание цеолита составляет 5-30% от массы катализатора. Металлическая структура представляет собой никель, или медь, или их сплав, с размером пор 1,2-0,45 мм. Катализатор может содержать рутений.
Способ получения катализатора включает в себя прокаливание смеси порошков при 300-500°С, полученной инфильтрацией расплава гидрата кобальта и оксида металла (носителя) с получением порошка катализатора, состоящего из оксида кобальта и оксида металла (носителя), смешивание полученного порошка катализатора с цеолитом с получением порошка гибридного катализатора, смешивание полученного гибридного катализатора с органическим и неорганическим связующими компонентами, перетирание смешанного гибридного катализатора с получением золя гибридного катализатора, нанесение на поверхность металлической структуры оксида алюминия с золем гибридного катализатора с помощью атомно-слоевого осаждения, термическую обработку металлической структуры, покрытой золем гибридного катализатора. Инфильтрацию расплава проводят в течение 1-48 ч в закрытой системе при 2-5°С. Атомно-слоевое осаждение включает 60-100 циклов нанесения золя при 120°С с получением слоя оксида алюминия толщиной 12-20 нм.
Недостатком данного катализатора является сложность его способа приготовления, включающего в себя инфильтрацию расплава и атомно-слоевое осаждение, а также низкое содержание кобальта, что затруднит стабильную эффективную работу катализатора в высокопроизводительном режиме, и низкое содержание цеолита, ограничивающее степень протекания вторичных реакций и соответственно содержание изоалканов в составе синтетической нефти.
Наиболее близким техническим решением к данному изобретению является гибридный катализатор синтеза Фишера-Тропша, пригодный для использования в компактном реакторе и способ его получения, описанный в патенте WO 2014/186172 А1. Частицы катализатора имеют размер 75-300 мкм. Катализатор представляет собой механическую смесь цеолита и катализатора синтеза Фишера-Тропша, содержащего до 45 мас. % кобальта и носитель, выбранный из группы: оксид алюминия, оксид кремния, оксид титана, оксид циркония или их смесь, в соотношении от 1:1 до 15:1, при этом содержание катализатора синтеза Фишера-Тропша составляет от 15 до 40 мас. %. Процесс получения углеводородов в присутствии этого катализатора проводят в компактном реакторе при 220-240°С, 1,0-2,5 МПа, при кратности рецикла 1-3, объемной скорости не более 20000 ч-1. Получаемый в присутствии такого гибридного катализатора углеводородных продукт содержит не более 6 мас. % углеводородов С21+. Селективность катализатора по С5+ не менее 65%, производительность 40-1500 кг/м3 кат⋅ч. В качестве сырья процесса Фишера-Тропша используют синтез-газ с соотношением Н2/СО от 1,8 до 2,2, полученный из природного или попутного нефтяного газа. При этом продукт процесса Фишера-Трошпа, получаемый в указанных условиях, имеет температуру потери текучести от -10 до 30°С и является совместимым с природной нефтью при температуре равной или выше комнатной.
Недостатком предлагаемого катализатора является высокое содержание цеолита (не менее 60 мас. %) в гибридном катализаторе и низкое содержание кобальта в катализаторе синтеза Фишера-Тропша, что может привести к потере стабильности работы катализатора в высокопроизводительных режимах и быстрой дезактивации катализатора. Кроме того высокое содержание цеолита свидетельствует об использовании в качестве кислотного компонента крупнокристаллических микропористых цеолитов, для которых ограничена доступность кислотных центров, на которых происходят вторичные реакции изомеризации. Это также свидетельствует о пониженной эффективности предлагаемого катализатора в процессе изомеризации первично образованных синтетических углеводородов.
Еще одним недостатком такого катализатора является высокая температура потери текучести получаемых при его использовании в процессе Фишера-Тропша углеводородов (от -10 до 30°С), что свидетельствует о содержании изоалканов в составе синтетических жидких углеводородов не более 30 мас. %. Такое невысокое содержание изоалканов может приводить к нарушению стабильности смесей синтетической и природной нефтей при содержании асфальтенов в последней более 3 мас. %. Кроме того, высокое содержание углеводородов линейного строения в составе синтетической нефти (более 70 мас. %) будет способствовать их выпадению и отложению в резервуарах и трубопроводах при транспортировке и хранении в смеси с природной нефтью.
Техническая задача данного изобретения заключается в разработке катализатора, пригодного для осуществления процесса Фишера-Тропша в компактном варианте с высокой производительностью, для получения синтетических углеводородов с высоким содержанием изоалканов, которые совместимы с минеральной нефтью при транспортировке и хранении.
Технический результат от реализации данного изобретения заключается в достижении производительности предлагаемого катализатора более 1000 кг/м3 кат⋅ч по синтетическим жидким углеводородам, содержащим более 30 мас. % изоалканов и имеющим температуру застывания не выше минус 21°С, что обеспечит их совместимость при транспортировке и хранении совместно с минеральной нефтью.
Технический результат от реализации заявленного изобретения достигается тем, что катализатор для осуществления процесса Фишера-Тропша для получения синтетических углеводородов с повышенным содержанием изоалканов представляет собой гранулированную механическую смесь базового катализатора Фишера-Тропша, содержащего 46-50 мас. % кобальта от массы прокаленного базового катализатора Фишера-Тропша и носитель - мезопористый оксид алюминия, характеризующийся общим объемом пор (Vпн) не менее 0,8 см3/г и долей мезопор (γмпн) не менее 80% и удельной площадью поверхности (Sпн) не менее 250 м2/г, - остальное, и мезопористого мелкокристаллического цеолита со структурой пор, выбранной из группы: тип MFI, тип ВЕА, и характеризующегося объемом мезопор (Vпц) не менее 0,2 см3/г и долей мезопор (γмпц) от общего объема пор цеолита не менее 50%, размером частиц цеолита не более 0,2 мкм и удельной поверхностью (Sпц) не менее 350 м2/г, при содержании мезопористого цеолита (ωц) в составе катализатора 31-50 мас. %.
Способ получения катализатора заключается в том, что базовый катализатор синтеза Фишера-Тропша с размером частиц не более 0,5 мм и мезопористый мелкокристаллический цеолит с размером частиц не более 0,2 мм смешивают в несколько стадий, на начальной из которых все количество мезопористого мелкокристаллического цеолита и часть базового катализатора Фишера-Тропша в количестве 0,2…0,4 от необходимого последовательно смешивают, гранулируют и измельчают до размера частиц не более 0,2 мм. На последующих стадиях, операции смешивания, гранулирования и измельчения повторяют до получения конечной смеси. Постепенное введение базового катализатора синтеза Фишера-Тропша в смесь с цеолитом позволяет достигать высокой степени равномерности распределения разновеликих частиц с сохранением их мезопористой внутренней структуры.
При этом базовый катализатор Фишера-Тропша получен способом, заключающимся в многократной пропитке носителя до достижения содержания 46-50 мас. % кобальта от массы прокаленного катализатора, водным раствором прекурсора кобальта - нитрата кобальта. Каждую стадию пропитки проводят при перемешивании в течение 0,2-3 ч носителя или прекурсора катализатора в избыточном по сравнению с объемом пор носителя объеме раствора нитрата кобальта в воде с последующей фильтрацией избыточного раствора под вакуумом с остаточным давлением не выше 3 кПа, сушкой прекурсора катализатора при 80-150°С в течение 8-16 ч и его прокаливанием при 270-500°С в течение 2-24 ч после каждой стадии нанесения активного компонента. Фильтрация избыточного раствора под вакуумом способствует более равномерному распределению прекурсора активного компонента и препятствует появлению на поверхности катализатора массивных агломератов оксида кобальта.
При этом мезопористый мелкокристаллический цеолит со структурой типа MFI получен при растворении в воде алюмината натрия, гидроксида натрия и тетрапропиламмония при перемешивании в течение 10-120 минут с последующим введением в полученный раствор тетраэтилортосиликиата и вторичного структурообразующего агента (ВСА) с размером частиц 10-100 нм, выбранного из группы: углерод, натрий-карбоксиметилцеллюлоза, крахмал, блок-сополимер Р123, с последующим перемешиванием в течение 0,5-3 ч при атмосферном давлении, выдерживанием при температуре 150-220°С при аутогенном давлении при перемешивании со скоростью 100-250 об/мин в автоклаве в течение 24-96 ч с последующей фильтрацией полученного прекурсора цеолита от маточного раствора и его прокаливанием при 450-600°С в течение 6-12 ч. При этом мольное соотношение компонентов в кристаллизационном растворе должно находится в пределах: Аl2О3:SiO2:ТРАОН:ВСА=1:20-80:5-15:50-150. После прокаливания цеолит переводят в водородную форму любым известным в технике способом.
Указанные отличительные признаки существенны.
Получение катализатора предлагаемого состава описанным способом обеспечивает возможность его применения для осуществление процесса Фишера-Тропша в компактном варианте с получением в высокопроизводительном режиме при объемной скорости синтез-газа не менее 10000 ч-1 и производительности не менее 1000 кг/м3 кат⋅ч синтетические жидкие углеводороды с содержанием изоалканов не менее 30 мас. % и температурой начала застывания не выше «минус» 21°С.
Приготовление по данному изобретению катализатора для осуществления процесса Фишера-Тропша в компактном варианте с получением в высокопроизводительном режиме при производительности не менее 1000 кг/м3 кат⋅ч синтетических жидких углеводородов с повышенным содержанием изоалканов проводят предварительным получением носителя базового катализатора Фишера-Тропша - мезопористого оксида алюминия, характеризующегося общим объемом пор не менее 0,8 см3/г и долей мезопор не менее 80% и удельной площадью поверхности не менее 250 м2/г, с последующим введением в его состав активного компонента - кобальта - методом многократной пропитки из водного раствора нитрата кобальта с последующей сушкой и прокаливанием до достижения содержания кобальта в прокаленном катализаторе 46-50 мас. %, и смешиванием полученного базового катализатора Фишера-Тропша и мезопористого мелкокристаллического цеолита со структурой пор, выбранной из группы: тип MFI, тип ВЕА, и характеризующегося объемом мезопор не менее 0,2 см3/г и долей мезопор от общего объема пор цеолита не менее 50%, размером частиц цеолита не более 0,2 мкм и удельной поверхностью не менее 350 м2/г.
Мезопористый мелкокристаллический цеолит со структурой типа MFI, используемый в качестве компонента предлагаемого гибридного катализатора, получают при растворении в воде алюмината натрия, гидроксида натрия и тетрапропиламмония при перемешивании в течение 10-120 минут с последующим введением в полученный раствор тетраэтилортосиликиата и вторичного структурообразующего агента (ВСА) с размером частиц 10-100 нм, выбранного из группы: углерод, натрий-карбоксиметилцеллюлоза, крахмал, блок-сополимер Р123, с последующим перемешиванием в течение 0,5-3 ч при атмосферном давлении, выдерживанием при температуре 150-220°С при аутогенном давлении при перемешивании со скоростью 100-250 об/мин в автоклаве в течение 24-96 ч с последующей фильтрацией полученного прекурсора цеолита от маточного раствора и его прокаливанием при 450-600°С в течение 6-12 ч. Мольное соотношение компонентов в кристаллизационном растворе в пересчете на оксиды алюминия и кремния должно находится в пределах: Al2O3:SiO2:TPAOH:BCA=1:20-80:5-15:50-150. После прокаливания цеолит переводят в водородную форму любым известным в технике способом.
При этом содержание мезопористого мелкокристаллического цеолита в предлагаемом катализаторе составляет от 31 до 50 мас. %.
При необходимости для получения гранул предлагаемого катализатора может быть использован любой известный в технике способ, например, экструдирование с использованием связующего или прессование.
Мезопористый оксид алюминия с указанными структурными характеристиками, применяемый в качестве носителя базового катализатора синтеза Фишера-Тропша, может быть получен любым известным в технике способом, например, осаждением прекурсора оксида алюминия в присутствии структурообразующего агента с последующим прокаливанием.
Структурные характеристики мезопористого оксида алюминия и мезопористого мелкокристаллического цеолита могут быть определены любым из известных в технике методов, например методом азотной порометрии.
Содержание кобальта может быть определено любым известным способом, например, методом индуктивно-связанной плазмы-атомно-электронной спектроскопии.
Перед проведением процесса Фишера-Тропша в компактном варианте с высокой производительностью катализатор активируют.
Процесс получения углеводородов в присутствии этого катализатора проводят в компактном миниканальном реакторе при 240-260°С, 2 МПа, при объемной скорости 10000-20000 ч-1. В качестве сырья процесса Фишера-Тропша используют синтез-газ с соотношением Н2/СО от 1,8 до 2,6.
Исследование катализаторов в синтезе Фишера-Тропша при его реализации в компактном варианте проводили пропусканием синтез-газа через неподвижный слой катализатора, загруженного в миниканальный компактный реактор. Эффективность работы катализатора оценивали по остаточному содержанию монооксида углерода в составе отходящих газов, селективности в отношении образования углеводородов С5+ и производительности по высокомолекулярным углеводородам с 1 м3 катализатора в час, а также характеристиками получаемых синтетических углеводородов - содержанию изоалканов и температуре начала застывания.
Расчет конверсии СО осуществляется по следующей формуле:
Figure 00000001
, где
Figure 00000002
- масса монооксида углерода в 1 м3 входящего в реактор газа
Figure 00000003
- масса монооксида углерода в 1 м3 выходящего из реактора газа
Определение селективности по жидким углеводородам осуществляется по следующей формуле:
Figure 00000004
, где
mC/С5+ - масса углерода, содержащегося в жидких углеводородах, образующихся в результате синтеза из 1 м3 входящего в реактор газа;
mС/СОвх - масса углерода, содержащегося в монооксиде углерода в 1 м3 входящего в реактор газа;
mС/СОвых - масса углерода, содержащегося в монооксиде углерода в 1 м3 выходящего из реактора газа.
Расчет производительности осуществляется по следующей формуле:
Figure 00000005
, где
mс5+ - масса выскомолекулярных углеводородов образующихся в результате синтеза из 1 м3 входящего в реактор синтез-газа;
Qν- объемная скорость подачи синтез-газа, ч-1
Определение содержания исходных и образующихся веществ в отходящих из реактора синтеза Фишера-Тропша газах может осуществляться любым известным способом, например, методом газовой или газо-жидкостной хроматографии.
Определение содержания изоалканов (ωизо, мас. %) может осуществляться любым известным способом, например, методом газовой хроматографии.
Температура застывания (Тз,°С) может определяться любым известным способом, например, по методу ASTM D 5853.
Способ реализуют в соответствии со следующими примерами.
Пример 1
Катализатор состава 42% Цеолит + 58% Базовый катализатор синтеза Фишера-Тропша получают смешиванием в три стадии цеолита с размером частиц 0,15 мм, представляющего собой мезопористую мелкокристаллическую структуру с порами типа MFI с объемом мезопор 0,35 см3/г и общим объемом пор 0,46 см3/г при доле мезопор от общего объема пор цеолита равной 76%, удельной площадью поверхности 420 м2/г и размером кристаллитов 0,1-0,12 мкм, и базового катализатора Фишера-Тропша с размером частиц 0,4 мм, имеющего состав 48%Со+52%Аl2O3 и содержащего носитель с мезопористой структурой с общим объемом пор 0,84 см3/г и объемом мезопор 0,76 см3/г при доле мезопор от общего объема пор носителя равной 90% и удельной площади поверхности 269 м2/г, с последующим гранулированием и измельчением до размера частиц смеси 0,15 мм на каждой стадии. При этом на первой стадии с цеолитом смешивается часть базового катализатора синтеза Фишера-Тропша в количестве 0,35 от необходимого, на второй стадии - 0,43 от необходимого и на третьей - 0,22 от необходимого.
Базовый катализатор синтеза Фишера-Тропша предварительно получают трехкратной пропиткой носителя до достижения содержания кобальта 48 мас. % от массы прокаленного катализатора водным раствором прекурсора кобальта - нитрата кобальта, причем пропитку на каждой стадии осуществляют при перемешивании в течение 1 ч носителя или прекурсора катализатора в избыточном по сравнению с объемом пор носителя объеме раствора нитрата кобальта с последующей фильтрацией избыточного раствора под вакуумом с остаточным давлением 2 кПа, сушкой прекурсора катализатора при 100°С в течение 10 ч и его прокаливанием при температуре 320°С в течение 20 ч.
Мезопористый мелкокристаллический цеолит предварительно получают путем растворения в воде алюмината натрия, гидроксида натрия и тетрапропиламмония при перемешивании в течение 60 минут с последующим введением в полученный раствор тетраэтилортосиликата и крахмала с размером частиц 30 нм и перемешиванием в течение 1 ч, выдерживанием при температуре 180°С и перемешивании в автоклаве в течение 72 ч с последующей фильтрацией полученного прекурсора цеолита от маточного раствора и его прокаливанием при 550°С в течение 6 ч, при этом мольное соотношение компонентов в кристаллизационном растворе составляет: Al2O3:SiO2:ТРАОН:крахмал=1:35:8:110, а после прокаливания цеолит переводят в водородную форму.
При осуществлении синтеза Фишера-Тропша в компактном миниканальном реакторе в присутствии данного катализатора при объемной скорости синтез-газа 11000 ч-1, соотношении Н2/СО 2,2, 245°С, 2,0 МПа при конверсии СО 72% и селективности в отношении высокомолекулярных углеводородов С5+ 74% были получены с производительностью 1053 кг/м3 кат⋅ч синтетические углеводороды с содержанием изоалканов 42 мас. %, температура застывания которых составляет - 28°С.
Пример 2
Катализатор состава 31% Цеолит +69% Базовый катализатор синтеза Фишера-Тропша получают смешиванием в четыре стадии цеолита с размером частиц 0,2 мм, представляющего собой мезопористую мелкокристаллическую структуру с порами типа MFI с объемом мезопор 0,2 см3/г и общим объемом пор 0,40 см3/г при доле мезопор от общего объема пор цеолита равной 50%, удельной площадью поверхности 350 м2/г и размером кристаллитов 0,18-0,2 мкм, и базового катализатора Фишера-Тропша с размером частиц 0,5 мм, имеющего состав 46%Со+54%Аl2О3 и содержащего носитель с мезопористой структурой с общим объемом пор 0,8 см3/г и объемом мезопор 0,64 см3/г при доле мезопор от общего объема пор носителя равной 80% и удельной площади поверхности 250 м2/г, с последующим гранулированием и измельчением до размера частиц смеси 0,2 мм на каждой стадии. При этом на первой стадии с цеолитом смешивается часть базового катализатора синтеза Фишера-Тропша в количестве 0,20 от необходимого, на второй стадии - 0,23 от необходимого, на третьей - 0,36 от необходимого, на четвертой - 0,21 от необходимого.
Базовый катализатор синтеза Фишера-Тропша предварительно получают трехкратной пропиткой носителя до достижения содержания кобальта 46 мас. % от массы прокаленного катализатора водным раствором прекурсора кобальта - нитрата кобальта, причем пропитку на каждой стадии осуществляют при перемешивании в течение 0,2 ч носителя или прекурсора катализатора в избыточном по сравнению с объемом пор носителя объеме раствора нитрата кобальта с последующей фильтрацией избыточного раствора под вакуумом с остаточным давлением 3 кПа, сушкой прекурсора катализатора при 80°С в течение 16 ч и его прокаливанием при температуре 270°С в течение 24 ч.
Мезопористый мелкокристаллический цеолит предварительно получают путем растворения в воде алюмината натрия, гидроксида натрия и тетрапропиламмония при перемешивании в течение 10 минут с последующим введением в полученный раствор тетраэтилортосиликата и углерода с размером частиц 10 нм и перемешиванием в течение 0,5 ч, выдерживанием при температуре 150°С и перемешивании в автоклаве в течение 96 ч с последующей фильтрацией полученного прекурсора цеолита от маточного раствора и его прокаливанием при 450°С в течение 12 ч, при этом мольное соотношение компонентов в кристаллизационном растворе составляет: Al2O3:SiO2:ТРАОН:углерод=1:20:5:50, а после прокаливания цеолит переводят в водородную форму.
При осуществлении синтеза Фишера-Тропша в компактном миниканальном реакторе в присутствии данного катализатора при объемной скорости синтез-газа 10000 ч-1, соотношении Н2/СО 1,8, 240°С, 2,0 МПа при конверсии СО 71% и селективности в отношении высокомолекулярных углеводородов C5+ 72% были получены с производительностью 1122 кг/м3 кат⋅ч синтетические углеводороды с содержанием изоалканов 32 мас. %, температура застывания которых составляет -21°С.
Пример 3
Катализатор состава 37% Цеолит +63% Базовый катализатор синтеза Фишера-Тропша получают смешиванием в четыре стадии цеолита с размером частиц 0,17 мм, представляющего собой мезопористую мелкокристаллическую структуру с порами типа MFI с объемом мезопор 0,27 см3/г и общим объемом пор 0,45 см3/г при доле мезопор от общего объема пор цеолита равной 60%, удельной площадью поверхности 380 м2/г и размером кристаллитов 0,14-0,16 мкм, и базового катализатора Фишера-Тропша с размером частиц 0,4 мм, имеющего состав 49%Со+51%Аl2O3 и содержащего носитель с мезопористой структурой с общим объемом пор 0,84 см3/г и объемом мезопор 0,74 см3/г при доле мезопор от общего объема пор носителя равной 88% и удельной площади поверхности 275 м2/г, с последующим гранулированием и измельчением до размера частиц смеси 0,17 мм на каждой стадии. При этом на первой стадии с цеолитом смешивается часть базового катализатора синтеза Фишера-Тропша в количестве 0,40 от необходимого, на второй стадии - 0,20 от необходимого, на третьей - 0,20 от необходимого и на четвертой - 0,20.
Базовый катализатор синтеза Фишера-Тропша предварительно получают четырехкратной пропиткой носителя до достижения содержания кобальта 49 мас. % от массы прокаленного катализатора водным раствором прекурсора кобальта - нитрата кобальта, причем пропитку на каждой стадии осуществляют при перемешивании в течение 1,5 ч носителя или прекурсора катализатора в избыточном по сравнению с объемом пор носителя объеме раствора нитрата кобальта с последующей фильтрацией избыточного раствора под вакуумом с остаточным давлением 2,5 кПа, сушкой прекурсора катализатора при 115°С в течение 12 ч и его прокаливанием при температуре 360°С в течение 16 ч.
Мезопористый мелкокристаллический цеолит предварительно получают путем растворения в воде алюмината натрия, гидроксида натрия и тетрапропиламмония при перемешивании в течение 75 минут с последующим введением в полученный раствор тетраэтилортосиликата и натрий-карбоксиметилцеллюлозы с размером частиц 40 нм и перемешиванием в течение 1,5 ч, выдерживанием при температуре 170°С и перемешивании в автоклаве в течение 80 ч с последующей фильтрацией полученного прекурсора цеолита от маточного раствора и его прокаливанием при 475°С в течение 10 ч, при этом мольное соотношение компонентов в кристаллизационном растворе составляет: Al2O3:SiO2:ТРАОН:натрий-карбоксиметилцеллюлоза=1:30:8:75, а после прокаливания цеолит переводят в водородную форму.
При осуществлении синтеза Фишера-Тропша в компактном миниканальном реакторе в присутствии данного катализатора при объемной скорости синтез-газа 12000 ч-1, соотношении Н2/СО 1,98, 245°С, 2,0 МПа при конверсии СО 72% и селективности в отношении высокомолекулярных углеводородов С5+ 73% были получены с производительностью 1259 кг/м3 кат⋅ч синтетические углеводороды с содержанием изоалканов 37 мас. %, температура застывания которых составляет -25°С.
Пример 4
Катализатор состава 46% Цеолит +54% Базовый катализатор синтеза Фишера-Тропша получают смешиванием в три стадии цеолита с размером частиц 0,13 мм, представляющего собой мезопористую мелкокристаллическую структуру с порами типа MFI с объемом мезопор 0,32 см3/г и общим объемом пор 0,43 см3/г при доле мезопор от общего объема пор цеолита равной 75%, удельной площадью поверхности 435 м2/г и размером кристаллитов 0,17-0,19 мкм, и базового катализатора Фишера-Тропша с размером частиц 0,42 мм, имеющего состав 48%Со+52%Аl2O3 и содержащего носитель с мезопористой структурой с общим объемом пор 0,87 см3/г и объемом мезопор 0,80 см3/г при доле мезопор от общего объема пор носителя равной 92% и удельной площади поверхности 285 м2/г, с последующим гранулированием и измельчением до размера частиц смеси 0,13 мм на каждой стадии. При этом на первой стадии с цеолитом смешивается часть базового катализатора синтеза Фишера-Тропша в количестве 0,35 от необходимого, на второй стадии - 0,40 от необходимого и на третьей - 0,25 от необходимого.
Базовый катализатор синтеза Фишера-Тропша предварительно получают трехкратной пропиткой носителя до достижения содержания кобальта 48 мас. % от массы прокаленного катализатора водным раствором прекурсора кобальта - нитрата кобальта, причем пропитку на каждой стадии осуществляют при перемешивании в течение 2 ч носителя или прекурсора катализатора в избыточном по сравнению с объемом пор носителя объеме раствора нитрата кобальта с последующей фильтрацией избыточного раствора под вакуумом с остаточным давлением 2,8 кПа, сушкой прекурсора катализатора при 120°С в течение 15 ч и его прокаливанием при температуре 380°С в течение 12 ч.
Мезопористый мелкокристаллический цеолит предварительно получают путем растворения в воде алюмината натрия, гидроксида натрия и тетрапропиламмония при перемешивании в течение 90 минут с последующим введением в полученный раствор тетраэтилортосиликата и блок-сополимера Р123 с размером частиц 50 нм и перемешиванием в течение 2 ч, выдерживанием при температуре 180°С и перемешивании в автоклаве в течение 70 ч с последующей фильтрацией полученного прекурсора цеолита от маточного раствора и его прокаливанием при 500°С в течение 8 ч, при этом мольное соотношение компонентов в кристаллизационном растворе составляет: Al2O3:SiO2:ТРАОН:блок-сополимер Р123=1:40:12:100, а после прокаливания цеолит переводят в водородную форму.
При осуществлении синтеза Фишера-Тропша в компактном миниканальном реакторе в присутствии данного катализатора при объемной скорости синтез-газа 13000 ч-1, соотношении Н2/СО 2,1, 248°С, 2,0 МПа при конверсии СО 72% и селективности в отношении высокомолекулярных углеводородов С5+ 72% были получены с производительностью 1268 кг/м3 кат⋅ч синтетические углеводороды с содержанием изоалканов 45 мас. %, температура застывания которых составляет -30°С.
Пример 5
Катализатор состава 50% Цеолит +50% Базовый катализатор синтеза Фишера-Тропша получают смешиванием в три стадии цеолита с размером частиц 0,18 мм, представляющего собой мезопористую мелкокристаллическую структуру с порами типа ВЕА с объемом мезопор 0,35 см3/г и общим объемом пор 0,44 см3/г при доле мезопор от общего объема пор цеолита равной 80%, удельной площадью поверхности 440 м2/г и размером кристаллитов 0,16-0,18 мкм, и базового катализатора Фишера-Тропша с размером частиц 0,38 мм, имеющего состав 47%Со+53%Аl2O3 и содержащего носитель с мезопористой структурой с общим объемом пор 0,9 см3/г и объемом мезопор 0,81 см3/г при доле мезопор от общего объема пор носителя равной 90% и удельной площади поверхности 290 м2/г, с последующим гранулированием и измельчением до размера частиц смеси 0,18 мм на каждой стадии. При этом на первой стадии с цеолитом смешивается часть базового катализатора синтеза Фишера-Тропша в количестве 0,20 от необходимого, на второй стадии - 0,40 от необходимого и на третьей - 0,40 от необходимого.
Базовый катализатор синтеза Фишера-Тропша предварительно получают четырехкратной пропиткой носителя до достижения содержания кобальта 47 мас. % от массы прокаленного катализатора водным раствором прекурсора кобальта - нитрата кобальта, причем пропитку на каждой стадии осуществляют при перемешивании в течение 2,5 ч носителя или прекурсора катализатора в избыточном по сравнению с объемом пор носителя объеме раствора нитрата кобальта с последующей фильтрацией избыточного раствора под вакуумом с остаточным давлением 2,4 кПа, сушкой прекурсора катализатора при 150°С в течение 8 ч и его прокаливанием при температуре 500°С в течение 2 ч.
Мезопористый мелкокристаллический цеолит предварительно получают путем растворения в воде алюмината натрия, гидроксида натрия и тетрапропиламмония при перемешивании в течение 100 минут с последующим введением в полученный раствор тетраэтилортосиликата и углерода с размером частиц 75 нм и перемешиванием в течение 3 ч, выдерживанием при температуре 200°С и перемешивании в автоклаве в течение 60 ч с последующей фильтрацией полученного прекурсора цеолита от маточного раствора и его прокаливанием при 520°С в течение 7 ч, при этом мольное соотношение компонентов в кристаллизационном растворе составляет: Al2O3:SiO2:ТРАОН:углерод=1:50:14:110, а после прокаливания цеолит переводят в водородную форму.
При осуществлении синтеза Фишера-Тропша в компактном миниканальном реакторе в присутствии данного катализатора при объемной скорости синтез-газа 15000 ч-1, соотношении Н2/СО 2,15, 253°С, 2,0 МПа при конверсии СО 71% и селективности в отношении высокомолекулярных углеводородов С5+ 72% были получены с производительностью 1409 кг/м3 кат⋅ч синтетические углеводороды с содержанием изоалканов 49 мас. %, температура застывания которых составляет -33°С.
Пример 6
Катализатор состава 37% Цеолит +63% Базовый катализатор синтеза Фишера-Тропша получают смешиванием в четыре стадии цеолита с размером частиц 0,16 мм, представляющего собой мезопористую мелкокристаллическую структуру с порами типа ВЕА с объемом мезопор 0,38 см3/г и общим объемом пор 0,46 см3/г при доле мезопор от общего объема пор цеолита равной 82%, удельной площадью поверхности 450 м2/г и размером кристаллитов 0,15-0,17 мкм, и базового катализатора Фишера-Тропша с размером частиц 0,35 мм, имеющего состав 50%Со+50%Аl2O3 и содержащего носитель с мезопористой структурой с общим объемом пор 0,82 см3/г и объемом мезопор 0,70 см3/г при доле мезопор от общего объема пор носителя равной 85% и удельной площади поверхности 300 м2/г, с последующим гранулированием и измельчением до размера частиц смеси 0,16 мм на каждой стадии. При этом на первой стадии с цеолитом смешивается часть базового катализатора синтеза Фишера-Тропша в количестве 0,25 от необходимого, на второй стадии - 0,30 от необходимого, на третьей - 0,25 от необходимого и на четвертой - 0,20 от необходимого.
Базовый катализатор синтеза Фишера-Тропша предварительно получают четырехкратной пропиткой носителя до достижения содержания кобальта 50 мас. % от массы прокаленного катализатора водным раствором прекурсора кобальта - нитрата кобальта, причем пропитку на каждой стадии осуществляют при перемешивании в течение 3 ч носителя или прекурсора катализатора в избыточном по сравнению с объемом пор носителя объеме раствора нитрата кобальта с последующей фильтрацией избыточного раствора под вакуумом с остаточным давлением 2,2 кПа, сушкой прекурсора катализатора при 130°С в течение 10 ч и его прокаливанием при температуре 410°С в течение 10 ч.
Мезопористый мелкокристаллический цеолит предварительно получают путем растворения в воде алюмината натрия, гидроксида натрия и тетрапропиламмония при перемешивании в течение 120 минут с последующим введением в полученный раствор тетраэтилортосиликата и блок-сополимера Р123 с размером частиц 60 нм и перемешиванием в течение 2,5 ч, выдерживанием при температуре 210°С и перемешивании в автоклаве в течение 50 ч с последующей фильтрацией полученного прекурсора цеолита от маточного раствора и его прокаливанием при 535°С в течение 9 ч, при этом мольное соотношение компонентов в кристаллизационном растворе составляет: Al2O3:SiO2:ТРАОН:блок-сополимер Р123=1:60:15:120, а после прокаливания цеолит переводят в водородную форму.
При осуществлении синтеза Фишера-Тропша в компактном миниканальном реакторе в присутствии данного катализатора при объемной скорости синтез-газа 14000 ч-1, соотношении Н2/СО 2, 251°С, 2,0 МПа при конверсии СО 72% и селективности в отношении высокомолекулярных углеводородов С5+ 73% были получены с производительностью 1454 кг/м3 кат⋅ч синтетические углеводороды с содержанием изоалканов 36 мас. %, температура застывания которых составляет -24°С.
Пример 7
Катализатор состава 31% Цеолит +69% Базовый катализатор синтеза Фишера-Тропша получают смешиванием в четыре стадии цеолита с размером частиц 0,14 мм, представляющего собой мезопористую мелкокристаллическую структуру с порами типа ВЕА с объемом мезопор 0,4 см3/г и общим объемом пор 0,62 см3/г при доле мезопор от общего объема пор цеолита равной 65%, удельной площадью поверхности 420 м2/г и размером кристаллитов 0,13-0,15 мкм, и базового катализатора Фишера-Тропша с размером частиц 0,45 мм, имеющего состав 46%Со+54%Аl2О3 и содержащего носитель с мезопористой структурой с общим объемом пор 0,92 см3/г и объемом мезопор 0,76 см3/г при доле мезопор от общего объема пор носителя равной 83% и удельной площади поверхности 310 м2/г, с последующим гранулированием и измельчением до размера частиц смеси 0,14 мм на каждой стадии. При этом на первой стадии с цеолитом смешивается часть базового катализатора синтеза Фишера-Тропша в количестве 0,20 от необходимого, на второй стадии - 0,20 от необходимого, на третьей - 0,22 от необходимого и на четвертой - 0,38 от необходимого.
Базовый катализатор синтеза Фишера-Тропша предварительно получают трехкратной пропиткой носителя до достижения содержания кобальта 46 мас. % от массы прокаленного катализатора водным раствором прекурсора кобальта - нитрата кобальта, причем пропитку на каждой стадии осуществляют при перемешивании в течение 0,5 ч носителя или прекурсора катализатора в избыточном по сравнению с объемом пор носителя объеме раствора нитрата кобальта с последующей фильтрацией избыточного раствора под вакуумом с остаточным давлением 2,3 кПа, сушкой прекурсора катализатора при 90°С в течение 14 ч и его прокаливанием при температуре 450°С в течение 4 ч.
Мезопористый мелкокристаллический цеолит предварительно получают путем растворения в воде алюмината натрия, гидроксида натрия и тетрапропиламмония при перемешивании в течение 110 минут с последующим введением в полученный раствор тетраэтилортосиликата и углерода с размером частиц 80 нм и перемешиванием в течение 1 ч, выдерживанием при температуре 220°С и перемешивании в автоклаве в течение 40 ч с последующей фильтрацией полученного прекурсора цеолита от маточного раствора и его прокаливанием при 550°С в течение 7 ч, при этом мольное соотношение компонентов в кристаллизационном растворе составляет: Al2O3:SiO2:ТРАОН:углерод=1:65:10:130, а после прокаливания цеолит переводят в водородную форму.
При осуществлении синтеза Фишера-Тропша в компактном миниканальном реакторе в присутствии данного катализатора при объемной скорости синтез-газа 16000 ч-1, соотношении Н2/СО 2,2, 255°С, 2,0 МПа при конверсии СО 71% и селективности в отношении высокомолекулярных углеводородов С5+ 71% были получены с производительностью 1449 кг/м3 кат⋅ч синтетические углеводороды с содержанием изоалканов 31 мас. %, температура застывания которых составляет -21°С.
Пример 8
Катализатор состава 46% Цеолит +54% Базовый катализатор синтеза Фишера-Тропша получают смешиванием в три стадии цеолита с размером частиц 0,19 мм, представляющего собой мезопористую мелкокристаллическую структуру с порами типа MFI с объемом мезопор 0,25 см3/г и общим объемом пор 0,45 см3/г при доле мезопор от общего объема пор цеолита равной 55%, удельной площадью поверхности 385 м2/г и размером кристаллитов 0,12-0,14 мкм, и базового катализатора Фишера-Тропша с размером частиц 0,48 мм, имеющего состав 48%Со+52%Аl2О3 и содержащего носитель с мезопористой структурой с общим объемом пор 0,93 см3/г и объемом мезопор 0,81 см3/г при доле мезопор от общего объема пор носителя равной 87% и удельной площади поверхности 320 м2/г, с последующим гранулированием и измельчением до размера частиц смеси 0,19 мм на каждой стадии. При этом на первой стадии с цеолитом смешивается часть базового катализатора синтеза Фишера-Тропша в количестве 0,40 от необходимого, на второй стадии - 0,20 от необходимого и на третьей - 0,40 от необходимого.
Базовый катализатор синтеза Фишера-Тропша предварительно получают трехкратной пропиткой носителя до достижения содержания кобальта 48 мас. % от массы прокаленного катализатора водным раствором прекурсора кобальта - нитрата кобальта, причем пропитку на каждой стадии осуществляют при перемешивании в течение 1 ч носителя или прекурсора катализатора в избыточном по сравнению с объемом пор носителя объеме раствора нитрата кобальта с последующей фильтрацией избыточного раствора под вакуумом с остаточным давлением 2 кПа, сушкой прекурсора катализатора при 140°С в течение 9 ч и его прокаливанием при температуре 470°С в течение 3 ч.
Мезопористый мелкокристаллический цеолит предварительно получают путем растворения в воде алюмината натрия, гидроксида натрия и тетрапропиламмония при перемешивании в течение 80 минут с последующим введением в полученный раствор тетраэтилортосиликата и блок-сополимера Р123 с размером частиц 30 нм и перемешиванием в течение 0,6 ч, выдерживанием при температуре 190°С и перемешивании в автоклаве в течение 35 ч с последующей фильтрацией полученного прекурсора цеолита от маточного раствора и его прокаливанием при 560°С в течение 10 ч, при этом мольное соотношение компонентов в кристаллизационном растворе составляет: Al2O3:SiO2:ТРАОН:блок-сополимер Р123=1:70:11:140, а после прокаливания цеолит переводят в водородную форму.
При осуществлении синтеза Фишера-Тропша в компактном миниканальном реакторе в присутствии данного катализатора при объемной скорости синтез-газа 17000 ч-1, соотношении Н2/СО 2,25, 256°С, 2,0 МПа при конверсии СО 71% и селективности в отношении высокомолекулярных углеводородов С5+ 72% были получены с производительностью 1526 кг/м3 кат⋅ч синтетические углеводороды с содержанием изоалканов 46 мас. %, температура застывания которых составляет -31°С.
Пример 9
Катализатор состава 42% Цеолит +58%. Базовый катализатор синтеза Фишера-Тропша получают смешиванием в три стадии цеолита с размером частиц 0,12 мм, представляющего собой мезопористую мелкокристаллическую структуру с порами типа ВЕА с объемом мезопор 0,3 см3/г и общим объемом пор 0,42 см3/г при доле мезопор от общего объема пор цеолита равной 71%, удельной площадью поверхности 360 м2/г и размером кристаллитов 0,18-0,2 мкм, и базового катализатора Фишера-Тропша с размером частиц 0,3 мм, имеющего состав 50%Со+50%Аl2О3 и содержащего носитель с мезопористой структурой с общим объемом пор 0,86 см3/г и объемом мезопор 0,77 см3/г при доле мезопор от общего объема пор носителя равной 89% и удельной площади поверхности 270 м2/г, с последующим гранулированием и измельчением до размера частиц смеси 0,12 мм на каждой стадии. При этом на первой стадии с цеолитом смешивается часть базового катализатора синтеза Фишера-Тропша в количестве 0,40 от необходимого, на второй стадии - 0,25 от необходимого и на третьей - 0,35 от необходимого.
Базовый катализатор синтеза Фишера-Тропша предварительно получают четырехкратной пропиткой носителя до достижения содержания кобальта 50 мас. % от массы прокаленного катализатора водным раствором прекурсора кобальта - нитрата кобальта, причем пропитку на каждой стадии осуществляют при перемешивании в течение 1,2 ч носителя или прекурсора катализатора в избыточном по сравнению с объемом пор носителя объеме раствора нитрата кобальта с последующей фильтрацией избыточного раствора под вакуумом с остаточным давлением 1,8 кПа, сушкой прекурсора катализатора при 100°С в течение 13 ч и его прокаливанием при температуре 300°С в течение 22 ч.
Мезопористый мелкокристаллический цеолит предварительно получают путем растворения в воде алюмината натрия, гидроксида натрия и тетрапропиламмония при перемешивании в течение 30 минут с последующим введением в полученный раствор тетраэтилортосиликата и углерода с размером частиц 90 нм и перемешиванием в течение 1,2 ч, выдерживанием при температуре 160°С и перемешивании в автоклаве в течение 30 ч с последующей фильтрацией полученного прекурсора цеолита от маточного раствора и его прокаливанием при 575°С в течение 11 ч, при этом мольное соотношение компонентов в кристаллизационном растворе составляет: Al2O3:SiO2:ТРАОН:углерод=1:75:13:145, а после прокаливания цеолит переводят в водородную форму.
При осуществлении синтеза Фишера-Тропша в компактном миниканальном реакторе в присутствии данного катализатора при объемной скорости синтез-газа 18000 ч-1, соотношении Н2/СО 2,4, 258°С, 2,0 МПа при конверсии СО 72% и селективности в отношении высокомолекулярных углеводородов С5+ 73% были получены с производительностью 1558 кг/м3 кат⋅ч синтетические углеводороды с содержанием изоалканов 41 мас. %, температура застывания которых составляет -27°С.
Пример 10
Катализатор состава 50% Цеолит +50% Базовый катализатор синтеза Фишера-Тропша получают смешиванием в три стадии цеолита с размером частиц 0,1 мм, представляющего собой мезопористую мелкокристаллическую структуру с порами типа MFI с объемом мезопор 0,33 см3/г и общим объемом пор 0,42 см3/г при доле мезопор от общего объема пор цеолита равной 78%, удельной площадью поверхности 400 м2/г и размером кристаллитов 0,11-0,13 мкм, и базового катализатора Фишера-Тропша с размером частиц 0,25 мм, имеющего состав 46%Со+54%Аl2О3 и содержащего носитель с мезопористой структурой с общим объемом пор 0,94 см3/г и объемом мезопор 0,76 см3/г при доле мезопор от общего объема пор носителя равной 81% и удельной площади поверхности 255 м2/г, с последующим гранулированием и измельчением до размера частиц смеси 0,1 мм на каждой стадии. При этом на первой стадии с цеолитом смешивается часть базового катализатора синтеза Фишера-Тропша в количестве 0,22 от необходимого, на второй стадии - 0,4 от необходимого и на третьей - 0,38 от необходимого.
Базовый катализатор синтеза Фишера-Тропша предварительно получают трехкратной пропиткой носителя до достижения содержания кобальта 46 мас. % от массы прокаленного катализатора водным раствором прекурсора кобальта - нитрата кобальта, причем пропитку на каждой стадии осуществляют при перемешивании в течение 2,7 ч носителя или прекурсора катализатора в избыточном по сравнению с объемом пор носителя объеме раствора нитрата кобальта с последующей фильтрацией избыточного раствора под вакуумом с остаточным давлением 1,7 кПа, сушкой прекурсора катализатора при 110°С в течение 11 ч и его прокаливанием при температуре 350°С в течение 20 ч.
Мезопористый мелкокристаллический цеолит предварительно получают путем растворения в воде алюмината натрия, гидроксида натрия и тетрапропиламмония при перемешивании в течение 60 минут с последующим введением в полученный раствор тетраэтилортосиликата и блок-сополимера Р123 с размером частиц 100 нм и перемешиванием в течение 2,7 ч, выдерживанием при температуре 165°С и перемешивании в автоклаве в течение 24 ч с последующей фильтрацией полученного прекурсора цеолита от маточного раствора и его прокаливанием при 600°С в течение 6 ч, при этом мольное соотношение компонентов в кристаллизационном растворе составляет: Al2O3:SiO2:ТРАОН:блок-сополимер Р123=1:80:7:150, а после прокаливания цеолит переводят в водородную форму.
При осуществлении синтеза Фишера-Тропша в компактном миниканальном реакторе в присутствии данного катализатора при объемной скорости синтез-газа 20000 ч-1, соотношении Н2/СО 2,6, 260°С, 2,0 МПа при конверсии СО 71% и селективности в отношении высокомолекулярных углеводородов С5+ 71% были получены с производительностью 1532 кг/м3 кат⋅ч синтетические углеводороды с содержанием изоалканов 51 мас. %, температура застывания которых составляет -34°С.
В таблице приведены показатели синтеза Фишера-Тропша в компактном миниканальном реакторе в присутствии катализаторов, приготовленных в соответствии с примерами осуществления изобретения.
Figure 00000006
Figure 00000007
Предлагаемые в данном изобретении катализатор и способ его получения обеспечивают высокую эффективность в синтезе углеводородов с содержанием изоалканов не менее 31 мас. % и температурой застывания не выше -21°С при осуществлении процесса Фишера-Тропша в компактном варианте с производительностью катализатора более 1050 кг/м3 кат⋅ч.
Катализаторы, полученные в соответствии с описываемым способом, являются более эффективными для осуществления процесса Фишера-Тропша в компактном миниканальном реакторе с получением синтетических углеводородов с повышенным содержанием изоалканов, совместимых при транспортировке и хранении совместно с минеральной нефтью, по сравнению с известными в технике катализаторами.

Claims (4)

1. Катализатор для получения синтетических углеводородов с высоким содержанием изоалканов, представляющий собой смесь цеолита и базового катализатора синтеза Фишера-Тропша, носителем которого служит оксид алюминия, отличающийся тем, что цеолит имеет мезопористую мелкокристаллическую структуру с порами типа MFI или ВЕА с объемом мезопор не менее 0,2 см3/г, долей мезопор от общего объема пор цеолита не менее 50%, удельной поверхностью не менее 350 м2/г и размер кристаллитов не более 0,2 мкм, причем базовый катализатор синтеза Фишера-Тропша содержит 46-50 мас. % кобальта, а его носитель имеет мезопористую структуру с общим объемом пор не менее 0,8 см3/г, долей мезопор не менее 80% и удельной площадью поверхности не менее 250 м2/г, при этом содержание цеолита в катализаторе составляет 31-50 мас. %.
2. Способ получения катализатора по п. 1, характеризующийся тем, что катализатор получают смешиванием базового катализатора синтеза Фишера-Тропша с размером частиц не более 0,5 мм и мезопористого мелкокристаллического цеолита с размером частиц не более 0,2 мм в несколько стадий, на начальной из которых все количество мезопористого мелкокристаллического цеолита и часть базового катализатора Фишера-Тропша в количестве от 0,2 до 0,4 от необходимого последовательно смешивают, гранулируют и измельчают до размера частиц не более 0,2 мм, затем, на последующих стадиях, операции смешивания, гранулирования и измельчения повторяют до получения конечной смеси.
3. Способ получения базового катализатора синтеза Фишера-Тропша, входящего в состав катализатора по п. 1, характеризующийся тем, что носитель многократно пропитывают водным раствором нитрата кобальта до содержания кобальта 46-50 мас. % от массы прокаленного катализатора, причем пропитку на каждой стадии осуществляют при перемешивании в течение 0,2-3 ч носителя в избыточном по сравнению с объемом пор носителя объеме раствора нитрата кобальта с последующей фильтрацией избыточного раствора под вакуумом с остаточным давлением не выше 3 кПа, сушкой пропитанного носителя при 80-150°С в течение 8-16 ч и его прокаливанием при температуре 270-500°С в течение 2-24 ч.
4. Способ получения мезопористого мелкокристаллического цеолита, входящего в состав катализатора по п. 1, характеризующийся тем, что цеолит получают путем растворения в воде алюмината натрия, гидроксида натрия и тетрапропиламмония при перемешивании в течение 10-120 мин с последующим введением в полученный раствор тетраэтилортосиликата и вторичного структурообразующего агента (ВСА) с размером частиц 10-100 нм, выбранного из группы: углерод, натрий-карбоксиметилцеллюлоза, крахмал, блок-сополимер Р123, с последующим перемешиванием в течение 0,5-3 ч, выдерживанием при температуре 150-220°С и перемешивании в автоклаве в течение 24-96 ч с последующей фильтрацией полученного прекурсора цеолита от маточного раствора и его прокаливанием при 450-600°С в течение 6-12 ч, при этом мольное соотношение компонентов в кристаллизационном растворе находится в пределах: Al2O3:SiO2:TPAOH:BCA=1:20-80:5-15:50-150, а после прокаливания цеолит переводят в водородную форму.
RU2017128143A 2017-08-08 2017-08-08 Катализатор для получения синтетических углеводородов с высоким содержанием изоалканов и способ его получения RU2672357C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017128143A RU2672357C1 (ru) 2017-08-08 2017-08-08 Катализатор для получения синтетических углеводородов с высоким содержанием изоалканов и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017128143A RU2672357C1 (ru) 2017-08-08 2017-08-08 Катализатор для получения синтетических углеводородов с высоким содержанием изоалканов и способ его получения

Publications (1)

Publication Number Publication Date
RU2672357C1 true RU2672357C1 (ru) 2018-11-14

Family

ID=64327948

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017128143A RU2672357C1 (ru) 2017-08-08 2017-08-08 Катализатор для получения синтетических углеводородов с высоким содержанием изоалканов и способ его получения

Country Status (1)

Country Link
RU (1) RU2672357C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775691C1 (ru) * 2021-04-30 2022-07-06 Роман Евгеньевич Яковенко Катализатор для синтеза углеводородов из co и h2 и способ его получения

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2524217C2 (ru) * 2012-08-07 2014-07-27 ИНФРА ИксТиЭл ТЕКНОЛОДЖИ ЛИМИТЕД Катализатор для прямого получения синтетической нефти, обогащенной изопарафинами, и способ его получения
WO2014186172A1 (en) * 2013-05-14 2014-11-20 Chevron U.S.A. Inc. Processes and systems for synthesis gas conversion using a hybrid fischer-tropsch catalyst in a compact heat exchange reactor
RU2561100C2 (ru) * 2009-11-27 2015-08-20 Басф Се Способ получения катализатора на основе титанового цеолита
US20160375430A1 (en) * 2013-11-26 2016-12-29 Infra XTL Technology Limited Catalyst for Direct Production of Isoparaffine-rich Synthetic Oil and Method for Preparing Catalyst
US9586198B2 (en) * 2013-10-22 2017-03-07 Korea Institute Of Energy Research Cobalt-based catalyst on metal structure for selective production of synthetic oil via fischer-tropsch reaction, method of preparing the same, and method of selectively producing synthetic oil using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2561100C2 (ru) * 2009-11-27 2015-08-20 Басф Се Способ получения катализатора на основе титанового цеолита
RU2524217C2 (ru) * 2012-08-07 2014-07-27 ИНФРА ИксТиЭл ТЕКНОЛОДЖИ ЛИМИТЕД Катализатор для прямого получения синтетической нефти, обогащенной изопарафинами, и способ его получения
WO2014186172A1 (en) * 2013-05-14 2014-11-20 Chevron U.S.A. Inc. Processes and systems for synthesis gas conversion using a hybrid fischer-tropsch catalyst in a compact heat exchange reactor
US9586198B2 (en) * 2013-10-22 2017-03-07 Korea Institute Of Energy Research Cobalt-based catalyst on metal structure for selective production of synthetic oil via fischer-tropsch reaction, method of preparing the same, and method of selectively producing synthetic oil using the same
US20160375430A1 (en) * 2013-11-26 2016-12-29 Infra XTL Technology Limited Catalyst for Direct Production of Isoparaffine-rich Synthetic Oil and Method for Preparing Catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775691C1 (ru) * 2021-04-30 2022-07-06 Роман Евгеньевич Яковенко Катализатор для синтеза углеводородов из co и h2 и способ его получения

Similar Documents

Publication Publication Date Title
Ghorbanpour et al. Epitaxial growth of ZSM-5@ Silicalite-1: A core–shell zeolite designed with passivated surface acidity
US6926882B2 (en) Porous inorganic macrostructure materials and process for their preparation
CN101723401B (zh) Zsm-5/zsm-5核壳型沸石分子筛
Prech et al. Core–shell metal zeolite composite catalysts for in situ processing of Fischer–Tropsch hydrocarbons to gasoline type fuels
KR20040068161A (ko) 메조다공성 담체내에 미세다공성 제올라이트를 함유하는촉매 및 그 제조방법
RU2506997C1 (ru) Катализатор переработки тяжелых нефтяных фракций
CN101722033A (zh) 核壳型芳烃转化催化剂及其制备方法和用途
Zhu et al. Controlled nanostructure of zeolite crystal encapsulating FeMnK catalysts targeting light olefins from syngas
US8258071B2 (en) Catalyst in the form of grains comprising an acidic porous core surrounded by a uniform outer layer
Liu et al. Cobalt nanoparticles imbedded into zeolite crystals: A tailor-made catalyst for one-step synthesis of gasoline from syngas
JP2015505727A (ja) 統合型合成ガス転換触媒押出物並びにこれを調製する及び使用する方法
CN105032478A (zh) 一种用于f-t合成中间馏分油异构降凝的催化剂与其专用的核壳结构复合分子筛
EP3280530B1 (en) Zsm-5 catalyst
JP2000279816A (ja) 炭化水素混合物の品質改良用触媒組成物
Mazonde et al. A solvent-free in situ synthesis of a hierarchical Co-based zeolite catalyst and its application to tuning Fischer–Tropsch product selectivity
JP2013525093A (ja) 水素化脱蝋工程のための触媒及びその製造方法
Asalieva et al. Effect of zeolite on Fischer–Tropsch synthesis in the presence of a catalyst based on skeletal cobalt
RU2672357C1 (ru) Катализатор для получения синтетических углеводородов с высоким содержанием изоалканов и способ его получения
EP1250287A1 (en) Porous inorganic macrostructure materials and process for their preparation
RU2227066C2 (ru) Каталитическая композиция для облагораживания углеводородов с температурами кипения в пределах лигроиновой фракции
Chen et al. Fabrication of AC@ ZSM‐5 core‐shell particles and their performance in Fischer–Tropsch synthesis
Bragina et al. Forming of Block Zeolites Using 3D Printing Technology
Ye et al. Pd@ silicate-1 synthesized by steam-assisted-crystallization strategy for high-efficient catalytic hydrogenation of furfural
KR101970811B1 (ko) 메조기공 제올라이트에 담지된 피셔-트롭시 공정용 코발트 촉매 및 이를 이용한 합성액체연료 제조 방법
US11618013B2 (en) Systems and methods for the synthesizing ZSM-22 zeolites