RU2623356C2 - Способ и система очистки выхлопного газа двигателя внутреннего сгорания - Google Patents

Способ и система очистки выхлопного газа двигателя внутреннего сгорания Download PDF

Info

Publication number
RU2623356C2
RU2623356C2 RU2014147605A RU2014147605A RU2623356C2 RU 2623356 C2 RU2623356 C2 RU 2623356C2 RU 2014147605 A RU2014147605 A RU 2014147605A RU 2014147605 A RU2014147605 A RU 2014147605A RU 2623356 C2 RU2623356 C2 RU 2623356C2
Authority
RU
Russia
Prior art keywords
exhaust gas
filter
catalyst
temperature
copper
Prior art date
Application number
RU2014147605A
Other languages
English (en)
Other versions
RU2014147605A (ru
Inventor
Мануэль Молинер МАРИН
Кристина Франч МАРТИ
Антонио Эдуардо Паломарес ГИМЕНО
Авелино Корма Канос
Петер Н.Р. ВЕННЕСТРЕМ
Аркадий КУСТОВ
Йоаким Раймер ТЕГЕРСЕН
Original Assignee
Хальдор Топсеэ А/С
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46001293&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2623356(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Хальдор Топсеэ А/С filed Critical Хальдор Топсеэ А/С
Publication of RU2014147605A publication Critical patent/RU2014147605A/ru
Application granted granted Critical
Publication of RU2623356C2 publication Critical patent/RU2623356C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/001Gas flow channels or gas chambers being at least partly formed in the structural parts of the engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Настоящее изобретение относится к очистке выхлопных газов двигателя внутреннего сгорания. Способ очистки выхлопного газа двигателя внутреннего сгорания включает: уменьшение содержания сажи в выхлопном газе путем пропускания газа через фильтр; последующее снижение содержания оксидов азота в присутствии аммиака или его предшественника при контакте с катализатором, активным в NH3-СКВ; периодическую регенерацию фильтра путем выжигания сажи, накопившейся в фильтре, и тем самым повышения температуры выхлопного газа вплоть до 850°С и содержания паров воды вплоть до 100 об. %; пропускание выхлопного газа, выходящего из фильтра, через катализатор во время регенерации фильтра, причем катализатор состоит из гидротермически стабильного микропористого цеолита SSZ-39, активированного медью. Заявленный способ позволяет осуществить селективное каталитическое восстановление оксидов азота при высоких температурах и концентрации паров воды во время активной регенерации сажевого фильтра. 2 н.и 8 з.п. ф-лы, 4 ил.

Description

СПОСОБ И СИСТЕМА ОЧИСТКИ ВЫХЛОПНОГО ГАЗА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
Описание
Настоящее изобретение относится к предварительной обработке выхлопного газа двигателя внутреннего сгорания с целью удаления или уменьшения содержания вредных соединений. Точнее, настоящее изобретение относится к удалению твердых частиц и восстановлению оксидов азота в выхлопном газе двигателей внутреннего сгорания, работающих на бедных смесях, и, в частности, дизельных двигателей.
Известно, что двигатели, работающие на бедных смесях, являются энергоэффективными, но обладают тем недостатком, что образуются твердые частицы и оксиды азота, которые необходимо удалить или по меньшей мере уменьшить их содержание в выхлопном газе двигателя.
Для предотвращения загрязнения окружающей среды и для выполнения различных правительственных требований современные дизельные двигатели снабжены системой очистки выхлопного газа, в которой последовательно расположены окислительный нейтрализатор для удаления летучих органических соединений, фильтр твердых частиц для удаления твердых частиц и катализатор, активный для селективного восстановления оксидов азота (NOx).
Также известно объединение катализатора СКВ (селективное каталитическое восстановление) с фильтром твердых частиц.
Селективное каталитическое восстановление NOx в выхлопном газе обычно проводят по реакции с аммиаком, вводимом в виде самого соединения или в виде его предшественника, который вводят в выхлопной -2-
газ до катализатора СКВ селективного восстановления оксидов азота, в основном диоксида азота и монооксида азота (NOx), в азот.
Для этой цели в литературе раскрыты многочисленные композиции катализаторов.
Позднее приобрели большой интерес цеолиты, активированные медью или железом, в особенности для использования в автомобилях.
Содержащие медь цеолитные катализаторы, предназначенные для использования в NH3-СКВ, обнаружили высокую активность при низкой температуре. Однако в некоторых случаях применения на катализатор могут воздействовать выхлопной газ, обладающий высокой температурой. Кроме того выхлопной газ двигателя внутреннего сгорания обладает высокой концентрацией паров воды, что может вредно повлиять на рабочие характеристики цеолитного катализатора. Гидротермическая стабильность цеолитных катализаторов на основе Си часто является низкой, поскольку одним возможным механизмом дезактивации катализатора является разрушение цеолитного каркаса вследствие его нестабильности по отношению к гидротермическим воздействиям, которая дополнительно усиливается в присутствии меди.
Дезактивация содержащих медь цеолитных катализаторов при использовании в NH3-СКВ обычно вызвана разрушением цеолитного каркаса вследствие его нестабильности по отношению к гидротермическим воздействиям, которая дополнительно усиливается в присутствии меди. Однако стабильность особенно важна при использовании в автомобилях, когда на катализатор воздействует поток содержащего воду выхлопного газа, обладающего высокой температурой.
Дезактивация катализатора является значительным затруднением для систем очистки выхлопного газа, снабженных фильтром твердых частиц, которые необходим периодически активно регенерировать для -3-
предупреждения повышения перепада давления на покрытом сажей фильтре.
Активную регенерацию проводят путем выжигания накопившейся сажи. Регенерацию можно инициировать путем введения топлива в выхлопной газ до окислительного нейтрализатора или путем электрического нагревания фильтра твердых частиц.
Во время активной регенерации температура выхлопного газа на выходе из фильтра может превышать 850°С и содержание паров воды может составлять более 15% и вплоть до 100% в течение периодов времени, равных от 10 до 15 мин в зависимости от количества сажи, накопившейся на фильтре.
Общей задачей настоящего изобретения является разработка способа удаления вредных соединений из выхлопного газа двигателей внутреннего сгорания, работающих на бедных смесях, таких как твердые частицы, с помощью фильтра твердых частиц и оксидов азота с помощью селективного каталитического восстановления оксидов азота путем взаимодействия с катализатором, гидротермически стабильным при высоких температурах и концентрации паров воды во время активной регенерации фильтра твердых частиц.
Авторы настоящего изобретения установили, что задачу настоящего изобретения можно решить путем использования цеолита или цеотипа, обладающего гидротермически стабильным каркасом типа AEI, в котором структура сохраняется в условиях гидротермического старения, даже если в цеолите или цеотипе содержится медь.
В соответствии с приведенными выше данными настоящее изобретение относится к способу очистки выхлопного газа двигателя внутреннего сгорания, включающему
-4-
уменьшение содержания сажи в выхлопном газе путем пропускания газов через фильтр твердых частиц;
последующее восстановление оксидов азота в присутствии аммиака или его предшественника путем взаимодействия с катализатором, активным в NH3-СКВ;
периодическую регенерацию фильтра путем выжигания сажи, накопившейся в фильтре, и тем самым повышения температуры выхлопного газа вплоть до 850°С и содержания паров воды вплоть до 100 об. %; и
пропускание выхлопного газа, выходящего из фильтра, через катализатор во время регенерации фильтра, где катализатор содержит гидротермически стабильный цеолит и/или цеотип, обладающий каркасом типа AEI, и медь, включенную в каркас.
"Гидротермически стабильный" означает, что цеолит и цеотипный катализатор обладает способностью сохранять по меньшей мере от 80 до 90% исходной площади поверхности и от 80 до 90% объема микропор после нагревания до температуры не ниже 600°С и содержания паров воды вплоть до 100 об. % в течение 13 ч и по меньшей мере от 30 до 40% исходной площади поверхности и объема микропор после нагревания до температуры не ниже 750°С и содержания паров воды вплоть до 100 об. % в течение 13 ч.
Предпочтительно, если гидротермически стабильный цеолит или цеотип, обладающий каркасом типа AEI, обладает атомным отношением кремний: алюминий, равным от 5 до 50 для цеолита или от 0,02 до 0,5 для цеотипа.
Наиболее предпочтительными цеолитными или цеотипными катализаторами для применения в настоящем изобретении являются цеолит SSZ-39 и цеотип SAPO-18, оба обладающие каркасными -5-
структурами "AEI", в которые медь вводят путем пропитки, жидкофазного ионного обмена или твердофазного ионного обмена.
Атомное отношение медь : алюминий предпочтительно равно от около 0,01 до около 1 для цеолита. Для цеотипа предпочтительное атомное отношение медь : кремний соответственно равно от 0,01 до около 1.
Для указанных выше катализаторов, использующихся в настоящем изобретении, сохраняется 80% начальной способности восстанавливать NOx при температуре, равной 250°С, после старения при 750°С, тогда как для катализатора Cu-СНА это значение составляет 20%.
Таким образом, в одном варианте осуществления настоящего изобретения сохраняется 80% начальной способности восстанавливать оксиды азота при температуре, равной 250°С, после воздействия на катализатор температуры, равной 750°С, и содержания паров воды, равного 100%, в выхлопном газе в течение 13 часов.
Настоящее изобретение также относится к системе очистки выхлопного газа, включающей активный регенерируемый фильтр твердых частиц и катализатор СКВ, содержащий гидротермически стабильный микропористый цеолит и/или цеотип, обладающий каркасом типа AEI и активированный медью.
В одном варианте осуществления системы очистки выхлопного газа, соответствующей настоящему изобретению, катализатор СКВ объединен с фильтром твердых частиц.
В другом варианте осуществления атомное отношение медь: алюминий равно от около 0,01 до около 1 для цеолита и атомное отношение медь: кремний равно от 0,01 до около 1 для цеотипа.
-6-
В еще одном варианте осуществления атомное отношение кремний: алюминий в катализаторе СКВ равно от 5 до 50 для цеолита и от 0,02 до 0,5 для цеотипа.
В другом варианте осуществления катализатор СКВ сохраняет 80% начальной способности восстанавливать оксиды азота при температуре, равной 250°С, после воздействия на катализатор температуры, равной 750°С, и содержания паров воды, равного 100%, в выхлопном газе в течение 13 часов.
В другом варианте осуществления катализатор СКВ сохраняет от 80 до 90% исходной микропористости после старения при 600°С и от 30 до 40% исходной микропористости после старения при 750°С.
В еще одном варианте осуществления катализатором СКВ является алюмосиликатный цеолит SSZ-39 и/или силикоалюминий фосфат SAPO-18.
В указанных выше вариантах осуществления катализатор СКВ можно осадить на монолитную структуру подложки.
Показано, что каталитическая система Cu-SSZ-39 обладает улучшенными рабочими характеристиками по сравнению с типичным современным Си-SSZ-13, если сопоставлять сходные отношения Si/AI.
Пример 1: Получение катализатора Cu-SSZ-39
Цеолит SSZ-39, обладающий каркасом с кодом типа AEI, синтезировали аналогично тому, как это описано в патенте US 5958370, с использованием 1,1,3,5-тетраметилпиридиния в качестве органического шаблона. Гель следующего состава: 30 Si : 1,0 Al : 0,51 NaOH : 5,1 OSDA : 600 H2O выдерживали в автоклаве при 135°С в течение 7 дней, продукт -7-
фильтровали, промывали водой, сушили и прокаливали на воздухе. Конечный SSZ-39 по данным ИСП-АЭС (атомная эмиссионная спектроскопия с индуктивно связанной плазмой) обладал Si/Al=9,1.
Для получения Cu-SSZ-39 прокаленный цеолит подвергали ионному обмену с Cu(СН3СОО)2 и получали конечный катализатор, после прокаливания обладающий Cu/Al=0,52.
Порошковая рентгенограмма (ПРРГ) Cu-SSZ-39 после прокаливания приведена на фиг. 1.
Пример 2: Исследование катализа
Активность образцов для селективного каталитического восстановления NOx исследовали в реакторе с неподвижным слоем для имитации потока выхлопного газа двигателя при полной скорости потока, равной 300 мл/мин, который содержал 500 част./млн NO, 533 част./млн NH3, 7% O2, 5% H2O в N2, в котором исследовали 40 мг катализатора.
Содержание NOx, находящегося в газах, выходящих из реактора, определяли непрерывно, и степень превращения приведена на фиг. 2.
Пример 3: Исследование гидротермической стабильности
Для исследования гидротермической стабильности цеолитов, образцы обрабатывали паром. На них воздействовали путем загрузки воды (2,2 мл/мин) при температуре, равной 600 или 750°С, в течение 13 ч в обычной печи и затем исследовали аналогично тому, как это проведено в примере 2.
Результаты исследования катализа также представлены на фиг. 2. Образцы, которые подвергали гидротермической обработке, отмечены -8-
надписями 600 или 700°С в соответствии с температурой, при которой проводили гидротермическую обработку.
Также проводили дополнительное исследование характеристик всех обработанных образцов. ПРРГ после гидротермической обработки приведены на фиг. 1 и площади поверхности БЭТ (определенные по изотерме Брунауэра - Эметта - Теллера), площади микропор и объемы микропор обработанных образцов приведены ниже в таблице 1.
Пример 4: Сравнительный пример, сопоставление с Cu-CHA (Cu-SSZ-13)
Цеолит Cu-CHA получали из геля, обладающего следующим молярным составом: SiO2 : 0,033 Al2O3 : 0,50 OSDA : 0,50 HF : 3 H2O, где OSDA означает N,N,N-триметил-1-адамантаммонийгидроксид.
Гель выдерживали во вращающемся автоклаве при 150°С в течение 3 дней и получали конечный цеолитный продукт, после промывки, сушки и прокаливания обладающий Si/Al=12,7.
Для получения Cu-CHA прокаленный цеолит подвергали ионному обмену с Cu(СН3СОО)2 и получали конечный катализатор, обладающий Cu/Al=0,54.
Порошковая рентгенограмма (ПРРГ) Cu-CHA после прокаливания приведена на фиг. 1.
Этот катализатор также исследовали в соответствии с примером 2, и гидротермическую долговечность оценивали аналогично тому, как это проведено в примере 3. Результаты исследования катализа представлены на фиг. 2. ПРРГ обработанных образцов СНА приведены на фиг. 1 и структурные характеристики (площадь поверхности БЭТ, объем микропор и площадь микропор) приведены в таблице 1.
-9-
Figure 00000001
Пример 5: Cu-SAPO-18
Силикоалюминий фосфат SAPO-18, обладающий каркасом с кодом типа AEI, синтезировали в соответствии с публикацией [J. Chen, J.М. Thomas, P.A. Wright, R.P. Townsend, Catal. Lett. 28 (1994) [241-248] и пропитывали с помощью 2 мас. % Cu. Конечный катализатор Cu-SAPO-18 подвергали гидротермической обработке в 10% H2O и 10% O2 при 750°С и -10-
исследовали при таких же условиях, как приведенные в примере 2. Результаты приведены на фиг. 2.

Claims (14)

1. Способ очистки выхлопного газа двигателя внутреннего сгорания, включающий
уменьшение содержания сажи в выхлопном газе путем пропускания газа через фильтр;
последующее снижение содержания оксидов азота в присутствии аммиака или его предшественника при контакте с катализатором, активным в NH3-СКВ;
периодическую регенерацию фильтра путем выжигания сажи, накопившейся в фильтре, и тем самым повышения температуры выхлопного газа вплоть до 850°С и содержания паров воды вплоть до 100 об. %; и
пропускание выхлопного газа, выходящего из фильтра, через катализатор во время регенерации фильтра, причем катализатор состоит из гидротермически стабильного микропористого цеолита SSZ-39, активированного медью.
2. Способ по п. 1, в котором атомное отношение медь: алюминий равно от около 0,01 до около 1 для цеолита SSZ-39.
3. Способ по п. 1, причем 80% начального снижения оксидов азота при температуре, равной 250°С, сохраняется после воздействия на катализатор температуры, равной 750°С, и содержания паров воды, равного 100%, в выхлопном газе в течение 13 часов.
4. Способ по п. 1, в котором по меньшей мере от 80 до 90% начальной микропористости сохраняется после старения при 600°С и по меньшей мере от 30 до 40% сохраняется после старения при 750°С.
5. Система очистки выхлопного газа, включающая активный регенерируемый фильтр твердых частиц и катализатор СКВ, содержащий гидротермически стабильный микропористый цеолит SSZ-39, активированный медью.
6. Система очистки выхлопного газа по п. 5, в которой катализатор СКВ интегрирован в фильтр твердых частиц.
7. Система очистки выхлопного газа по п. 5, в которой атомное отношение медь: алюминий равно от около 0,01 до около 1 для цеолита SSZ-39.
8. Система очистки выхлопного газа по п. 5, в которой катализатор СКВ сохраняет 80% начального снижения оксидов азота при температуре, равной 250°С, после воздействия на катализатор температуры, равной 750°С, и содержания паров воды, равного 100%, в выхлопном газе в течение 13 часов.
9. Система очистки выхлопного газа по п. 5, в которой катализатор СКВ сохраняет по меньшей мере от 80 до 90% начальной микропористости после старения при 600°С и по меньшей мере от 30 до 40% начальной микропористости после старения при 750°С.
10. Система очистки выхлопного газа по одному из пп. 5-9, в которой катализатор СКВ осажден на монолитную структуру подложки.
RU2014147605A 2012-04-27 2012-04-27 Способ и система очистки выхлопного газа двигателя внутреннего сгорания RU2623356C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/057795 WO2013159825A1 (en) 2012-04-27 2012-04-27 Method and system for the purification of exhaust gas from an internal combustion engine

Publications (2)

Publication Number Publication Date
RU2014147605A RU2014147605A (ru) 2016-06-20
RU2623356C2 true RU2623356C2 (ru) 2017-06-23

Family

ID=46001293

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014147605A RU2623356C2 (ru) 2012-04-27 2012-04-27 Способ и система очистки выхлопного газа двигателя внутреннего сгорания

Country Status (13)

Country Link
US (2) US9561468B2 (ru)
EP (6) EP3369897B1 (ru)
JP (1) JP6290181B2 (ru)
KR (1) KR101915552B1 (ru)
CN (5) CN109268110B (ru)
BR (1) BR112014026909B1 (ru)
CA (1) CA2870745C (ru)
DK (1) DK2850294T4 (ru)
ES (3) ES2633320T5 (ru)
PL (2) PL3369897T3 (ru)
RU (1) RU2623356C2 (ru)
WO (1) WO2013159825A1 (ru)
ZA (1) ZA201406863B (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101915552B1 (ko) * 2012-04-27 2018-11-06 우미코레 아게 운트 코 카게 내연 엔진으로부터의 배기 가스의 정제를 위한 방법 및 시스템
KR102264058B1 (ko) * 2013-03-15 2021-06-11 존슨 맛쎄이 퍼블릭 리미티드 컴파니 배기 가스 처리를 위한 촉매
EP3878813A1 (en) 2013-10-31 2021-09-15 Johnson Matthey Public Limited Company Aei zeolite synthesis
DE102014117671A1 (de) * 2013-12-02 2015-06-03 Johnson Matthey Public Limited Company Synthese eines aei-zeoliths
EP3222583A4 (en) 2014-11-21 2018-04-11 Mitsubishi Chemical Corporation Aei type zeolite, method for prodcuing same, and uses thereof
ES2586775B1 (es) 2015-04-16 2017-08-14 Consejo Superior De Investigaciones Científicas (Csic) Método de preparación de la estructura zeolítica aei en su forma silicoaluminato con grandes rendimientos, y su aplicación en catálisis
ES2586770B1 (es) 2015-04-16 2017-08-14 Consejo Superior De Investigaciones Científicas (Csic) Método de síntesis directa del material cu-silicoaluminato con la estructura zeolítica aei, y sus aplicaciones catalíticas
ES2589059B1 (es) 2015-05-05 2017-08-17 Consejo Superior De Investigaciones Cientificas SÍNTESIS DIRECTA DE Cu-CHA MEDIANTE LA COMBINACIÓN DE UN COMPLEJO DE Cu Y TETRAETILAMONIO, Y APLICACIONES EN CATÁLISIS
CN108349742A (zh) 2015-11-27 2018-07-31 三菱化学株式会社 八元氧环沸石和aei型沸石的制造方法
DK3411131T3 (da) * 2016-02-01 2020-06-02 Umicore Ag & Co Kg Fremgangsmåde til fjernelse af nitrogenoxider fra udstødningsgas ved selektiv katalytisk reduktion i nærvær af en scr-katalysator omfattende et fe-aei-zeolitmateriale, der i det væsentlige er fri for alkalimetal
KR101846918B1 (ko) 2016-11-16 2018-04-09 현대자동차 주식회사 Cu/LTA 촉매 및 이를 포함하는 배기 시스템, 그리고 Cu/LTA 촉매 제조 방법
CN106925341A (zh) * 2017-02-23 2017-07-07 华中科技大学 一种助剂掺杂的Cu‑SSZ‑39催化剂的制备方法及其应用
CN110392607A (zh) 2017-03-13 2019-10-29 三菱化学株式会社 过渡金属负载沸石和其制造方法以及氮氧化物净化用催化剂和其使用方法
JP2018159334A (ja) * 2017-03-23 2018-10-11 日本碍子株式会社 排ガス浄化装置
CN107376989B (zh) * 2017-07-21 2021-01-05 中触媒新材料股份有限公司 一种Cu-AEI分子筛催化剂合成及应用
EP3873649A1 (en) 2018-11-02 2021-09-08 BASF Corporation Exhaust treatment system for a lean burn engine
KR20210087743A (ko) * 2020-01-03 2021-07-13 현대자동차주식회사 촉매 및 촉매의 제조 방법
KR20220060315A (ko) * 2020-11-04 2022-05-11 현대자동차주식회사 Scr 촉매의 제조 방법 및 이에 의하여 제조된 scr 촉매
CN114950576B (zh) * 2022-06-20 2023-08-22 济南大学 一种提高金属基小孔分子筛水热稳定性的方法及所得产品和应用
DE102022130469A1 (de) 2022-11-17 2024-05-23 Umicore Ag & Co. Kg Verfahren und Vorrichtung zum Herstellen eines Substrats für eine Abgasnachbehandlungseinrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2075603C1 (ru) * 1994-07-05 1997-03-20 Владимир Алексеевич Васин Регенерируемый сажевый фильтр выхлопных газов
WO2008118434A1 (en) * 2007-03-26 2008-10-02 Pq Corporation Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
RU2362613C2 (ru) * 2003-04-17 2009-07-27 Джонсон Мэттей Паблик Лимитед Компани Выхлопная система для двигателей внутреннего сгорания, двигатель внутреннего сгорания и транспортное средство на его основе
US20110167801A1 (en) * 2008-09-26 2011-07-14 Daimler Ag Method for Operating an Exhaust Emission Control System Having a SCR-Catalyst and an Upstream Oxidation Catalyst Exhaust Emission Control Component
WO2011112949A1 (en) * 2010-03-11 2011-09-15 Johnson Matthey Public Limited Company DISORDERED MOLECULAR SIEVE SUPPORTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NOx

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958370A (en) 1997-12-11 1999-09-28 Chevron U.S.A. Inc. Zeolite SSZ-39
US6818198B2 (en) 2002-09-23 2004-11-16 Kellogg Brown & Root, Inc. Hydrogen enrichment scheme for autothermal reforming
US7229597B2 (en) 2003-08-05 2007-06-12 Basfd Catalysts Llc Catalyzed SCR filter and emission treatment system
BRPI0619944B8 (pt) * 2005-12-14 2018-03-20 Basf Catalysts Llc método para preparar um catalisador de zeólito promovido por metal, catalisador de zeólito, e, método para reduzir nox em uma corrente de gás de exaustão ou gás combustível
AR065501A1 (es) * 2007-02-27 2009-06-10 Basf Catalysts Llc Catalizadores de zeolita cha de cobre
EP2517773B2 (en) * 2007-04-26 2019-08-07 Johnson Matthey Public Limited Company Copper/LEV-zeolite SCR catalyst
US7966812B2 (en) * 2007-08-29 2011-06-28 Ford Global Technologies, Llc Multi-stage regeneration of particulate filter
US20090196812A1 (en) * 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
US8080209B2 (en) * 2008-02-25 2011-12-20 Jgc Catalysts And Chemicals Ltd. Exhaust gas treatment apparatus
JP2009255051A (ja) * 2008-03-21 2009-11-05 Panasonic Corp 排ガス浄化装置
EP2112341B1 (en) * 2008-04-22 2018-07-11 Umicore AG & Co. KG Method for purification of an exhaust gas from a diesel engine
JP2010000499A (ja) * 2008-05-20 2010-01-07 Ibiden Co Ltd ハニカム構造体
WO2009141898A1 (ja) * 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
JP5404778B2 (ja) * 2008-06-19 2014-02-05 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト ディーゼルエンジンを有する輸送用車両のための酸化触媒
US8245500B2 (en) * 2008-07-07 2012-08-21 Delphi Technologies, Inc. Dual catalyst NOx reduction system for exhaust from lean burn internal combustion engines
JP4767296B2 (ja) * 2008-07-31 2011-09-07 本田技研工業株式会社 NOx浄化触媒
JP5549839B2 (ja) * 2008-08-19 2014-07-16 東ソー株式会社 高耐熱性β型ゼオライト及びそれを用いたSCR触媒
EP2382031B2 (en) * 2008-12-24 2022-12-14 BASF Corporation Emissions treatment systems and methods with catalyzed scr filter and downstream scr catalyst
WO2010084930A1 (ja) * 2009-01-22 2010-07-29 三菱化学株式会社 窒素酸化物浄化用触媒及びその製造方法
US9662611B2 (en) * 2009-04-03 2017-05-30 Basf Corporation Emissions treatment system with ammonia-generating and SCR catalysts
CN102802791A (zh) * 2009-04-17 2012-11-28 约翰逊马西有限公司 用于还原氮氧化物、能耐受贫燃/富燃老化的小孔分子筛负载铜催化剂
JP6023395B2 (ja) * 2009-10-06 2016-11-09 日本碍子株式会社 触媒担持フィルタ
JP2011098336A (ja) * 2009-10-09 2011-05-19 Ibiden Co Ltd ハニカムフィルタ
JP5573453B2 (ja) * 2010-07-21 2014-08-20 三菱樹脂株式会社 窒素酸化物浄化用触媒及びその製造方法
US20110165040A1 (en) * 2010-11-03 2011-07-07 Ford Global Technologies, Llc Device for remediating emissions and method of manufacture
US20140093442A1 (en) * 2011-05-31 2014-04-03 Johnson Matthey Public Limited Company Dual Function Catalytic Filter
CN102380412B (zh) * 2011-09-06 2014-04-30 太原理工大学 负载过渡元素mfi催化剂的制备方法及其mfi催化剂应用
KR101915552B1 (ko) * 2012-04-27 2018-11-06 우미코레 아게 운트 코 카게 내연 엔진으로부터의 배기 가스의 정제를 위한 방법 및 시스템
KR102264058B1 (ko) * 2013-03-15 2021-06-11 존슨 맛쎄이 퍼블릭 리미티드 컴파니 배기 가스 처리를 위한 촉매
WO2016073329A1 (en) * 2014-11-03 2016-05-12 California Institute Of Technology Producing zeolite ssz-39 using isomeric mixtures of organic structure directing agents

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2075603C1 (ru) * 1994-07-05 1997-03-20 Владимир Алексеевич Васин Регенерируемый сажевый фильтр выхлопных газов
RU2362613C2 (ru) * 2003-04-17 2009-07-27 Джонсон Мэттей Паблик Лимитед Компани Выхлопная система для двигателей внутреннего сгорания, двигатель внутреннего сгорания и транспортное средство на его основе
WO2008118434A1 (en) * 2007-03-26 2008-10-02 Pq Corporation Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
US20110167801A1 (en) * 2008-09-26 2011-07-14 Daimler Ag Method for Operating an Exhaust Emission Control System Having a SCR-Catalyst and an Upstream Oxidation Catalyst Exhaust Emission Control Component
WO2011112949A1 (en) * 2010-03-11 2011-09-15 Johnson Matthey Public Limited Company DISORDERED MOLECULAR SIEVE SUPPORTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NOx

Also Published As

Publication number Publication date
DK2850294T3 (en) 2017-08-28
EP3425181B1 (en) 2019-10-30
US9855528B2 (en) 2018-01-02
US20150118134A1 (en) 2015-04-30
EP3165733B1 (en) 2018-09-05
ES2633320T3 (es) 2017-09-20
US20160354724A1 (en) 2016-12-08
CN109268109A (zh) 2019-01-25
JP2015516882A (ja) 2015-06-18
JP6290181B2 (ja) 2018-03-07
CN104520548A (zh) 2015-04-15
CA2870745C (en) 2019-07-09
CA2870745A1 (en) 2013-10-31
EP3369897A1 (en) 2018-09-05
CN104520548B (zh) 2018-09-07
CN109268110A (zh) 2019-01-25
KR20150003746A (ko) 2015-01-09
CN109184860A (zh) 2019-01-11
EP3165733A1 (en) 2017-05-10
ZA201406863B (en) 2018-05-30
CN109268109B (zh) 2021-10-29
EP3425182B1 (en) 2019-06-19
DK2850294T4 (da) 2019-12-16
EP2850294B1 (en) 2017-06-07
BR112014026909A2 (pt) 2017-06-27
ES2730559T3 (es) 2019-11-11
EP3425181A1 (en) 2019-01-09
RU2014147605A (ru) 2016-06-20
CN109268108A (zh) 2019-01-25
CN109184860B (zh) 2020-12-22
WO2013159825A1 (en) 2013-10-31
EP3369897B1 (en) 2019-04-03
CN109268110B (zh) 2021-05-07
EP2995790A1 (en) 2016-03-16
ES2633320T5 (es) 2020-05-20
US9561468B2 (en) 2017-02-07
ES2744546T3 (es) 2020-02-25
EP2850294A1 (en) 2015-03-25
EP2850294B2 (en) 2019-09-11
PL3369897T3 (pl) 2019-10-31
KR101915552B1 (ko) 2018-11-06
EP3425182A1 (en) 2019-01-09
BR112014026909B1 (pt) 2021-06-29
PL3425182T3 (pl) 2020-03-31

Similar Documents

Publication Publication Date Title
RU2623356C2 (ru) Способ и система очистки выхлопного газа двигателя внутреннего сгорания
Fan et al. Steam and alkali resistant Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx in diesel exhaust
JP6697549B2 (ja) 分子ふるいssz−105、その合成および使用
RU2012122525A (ru) Система селективной каталитической нейтрализации для поглощения летучих соединений
Li et al. Simultaneous adsorption/oxidation of NO and SO2 over Al–cu composite metal oxides supported on MCM-41 at low temperature
WO2013069713A1 (ja) 燃焼排ガス中の窒素酸化物の除去触媒および同触媒を用いる窒素酸化物の除去方法
JP4352486B2 (ja) 排ガス浄化触媒及び排ガス浄化方法
EP4340993A1 (fr) Synthese d'un catalyseur a base de zeolithe afx contenant du palladium pour l'adsorption des nox

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20190115