RU2610525C1 - Способ деасфальтизации и деметаллизации тяжелого нефтяного сырья - Google Patents

Способ деасфальтизации и деметаллизации тяжелого нефтяного сырья Download PDF

Info

Publication number
RU2610525C1
RU2610525C1 RU2015152594A RU2015152594A RU2610525C1 RU 2610525 C1 RU2610525 C1 RU 2610525C1 RU 2015152594 A RU2015152594 A RU 2015152594A RU 2015152594 A RU2015152594 A RU 2015152594A RU 2610525 C1 RU2610525 C1 RU 2610525C1
Authority
RU
Russia
Prior art keywords
adsorbent
oil
heavy oil
deasphalting
asphaltenes
Prior art date
Application number
RU2015152594A
Other languages
English (en)
Inventor
Антон Игоревич Лысиков
Алексей Григорьевич Окунев
Екатерина Васильевна Пархомчук
Павел Дмитриевич Парунин
Александр Валерьевич Полухин
Виктория Сергеевна Семейкина
Ксения Александровна Сашкина
Владимир Сергеевич Деревщиков
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук
Priority to RU2015152594A priority Critical patent/RU2610525C1/ru
Application granted granted Critical
Publication of RU2610525C1 publication Critical patent/RU2610525C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к способу удаления асфальтенов и металлов из тяжелого нефтяного сырья. Способ высокотемпературной деасфальтизации и деметаллизации тяжелого нефтяного сырья осуществляют следующим образом. Тяжелую нефть или мазут пропускают через неподвижный слой адсорбента при температуре 300-600°С при скорости подачи сырья через адсорбент 0,5-2 г-сырья/г-адсорбента/ч в присутствии водорода, подаваемого под давлением 4-7 МПа, способ отличается тем, что используют адсорбент, состоящий из гамма-оксида алюминия, полученный с помощью темплатного синтеза, содержащего макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 500 нм составляет не менее 30% в общем удельном объеме пор. Технический результат - способ получения жидких нефтепродуктов с низким содержанием металлов и асфальтенов является экономичным. 1 з.п. ф-лы, 3 ил., 4 пр.

Description

Изобретение относится к способу очистки тяжелого нефтяного сырья от металлов и асфальтенов путем их гидропереработки в присутствии адсорбента.
Углеводороды и, в частности, нефть рассматриваются как основной источник энергии и полимерных материалов для нужд человечества в последующие 25-200 лет. Запасы легко извлекаемой и легко перерабатываемой нефти истощаются, в то же время значительны запасы тяжелой или битумной нефти. Таким образом, прогнозируется увеличение доли использования тяжелой нефти и тяжелого нефтяного сырья в нефтехимическом секторе в будущем.
Основной трудностью использования тяжелого нефтяного сырья в химической промышленности является повышенное содержание асфальтенов и соединений металлов, приводящее к ускоренной дезактивации катализаторов глубокой переработки нефти, загрязнению реакторов смолами. Кроме того, высокая вязкость тяжелой нефти усложняет ее использование в промышленности. Для подготовки тяжелого нефтяного сырья к глубокой переработке на нефтеперерабатывающих заводах (крекинг, риформинг) предложены предварительные процессы деасфальтизации и деметализации, в которых снижается вязкость, плотность и коксуемость нефтепродукта, уменьшается содержание в нем металлических примесей (Ni, V и др.), происходит осветление.
Известны различные способы деасфальтизации и деметализации тяжелого нефтяного сырья: В патенте RU 2218379 для удаления асфальтенов из тяжелых твердых нефтяных остатков (гудрона) предложено использовать экстракцию сжиженными низкомолекулярными алканами. Нефтяной остаток подвергают экстракции сжиженным пропаном с получением растворов асфальта и деасфальтизата. Образующуюся фазу деасфальтизата отделяют от фазы асфальта, после чего направляют в регенератор, где при низком давлении пропан улетучивается и возвращается для повторения процесса.
В источнике [Нефтегазовые технологии, 2003, №2, с. 91] описан подобный способ деасфальтизации, согласно которому остаточное нефтяное сырье, смешанное при повышенных температуре и давлении в смесителе с углеводородным растворителем (от пропана до гексана), поступает в экстрактор (сепаратор асфальтенов). В нем растворитель, подаваемый противотоком сырью, извлекает из последнего более легкие компоненты с получением раствора деасфальтизата. Из нижней части экстрактора выводят раствор асфальта. После регенерации растворителя из растворов его насосом возвращают на смешение с остаточным сырьем.
В патенте RU 2462501, C10G 32/02, 27.09.2012 описано изобретение, касающееся способа деметаллизации и обессеривания в потоке сырой нефти, в котором сырая нефть поступает в первый электролизер для деметаллизации исходной нефти, затем обрабатываемая нефть подается во второй электролизер для извлечения серы, при этом обработку сырой нефти в потоке проводят электрохимически на переменном асимметричном токе.
В последнее десять-пятнадцать лет в качестве эффективных методов деасфальтизации и деметализации рассматриваются каталитические методы. В патенте JO2073 (В) [JP] 19970531 японской фирмы Japan Energy Corp. предложен катализатор гидропереработки тяжелого нефтяного сырья, содержащий пористый носитель из оксида алюминия с нанесенными на него соединениями молибдена, никеля и кобальта. Катализатор производит доочистку нефтепродукта от остаточного металлического компонента, таким образом продляя срок службы катализатора гидрирования.
В патенте US 9133401, B01J 21/94, 15.09.2015 предлагается усовершенствованный катализатор для гидродеметаллизации тяжелых нефтей и остатков. Катализатор имеет большие поры для гидродеметаллизации тяжелой нефти и остатка, благодаря чему обладает высокой активностью деметаллизации и высокой емкостью по металлу. Катализатор гидроочистки получают смешиванием исходного пористого порошка, преимущественно состоящего из гамма-оксида алюминия и имеющего поры объемом 0,3-0,6 мл/г или более и средний диаметр пор от 10 до 26 нм, экструдированного и прокаленного, с нанесенным металлическим активным компонентом из элементов, принадлежащих к группам VIIIB и VIB периодической таблицы.
Также в патенте US 4582595 (А) корпорации Mobil Oil Corp. предложен способ гидропереработки тяжелых нефтей с использованием катализатора на основе сепиолита. Изобретение относится к катализатору и способу его использования. При синтезе катализатора используется ионообменная реакция сепиолита с металлами групп Iб, IIб, IIb, IVb, Vb или VIIa, пропитка металлом из группы VIa и обмен с магниевой солью с промежуточной прокалкой. Авторы патента указывают на то, что разработанная каталитическая композиция применима для деметаллизации и гидропереработки углеводородного сырья.
В 2004 г. опубликован патент Китая CN №1488719 (А), в котором описан новый метод гидропереработки тяжелых углеводородов. Изобретение раскрывает метод обработки тяжелых углеводородов гидрированием, и характеризуется тем, что остаточное сырье последовательно проходит через фиксированный слой с защитным агентом, слой с катализатором деметаллизации, слой с катализатором гидрообессеривания и слой с катализатором гидродеазотирования (крекинга), в результате достигается очистка масла от асфальтенов, кокса и металлов.
Наиболее близким является катализатор и способ его использования, описанные в патенте [US 4328127, B01J 21/04, 14.05.1982]. В данном изобретении раскрывается роль крупных пор в удалении асфальтеновой фракции, показано, что крупные частицы асфальтенов не могут проникать в узкие поры адсорбента, следовательно, любой сорбционный материал для переработки мазутов должен содержать поры размером 20 нм и более для эффективного взаимодействия с асфальтенами и другими высокомолекулярными соединениями. В изобретении представлен макропористый катализатор, в котором в качестве активного компонента используются оксиды кобальта и молибдена, нанесенные на носитель из оксида алюминия. Недостатками данного катализатора являются его высокая стоимость, большие трудозатраты при приготовлении, сложность регенерации, а также малый объем транспортных макропор в носителе.
Изобретение решает задачу разработки эффективного способа удаления асфальтенов и металлов из тяжелого нефтяного сырья путем их концентрирования на поверхности адсорбента в присутствии водорода при повышенном давлении и температуре.
Задача решается предложенным способом высокотемпературной деасфальтизации и деметаллизации тяжелого нефтяного сырья, в котором нефть пропускают через неподвижный слой адсорбента при температуре 300-600°С, скорости подачи тяжелой нефти через адсорбент 0,5-2 г-нефти/г-адсорбента/ч, в присутствии водорода, подаваемого под давлением 4-7 МПа с соотношением 900-1000/1 (газ/жидкость), при этом используют адсорбент, состоящий из гамма-оксида алюминия, содержащий макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 500 нм составляет не менее 30% в общем удельном объеме пор указанного адсорбента (объем микропор и мезопор не превышает 69%, объем пор с размером более 500 нм не превышает 1% в общем объеме пор).
Технический результат - дешевый способ получения жидких нефтепродуктов с низким содержанием металлов и асфальтенов.
Сущность изобретения состоит в использовании адсорбента, который ранее не применяли в процессах нефтепереработки. Данный адсорбент представляет собой активный гамма-оксид алюминия. Адсорбент отличается пористой структурой, которая имеет бимодальный характер (микропоры, макропоры), причем значительная доля пор представляет собой макропоры с размером от 50 нм до 500 нм, расположенные в пространстве упорядоченным образом. В качестве адсорбента с упорядоченным пространственным расположением пор используется гамма-оксид алюминия, полученный с помощью темплатного синтеза, при этом размер макропор адсорбента лежит в диапазоне от 50 нм до 500 нм. Их объем в общем объеме пор составляет более 30% (объем микропор и мезопор не превышает 69%, объем пор с размером более 500 нм не превышает 1% в общем объеме пор).
Пористая структура адсорбента играет решающую роль при концентрировании асфальтенов и металлов. Крупные частицы асфальтенов не могут проникать в узкие поры адсорбента, следовательно, любой сорбционный материал для переработки мазутов должен содержать поры размером 20 нм и более для эффективного взаимодействия с асфальтенами и другими высокомолекулярными фракциями. Используемый в данном методе адсорбент на основе макропористого оксида алюминия обеспечивает эффективное удаление асфальтенов. Синтез макропористого оксида алюминия осуществляется с использованием полистирольного темплата, аналогично методике, представленной в патенте RU 2527573. Химическая природа поверхности адсорбента позволяет концентрировать металлсодержащие соединения на своей поверхности. В результате достигается высокая степень деасфальтизации и деметаллизации нефтяного сырья. Преимуществом предложенных адсорбентов по сравнению с ранее предложенными катализаторами является их низкая стоимость при сопоставимой эффективности в целевом процессе.
Гидропереработку исходного нефтяного сырья по новому способу проводят при повышенной температуре в диапазоне от 300 до 600°С и повышенном давлении водорода от 4 до 7 МПа. Повышение давления водорода препятствует образованию кокса на поверхности адсорбента и продлевает срок его службы. Скорость подачи сырья через адсорбент варьируют от 0,5 до 2 г-сырья/г-адсорбента/ч, а расход водорода задают в диапазоне 16-80 мг-Н2/г-сырья/ч. Процесс проводят в присутствии адсорбента с регулярной пространственной структурой макропор.
В качестве сырья могут быть использованы тяжелые нефти (Башкирская нефть), остатки атмосферной перегонки нефти, например мазут марки М-100.
Сущность изобретения иллюстрируется следующими примерами и Фиг.1.
Пример 1.
Для приготовления адсорбента используют полистирольные темплаты с размером частиц 300 нм. Для получения носителя готовят пасту из подкисленного гидроксида алюминия (мелкодисперсный порошок псевдобемита - 80 г, азотная кислота - 2 г, дистиллированная вода - 25 г) и полистирольного темплата с размером частиц 300 нм (100 г). Продукт высушивают на воздухе в течение суток. Выход полученного композита составляет 180 г. Порошок композита гранулируют, полученные гранулы сушат на воздухе в течение суток, затем отжигают полистирол на воздухе при 950°С. Полученный материал обладает регулярной пространственной структурой макропор, имеющих средний размер 200-500 нм, измеренный с помощью низкотемпературной адсорбции азота. Пористая структура носителя показана на Фиг.1. Полученный адсорбент представляет собой цилиндрические гранулы диаметром 2,5 мм. Общий объем пор катализатора составляет 0,85 см3/г. Адсорбент в количестве 10 г загружают в реактор Берти и испытывают в реакции деметаллизации и деасфальтизации тяжелой Татарской нефти при температуре 600°С, давлении водорода - 7 МПа. Скорость подачи нефти составляет 2 г-нефти/г-адсорбента/ч, скорость подачи водорода 80 мг-Н2/г-кат/ч. После проведения испытаний пористость образца снижается до 0,55 см3/г за счет заполнения пор в исходном адсорбенте асфальтенами и соединениями металлов (Фиг. 1).
Пример 2 (сравнительный).
Приготовление адсорбента осуществляют аналогично примеру 1, однако при получении носителя не используют полистирольный темплат. Полученный адсорбент представляет собой цилиндрические гранулы диаметром 2,5 мм. Общий объем пор катализатора составляет 0,34 см3/г. Адсорбент в количестве 10 г загружают в реактор Берти и испытывают в реакции деметаллизации и деасфальтизации тяжелой Татарской нефти аналогично примеру 1. После проведения испытаний пористость образца снижается до 0,14 см3/г за счет заполнения пор в исходном адсорбенте асфальтенами и соединениями металлов (Фиг. 1).
Таким образом, в случае использования адсорбента, приготовленного в соответствии с примером 1 и имеющего макропористую структуру с порами от 50 нм до 500 нм, достигается более глубокое удаление асфальтенов и металлов.
Пример 3.
Гранулы макропористого адсорбента, приготовленные аналогично примеру 1, в количестве 15 г загружают в реактор Берти и испытывают в реакции деметаллизации и деасфальтизации тяжелого мазута марки М-100 при температуре 600°С, давлении водорода - 7 МПа. Скорость подачи сырья составляет 2 г-мазута/г-адсорбента/ч, соотношение водород/мазут составляет 9000 об./1 об.
Зависимость степени удаления соединений металлов и асфальтенов от времени представлена на Фиг. 2.
Пример 4 (сравнительный).
Гранулы макропористого адсорбента, приготовленные аналогично примеру 2, в количестве 15 г загружают в реактор Берти и испытывают в реакции деметаллизации и деасфальтизации тяжелого мазута марки М-100 при температуре 600°С, давлении водорода - 7 МПа. Скорость подачи сырья составляет 2 г-мазута/г-адсорбента/ч, соотношение водород/мазут составляет 9000 об./1 об. Зависимость степени удаления соединений металлов и асфальтенов от времени представлена на Фиг. 3.
Таким образом, в случае использования адсорбента, приготовленного в соответствии с примером 1 и имеющего макропористую структуру с порами от 50 нм до 500 нм, наблюдается более высокая степень очистки нефтяного сырья от асфальтенов и металлов, чем в случае с традиционным сорбентом, приготовленным по примеру 2.

Claims (2)

1. Способ высокотемпературной деасфальтизации и деметаллизации тяжелого нефтяного сырья, в котором тяжелую нефть или мазут пропускают через неподвижный слой адсорбента при температуре 300-600°С, скорости подачи сырья через адсорбент 0,5-2 г-сырья/г-адсорбента/ч, в присутствии водорода, подаваемого под давлением 4-7 МПа, отличающийся тем, что используют адсорбент, состоящий из гамма-оксида алюминия, полученного с помощью темплатного синтеза, содержащего макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 500 нм составляет не менее 30% в общем удельном объеме пор.
2. Способ по п. 1, отличающийся тем, что адсорбент имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,5 см3/г.
RU2015152594A 2015-12-09 2015-12-09 Способ деасфальтизации и деметаллизации тяжелого нефтяного сырья RU2610525C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015152594A RU2610525C1 (ru) 2015-12-09 2015-12-09 Способ деасфальтизации и деметаллизации тяжелого нефтяного сырья

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015152594A RU2610525C1 (ru) 2015-12-09 2015-12-09 Способ деасфальтизации и деметаллизации тяжелого нефтяного сырья

Publications (1)

Publication Number Publication Date
RU2610525C1 true RU2610525C1 (ru) 2017-02-13

Family

ID=58458608

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015152594A RU2610525C1 (ru) 2015-12-09 2015-12-09 Способ деасфальтизации и деметаллизации тяжелого нефтяного сырья

Country Status (1)

Country Link
RU (1) RU2610525C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2698191C1 (ru) * 2018-11-27 2019-08-23 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН) Катализатор защитного слоя для переработки тяжелого нефтяного сырья
RU2699354C1 (ru) * 2018-11-27 2019-09-05 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН) Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления
RU2704123C1 (ru) * 2019-06-24 2019-10-24 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Способ переработки тяжелого нефтяного сырья на защитном слое бифункционального катализатора
RU2704122C1 (ru) * 2019-06-24 2019-10-24 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Способ переработки тяжелого нефтяного сырья на катализаторе защитного слоя

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328127A (en) * 1980-09-16 1982-05-04 Mobil Oil Corporation Residua demetalation/desulfurization catalyst
SU1800836A1 (ru) * 1990-05-31 1996-04-27 Всесоюзный научно-исследовательский институт по переработке нефти Способ облагораживания нефтяного остаточного сырья
RU2415174C1 (ru) * 2009-10-15 2011-03-27 Министерство Промышленности И Торговли Российской Федерации Способ адсорбционно-контактной очистки мазута
WO2012170034A1 (en) * 2011-06-10 2012-12-13 Bechtel Hydrocarbon Technology Solutions, Inc. Systems and methods for removing elemental sulfur from a hydrocarbon fluid
RU2527573C1 (ru) * 2013-06-05 2014-09-10 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Катализатор для переработки тяжелого нефтяного сырья и способ его приготовления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328127A (en) * 1980-09-16 1982-05-04 Mobil Oil Corporation Residua demetalation/desulfurization catalyst
SU1800836A1 (ru) * 1990-05-31 1996-04-27 Всесоюзный научно-исследовательский институт по переработке нефти Способ облагораживания нефтяного остаточного сырья
RU2415174C1 (ru) * 2009-10-15 2011-03-27 Министерство Промышленности И Торговли Российской Федерации Способ адсорбционно-контактной очистки мазута
WO2012170034A1 (en) * 2011-06-10 2012-12-13 Bechtel Hydrocarbon Technology Solutions, Inc. Systems and methods for removing elemental sulfur from a hydrocarbon fluid
RU2527573C1 (ru) * 2013-06-05 2014-09-10 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Катализатор для переработки тяжелого нефтяного сырья и способ его приготовления

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2698191C1 (ru) * 2018-11-27 2019-08-23 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН) Катализатор защитного слоя для переработки тяжелого нефтяного сырья
RU2699354C1 (ru) * 2018-11-27 2019-09-05 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН) Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления
WO2020111975A3 (ru) * 2018-11-27 2020-10-15 Акционерное Общество "Газпромнефть - Московский Нпз" (Ао "Газпромнефть - Мнпз") Катализатор защитного слоя для переработки нефтяного сырья
RU2704123C1 (ru) * 2019-06-24 2019-10-24 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Способ переработки тяжелого нефтяного сырья на защитном слое бифункционального катализатора
RU2704122C1 (ru) * 2019-06-24 2019-10-24 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Способ переработки тяжелого нефтяного сырья на катализаторе защитного слоя

Similar Documents

Publication Publication Date Title
US4775460A (en) Hydrocracking process with feed pretreatment
CA2488265C (en) Hydrocracking catalyst and method of hydrocracking heavy oil
JP4875907B2 (ja) 制御されたマクロ孔含有量を有するシリカ−アルミナをベースとする吸着剤上での、再循環させられる部分からの多芳香族化合物の吸着を包含する、再循環を伴う水素化分解法
KR102404295B1 (ko) 중유를 개량시키기 위한 시스템 및 방법
RU2610525C1 (ru) Способ деасфальтизации и деметаллизации тяжелого нефтяного сырья
JP4875908B2 (ja) 制限されたマクロ孔含有量を有するシリカ−アルミナをベースとする吸着剤を用いる、再循環させられたフラクションからの多芳香族化合物の吸着を包含する、再循環を伴う水素化分解法
KR102474323B1 (ko) 중유를 가공처리하기 위한 시스템 및 방법
KR20190103306A (ko) 방향족 및 올레핀계 석유화학물질로의 원유의 전환
JPS5850636B2 (ja) 重質炭化水素油の脱硫処理方法
CN116113681A (zh) 利用循环油加氢处理生产石化产品的方法
WO2017208497A1 (ja) 炭化水素液体燃料の製造方法
CN108102708B (zh) 一种煤焦油生产针状焦的组合工艺方法
JP5091401B2 (ja) 水素の製造方法、改質ガソリンの製造方法及び芳香族炭化水素の製造方法
JP5491912B2 (ja) 灯軽油基材とアルキルベンゼン類の製造方法
Marafi et al. Preparation of heavy oil hydrotreating catalyst from spent residue hydroprocessing catalysts
JP5498720B2 (ja) 1環芳香族炭化水素の製造方法
US9550167B2 (en) Method for preparing hollow carbon structure using cracking reaction of heavy hydrocarbon fraction
US20210170376A1 (en) Hierarchical zeolite y and nano-sized zeolite beta composite
JP2011116872A (ja) 1環芳香族炭化水素の製造方法
JP6346837B2 (ja) 炭化水素油の脱硫方法、脱硫油の製造方法及び触媒の活性低下を抑制する方法
CN114437814B (zh) 催化裂化塔底油的加氢方法及加氢净化***和生产低硫船用燃料油的方法
JP5298329B2 (ja) 石油系炭化水素の処理方法
CN114713239A (zh) 一种用于油品加氢的催化剂级配方法
KR20230115295A (ko) 중간 다공성-거대 다공성 지지체 상에서 촉매의 존재하에서 가솔린의 선택적 수소화 방법
ÇAKMAN et al. Synthesis and Characterization of CMK-3 and Activated Carbon Based Catalysts