RU2626838C2 - Светопоглощающее покрытие - Google Patents

Светопоглощающее покрытие Download PDF

Info

Publication number
RU2626838C2
RU2626838C2 RU2015139914A RU2015139914A RU2626838C2 RU 2626838 C2 RU2626838 C2 RU 2626838C2 RU 2015139914 A RU2015139914 A RU 2015139914A RU 2015139914 A RU2015139914 A RU 2015139914A RU 2626838 C2 RU2626838 C2 RU 2626838C2
Authority
RU
Russia
Prior art keywords
coating
light
coatings
weight
composition
Prior art date
Application number
RU2015139914A
Other languages
English (en)
Other versions
RU2015139914A (ru
Inventor
Валерий Михайлович Волынкин
Валерий Михайлович Киселев
Сергей Константинович Евстропьев
Алексей Николаевич Бурчинов
Антон Викторович Матвеенцев
Original Assignee
АКЦИОНЕРНОЕ ОБЩЕСТВО "ГОСУДАРСТВЕННЫЙ ОПТИЧЕСКИЙ ИНСТИТУТ ИМЕНИ С.И. ВАВИЛОВА" (АО "ГОИ им. С.И. Вавилова)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by АКЦИОНЕРНОЕ ОБЩЕСТВО "ГОСУДАРСТВЕННЫЙ ОПТИЧЕСКИЙ ИНСТИТУТ ИМЕНИ С.И. ВАВИЛОВА" (АО "ГОИ им. С.И. Вавилова) filed Critical АКЦИОНЕРНОЕ ОБЩЕСТВО "ГОСУДАРСТВЕННЫЙ ОПТИЧЕСКИЙ ИНСТИТУТ ИМЕНИ С.И. ВАВИЛОВА" (АО "ГОИ им. С.И. Вавилова)
Priority to RU2015139914A priority Critical patent/RU2626838C2/ru
Publication of RU2015139914A publication Critical patent/RU2015139914A/ru
Application granted granted Critical
Publication of RU2626838C2 publication Critical patent/RU2626838C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints

Landscapes

  • Paints Or Removers (AREA)

Abstract

Изобретение относится к технологии специальных покрытий, обладающих способностью поглощать электромагнитное излучение определенного диапазона частот и используемых в различных областях - в строительстве и промышленности для наружных покрытий зданий и оборудования, а также в военной технике для задач маскировки и камуфляжа. Светопоглощающее покрытие, обеспечивающее достижение технического результата, включает следующие функциональные компоненты: эпоксидную смолу, низкомолекулярный полиамид, октиловый эфир, сульфид свинца. Изобретение обеспечивает покрытие, обладающее высокой адгезией к твердым материалам различной химической природы. 1 з.п. ф-лы, 1 ил., 2 пр., 2 табл.

Description

Изобретение относится к технологии специальных покрытий, обладающих способностью поглощать электромагнитное излучение определенного диапазона частот и используемых в различных областях - в строительстве и промышленности для наружных покрытий зданий и оборудования, а также в военной технике для задач маскировки и камуфляжа. Покрытие, описанное в настоящем изобретении, относится к материалам, поглощающим свет видимого спектрального диапазона и отражающим излучение ближней ИК-области спектра.
Из уровня техники широко известны несколько различных типов светопоглощающих покрытий. Так, покрытия, поглощающие до 85% солнечного излучения, но имеющие высокую отражательную способность на длинах волн, больших 2 мкм, были предложены в патенте США 4284689 А. Они представляют собой пленки из ряда полупроводниковых материалов (GaAs, Ge и кремний) с травленой поверхностью, характеризующейся наличием структуры каналов и пустот определенной морфологии. Существенным недостатком покрытий, описанных в этом патенте, является их высокая стоимость.
Композитное покрытие, описанное в патенте США 6630284 В1 и содержащее прозрачный слой и тонкую пленку таких металлов, как Ti, Zr, Hf, Cr, Mo, W, Ni, Pd, Pt или их сплавов, а также единичный антиотражающий слой, позволяет уменьшить отражение на границе раздела металл/прозрачный слой менее чем до 2% в диапазоне длин волн 600-1200 нм. Антиотражающий слой имеет показатель преломления более 2,5 и коэффициент экстинкции менее 0,5 в указанном диапазоне. В качестве материала слоя используются оксиды меди, особенно Cu2O, оксид железа(III) или карбид кремния. Недостатком этого композитного покрытия является высокая стоимость материала и сложность процесса его нанесения, определяемая необходимостью формирования покрытия, состоящего из нескольких слоев различной химической природы.
На принципе чередования пропускающих и поглощающих слоев также работает многослойное светопоглощающее покрытие для видимой и ближней инфракрасной области спектра, описанное в патенте США 6335142 В1. Многослойная система, за счет использования диэлектрических слоев (Al2O3, TiO2), обладает достаточно низким остаточным отражением - 1-2%. Поглощение более 95% достигается введением сплошного слоя металла толщиной более 1 мкм, для которого коэффициент поглощения для всей спектральной области ослабления излучения больше, чем для дисперсных металлических слоев. В качестве подложки покрытия используется сапфир, металлическая подложка может выполнять функции сплошного слоя металла: Ti, Ni, Cu, Cr, Ag, Al. Описанная в этом патенте многослойная светопоглощающая система имеет существенный недостаток - высокую стоимость и процесс ее формирования технологически сложен.
Светопоглощающее покрытие с управляемым рабочим спектральным диапазоном, коэффициентом поглощения не менее 98% и величиной остаточного отражения менее 2% описано в полезной модели РФ №126149. Последовательно нанесенные на подложку (стекло, стали, алюминий, латунь, медь и титан) методом электроннолучевого испарения, чередующиеся металлические (Ti, Cr, Ni, Cu) и диэлектрические слои (Al2O3, HfO2, Nb2O5, ZrO2, TaO5, TiO2, Ti2O3, Ti3O5, Y2O3 и SiO2) разных толщин образуют структуру суммарной толщины не более одного микрометра. Верхний диэлектрический слой оксида защищает многослойное пленочное покрытие от воздействия влаги и механических повреждений.
По технической сущности наиболее близким к предлагаемому покрытию являются, в патенте США 7927696 В2, дисперсии материалов, содержащие частицы сложных оксидов: Cu-Fe-Mn, Cu-Cr, Cu-Cr-Mn, Cu-Cr-Mn-Ni, Cu-Cr-Fe и Co-Cr-Fe, а также частицы нитрида или оксинитрида титана, анилинового черного, сажи и других компонентов, селективно поглощающие излучение видимого диапазона спектра. Они имеют размер от 300 нм и менее. Эти дисперсии формируют на отражающей в видимой области или имеющей металлический блеск поверхности светопоглощающую пленку, сохраняющую теплоизоляционные свойства подложки. При условии, что подложкой служит поверхность, отражающая 10% и более в видимом диапазоне и не поглощающая солнечное излучение, нанесение пленки уменьшает отражение видимого света на 10 и более процентов, степень уменьшения отражения солнечного излучения составляет не менее 0,25.
Существенным недостатком покрытия, описанного в патенте США 7927696 В2, является наличие в его составе нестандартных специальных пигментов из сложных оксидов металлов. Для получения этих специальных пигментов необходимо различное технологическое оборудование - высокотемпературная печь для твердофазного спекания исходных материалов, дробилка и мельница для измельчения помола полученных спеченных материалов, оборудование для рассева и выделения мелких фракций порошкообразных продуктов. Это, а также наличие в составе покрытия частиц нитрида и оксинитрида титана, определяет высокую стоимость описанных в этом патенте покрытий.
Технический результат предлагаемого изобретения состоит в разработке покрытия, обладающего высокой адгезией к твердым материалам различной химической природы (металл, стекло, керамика, пластмасса), низким отражением (менее 4%) в видимой части спектра (300-700 нм) и относительно высоким отражением (более 15%) в ближней ИК области спектра (2000-2200 нм). Разрабатываемое покрытие может быть использовано для нанесения на крупногабаритные объекты и сооружения традиционными методами (кистью, валиками, краскопультом), не требующими сложного специального технологического оборудования.
Жидкая полимерная композиция, используемая для нанесения светопоглощающего покрытия, включает следующие функциональные компоненты в соотношении:
Неорганический пигмент - Свежеосажденный сульфид свинца 7,9-42
Полимерное связующее - Эпоксидная смола 42,5-69
Катализатор - Низкомолекулярный полиамид 8,4-27,6
Пластификатор - Октиловый эфир 1,7-6,4
Полимерной структурообразующей основой материала покрытия является эпоксидная смола. Этот компонент обеспечивает формирование однородного, твердого и механически прочного покрытия, обладающего высокой химической устойчивостью и хорошей адгезией к поверхности различных материалов (металл, стекло, керамика, пластмасса). Содержание эпоксидной смолы в материале покрытия составляет вес. %. При содержании эпоксидной смолы более 69 вес. % композиция характеризуется высокой вязкостью, что затрудняет ее гомогенизацию и приводит к ухудшению однородности светопоглощающего покрытия. При содержании эпоксидной смолы менее 42,5 вес. % материал покрытия характеризуется низкой твердостью и механической прочностью.
Поглощение света в видимой части спектра обеспечивается введением в состав покрытия высокодисперсного сульфида свинца. Высокая дисперсность PbS обеспечивает седиментационную устойчивость жидкой композиции и однородность формируемого покрытия.
Для получения высокодисперсного сульфида свинца используется метод химического осаждения из водных растворов. В этом методе формирование дисперсного осадка сульфида свинца осуществляется при добавлении при перемешивании водного раствора сульфида щелочного металла (например, сульфида натрия) к водному раствору растворимой соли свинца. В результате химической реакции происходило образование черного нерастворимого в воде осадка сульфида свинца:
Figure 00000001
Последующее отделение осадка фильтрованием, его промывка и сушка приводит к получению высокодисперсного порошка сульфида свинца. Полученный порошок тщательно перемешивается с предварительно изготовленной жидкой полимерной композицией.
Содержание свежеосажденного сульфида свинца в композиции, наносимой на поверхность изделия, составляет 7,9-42 вес. %. При содержании сульфида свинца менее 7,9 вес. % формируемое покрытие обладает слабым светопоглощением в видимой части спектра (коэффициент отражения составляет более 2%). При содержании сульфида свинца более 42 вес. % композиция характеризуется низкой неоднородностью.
Низкомолекулярный полиамид выполняет роль катализатора структурообразования в покрытии и содержание этого компонента в композиции составляет 8,4-27,6 вес. %. При содержании низкомолекулярного полиамида более 27,6% наблюдалось существенное ухудшение твердости и механических свойств покрытия. При введении в состав материала менее 8,4 вес. % низкомолекулярного полиамида наблюдалось значительное замедление процессов структурообразования и ухудшение механических свойств покрытия.
Октиловый эфир является компонентом, обеспечивающим необходимую пластичность композиции. Содержание этого компонента в покрытии составляет 1,7-6,4 вес. %. При содержании октилового эфира менее 1,7 вес. % покрытие становится хрупким и механически непрочным. При содержании октилового эфира более 6,4 вес. % наблюдается значительное уменьшение твердости покрытия и покрытие легко деформируется даже при небольшой механической нагрузке.
Процесс изготовления покрытия включает: 1) приготовление жидкой органо-неорганической композиции; 2) нанесение композиции на поверхность изделия кистью (валиком, краскопультом); 3) кратковременную (продолжительность 5-60 мин) выдержку для завершения процессов полимеризации и упрочнения структуры композиционного материала покрытия.
ПРИМЕР 1
Для изготовления высокодисперсного светопоглощающего пигмента навеска нитрата свинца при перемешивании магнитной мешалкой растворялась в воде при комнатной температуре. К полученному раствору добавлялся предварительно изготовленный водный раствор сульфида натрия.
Полученный осадок отфильтровывали, промывали дистиллированной водой и высушивали в сушильном шкафу до постоянного веса. Высушенный осадок перемешивали при комнатной температуре с предварительно изготовленной жидкой полимерной композицией.
Спектры отражения покрытий были измерены на спектрофотометре Shimadzu UV 3600.
Химический состав и некоторые свойства полученных покрытий указаны в табл. 1.
Покрытия были нанесены на поверхность материалов различной химической природы - сталь, стекло, кварцевую керамику и пластмассу. Эксперименты показали, что наблюдается хорошая адгезия покрытий к поверхности всех использованных материалов. Толщина покрытий составляла 0,2-0,6 мм.
На чертеже представлены спектры отражения покрытий 1-4 в видимой и ближней ИК областях спектра (толщина покрытий составляла 0,52 мм (покрытие 1); 0,43 мм (покрытие 2); 0,46 мм (покрытие 3); 0,29 мм (покрытие 4)). Из приведенных спектров видно, что в видимой части спектра коэффициент отражения в широком интервале длин волн (300-700 нм) не превышает 2%. В ближней ИК области спектра (2000-2200 нм) с увеличением длины волны коэффициент отражения возрастает, достигая значений 10-15.
Из экспериментальных данных, приведенных в таблице 1, видно, что при содержании сульфида свинца более 42 вес. % покрытие имеет низкую однородность (покрытие 5), а при уменьшении содержания PbS менее 7,9 вес. % покрытие демонстрирует серый оттенок и коэффициент отражения света в видимой части спектра превышает 2% (покрытие 6).
Из данных этой же таблицы видно, что при содержании октилового эфира менее 1,6 вес. % формируемое покрытие имеет низкую однородность (покрытие 7). Эксперименты также показали, что при содержании октилового эфира более 6,4 вес. %, наблюдается низкая механическая прочность покрытия (покрытие 8).
При содержании эпоксидной смолы в составе покрытия более 69 вес. % невысока однородность покрытия, на его поверхности видны отдельные крупные черные пятна (покрытие 9). Эксперименты показали, что при содержании эпоксидной смолы менее 42,5 вес. % формируется неоднородное покрытие (покрытия 5, 11).
Уменьшение содержания в покрытии низкомолекулярного полиамида до уровня менее 8,4 вес. % приводит к существенному ухудшению механических свойств покрытия и значительному замедлению процессов его структурообразования (покрытие 10). При высоком содержании этого компонента, превышающем 27,6 вес. % наблюдается уменьшение твердости и однородности покрытия (покрытие 11).
ПРИМЕР 2
Для изготовления покрытия с теплоизоляционными свойствами в качестве жидкой композиции использовали предварительно изготовленную смесь (смесь С1), имеющую химический состав, вес.%:
Свежеосажденный сульфид свинца 25
Эпоксидная смола 50
Низкомолекулярный полиамид 20
Октиловый эфир 5
К этой смеси С1 при интенсивном перемешивании добавляли порошок, состоящий из керамических микросфер, имеющих размеры 10-100 мкм. Оболочка микросфер представляла собой алюмосиликатную керамику, а внутренняя область содержала смесь углекислого газа (70%) и азота (30%). Теплопроводность этих микросфер при 20°С составляла 0,08 Вт/м⋅K.
Полученная композиция наносилась на поверхность стальной пластины размером 100×100×2 мм и подвергалась сушке в воздушной атмосфере при комнатной температуре. Полученные покрытия имели толщину 0,5 мм и равномерно покрывали поверхность подложек.
Спектры отражения покрытий были измерены на спектрофотометре Shimadzu UV 3600. Оценка теплопроводности и термостойкости покрытий была осуществлена путем измерения температур на противоположных сторонах покрытия, причем с одной стороны покрытия находилась термостабилизированная поверхность с заданной температурой, а на другой поверхности покрытия осуществлялось контрольное измерение температуры.
В таблице 2 приведены химический состав и некоторые свойства полученных покрытий с использованием керамических микросфер.
Экспериментальная оценка теплопроводности и термостойкости покрытий 12-15 (таблица 2) показала отсутствие каких-либо повреждений их структуры при скачкообразном изменении температуры (ΔТ=40 K) и обеспечивала поддержание этого температурного перепада в течение 30 минут, что подтверждает высокие теплоизолирующие свойства покрытий. Покрытие 16, содержащее только 9 вес. % микросфер, не обеспечивало поддержания этого температурного перепада и обладало низкими теплоизолирующими свойствами.
Покрытия 12, 14-16 обладают высокими светопоглощающими свойствами. Покрытие 13, содержащее более 60 вес. % микросфер, неоднородно и характеризуется повышенным отражением света в видимой части спектра (таблица 2).
Таким образом, оптимальным сочетанием светопоглощающих и теплоизоляционных свойств обладают покрытия, содержащие 10-60 вес. % оксидных микросфер.
Источники информации
1. Hiromitsu Takeda, Kayo Yabuki. Visible light absorbing film, structural member having this visible light absorbing film and visible light absorbing ink which forms visible light absorbing film. - Patent USA 7927696 B2 (опубл. 19.04.2011); B32B 15/08; G02B 5/22; B32B 7/02; C09D 11/02.
2. Craighead H.G., Howard R.E. Light-absorbing materials. - Patent USA 4284689 (опубл. 18.08.1981); F24J 2/00 (20060101); F24J 2/48 (20060101).
3. Maschwitz P.A. Low reflection composite in transparent matrix. - Patent USA 6630284 (30.10.2001); G02B 1/11.
4. Quesnel E., Chaton P. Light absorbing coating with high absorption capacity. - Patent USA 6335142 B1 (01.01.2002; G11B 7/135; G02B 5/28; G02B 5/00.
5. Самсонов К.H. Светопоглощающее покрытие. - Полезная модель РФ 126149; G02 В5.
Figure 00000002
Figure 00000003

Claims (3)

1. Светопоглощающее покрытие, включающее неорганический пигмент, полимерное связующее, катализатор полимеризации и пластификатор, отличающееся тем, что оно имеет коэффициент отражения в видимой части спектра (300-700 нм) не более 2%, а в спектральном ИК диапазоне (2000-2200 нм) не менее 10%, и имеет следующий состав, вес.%:
Неорганический пигмент - Свежеосажденный сульфид свинца 7,9-42 Полимерное связующее - Эпоксидная смола 42,5-69 Катализатор - Низкомолекулярный полиамид 8,4-27,6 Пластификатор - Октиловый эфир 1,7-6,4
2. Светопоглощающее покрытие по п. 1, отличающееся тем, что оно дополнительно содержит 10-60 вес.% оксидных микросфер, имеющих размер 1-100 мкм.
RU2015139914A 2015-09-18 2015-09-18 Светопоглощающее покрытие RU2626838C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015139914A RU2626838C2 (ru) 2015-09-18 2015-09-18 Светопоглощающее покрытие

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015139914A RU2626838C2 (ru) 2015-09-18 2015-09-18 Светопоглощающее покрытие

Publications (2)

Publication Number Publication Date
RU2015139914A RU2015139914A (ru) 2017-03-21
RU2626838C2 true RU2626838C2 (ru) 2017-08-02

Family

ID=58454685

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015139914A RU2626838C2 (ru) 2015-09-18 2015-09-18 Светопоглощающее покрытие

Country Status (1)

Country Link
RU (1) RU2626838C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660408C1 (ru) * 2017-08-11 2018-07-06 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ изготовления светопоглощающих элементов оптических систем на титановых подложках

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086121B (zh) * 2021-11-23 2022-11-22 北京航空航天大学 一种高性能辐射制冷无机多层膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134689C1 (ru) * 1993-09-17 1999-08-20 Циба Спешиалти Кемикэлс Холдинг Инк. 3-арилбензофураноны, стабилизированная композиция, способ стабилизации
US6335142B1 (en) * 1997-12-08 2002-01-01 Commissariat A L'energie Atomique Light absorbing coating with high absorption capacity
US7927696B2 (en) * 2002-08-21 2011-04-19 Sumitomo Metal Mining Co., Ltd. Visible light absorbing film, structural member having this visible light absorbing film and visible light absorbing ink which forms visible light absorbing film
RU126149U1 (ru) * 2012-11-08 2013-03-20 Открытое акционерное общество "Научно-производственное предприятие "Геофизика-Космос" (ОАО "НПП "Геофизика-Космос") Светопоглощающее покрытие

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134689C1 (ru) * 1993-09-17 1999-08-20 Циба Спешиалти Кемикэлс Холдинг Инк. 3-арилбензофураноны, стабилизированная композиция, способ стабилизации
US6335142B1 (en) * 1997-12-08 2002-01-01 Commissariat A L'energie Atomique Light absorbing coating with high absorption capacity
US7927696B2 (en) * 2002-08-21 2011-04-19 Sumitomo Metal Mining Co., Ltd. Visible light absorbing film, structural member having this visible light absorbing film and visible light absorbing ink which forms visible light absorbing film
RU126149U1 (ru) * 2012-11-08 2013-03-20 Открытое акционерное общество "Научно-производственное предприятие "Геофизика-Космос" (ОАО "НПП "Геофизика-Космос") Светопоглощающее покрытие

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660408C1 (ru) * 2017-08-11 2018-07-06 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ изготовления светопоглощающих элементов оптических систем на титановых подложках

Also Published As

Publication number Publication date
RU2015139914A (ru) 2017-03-21

Similar Documents

Publication Publication Date Title
KR102411232B1 (ko) 질화지르코늄 분말 및 그 제조 방법
KR101657731B1 (ko) 슬롯 다이 코팅 방법
TWI527622B (zh) Photocatalyst coating and photocatalyst coating solution
KR102099066B1 (ko) 흑색막 형성용 혼합 분말 및 그 제조 방법
EP1129318B1 (de) Reflektor mit resistenter oberfläche
KR102629669B1 (ko) 흑색 차광막 형성용 분말 및 그 제조 방법
RU2626838C2 (ru) Светопоглощающее покрытие
KR101321697B1 (ko) 백색 또는 적색 적외선 차폐안료를 포함한 적외선 차폐 도료 및 그 제조방법
CN106772747B (zh) 一种光学膜及其制作方法
WO2018034261A1 (ja) 塗膜および物品
EP0918236A1 (de) Reflektor mit resistenter Oberfläche
WO2019065316A1 (ja) 塗料組成物及び塗膜
US20220153638A1 (en) Microfabrication method
Sánchez-Sobrado et al. Versatility and multifunctionality of highly reflecting Bragg mirrors based on nanoparticle multilayers
US7247371B2 (en) Antimony tin oxide fine particles for sunlight shielding, and disperse liquid for formation of sunlight shielding solid, sunlight shielding solid, and transparent substrate for sunlight shielding using thereof
KR101847785B1 (ko) 가시광선이 투과하는 투명방음벽용 나노컬러 접합유리 제조 방법
Mousavi et al. Development of a Transparent Scratch Resistant Coating through Direct Oxidation of Al‐Coated Glass
JP6949604B2 (ja) 黒色膜形成用混合粉末の製造方法
RU2669097C2 (ru) Композиция для светопоглощающего покрытия
CN113710623A (zh) 无机材料制成的隔热件、用于制造该隔热件的材料组、底层用材料以及制造方法
JP2017194493A (ja) 光学機器用の遮熱膜、光学機器用の遮熱塗料、およびそれらを用いる光学機器
De et al. Metal nanoparticle doped coloured coatings on glasses and plastics through tuning of surface plasmon band position
KR20220016050A (ko) 방오층이 형성된 투명 기판
JP2001294446A (ja) 表面コート剤及び表面コートされた着色ガラスの製造方法
JP6961775B2 (ja) 光学膜

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180919