RU2583346C2 - Обнаружение скрытого металлического или магнитного объекта - Google Patents

Обнаружение скрытого металлического или магнитного объекта Download PDF

Info

Publication number
RU2583346C2
RU2583346C2 RU2012152545/28A RU2012152545A RU2583346C2 RU 2583346 C2 RU2583346 C2 RU 2583346C2 RU 2012152545/28 A RU2012152545/28 A RU 2012152545/28A RU 2012152545 A RU2012152545 A RU 2012152545A RU 2583346 C2 RU2583346 C2 RU 2583346C2
Authority
RU
Russia
Prior art keywords
receiving coil
coils
transmitting coils
measuring device
metal object
Prior art date
Application number
RU2012152545/28A
Other languages
English (en)
Other versions
RU2012152545A (ru
Inventor
ЦИБОЛЬТ Тобиас
АЛЬБРЕХТ Андрей
Original Assignee
Роберт Бош Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Роберт Бош Гмбх filed Critical Роберт Бош Гмбх
Publication of RU2012152545A publication Critical patent/RU2012152545A/ru
Application granted granted Critical
Publication of RU2583346C2 publication Critical patent/RU2583346C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • G01V3/104Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0029Treating the measured signals, e.g. removing offset or noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • G01V3/104Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils
    • G01V3/105Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils forming directly coupled primary and secondary coils or loops
    • G01V3/107Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils forming directly coupled primary and secondary coils or loops using compensating coil or loop arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

Изобретение относится к обнаружению скрытого металлического объекта. Сущность: устройство содержит две передающие катушки для создания наложенных магнитных полей, приемную катушку, находящуюся в зоне действия обоих магнитных полей, и управляющее устройство для управления передающими катушками таким образом, чтобы минимизировать по модулю наводимое в приемной катушке напряжение, синхронное с тактом подачи чередующихся по фазе переменных напряжений. Микрокомпьютер, содержащийся в устройстве, выполнен с возможностью обнаружения скрытого металлического объекта в случае, если соотношение чередующихся по фазе переменных напряжений не соответствует соотношению расстояний от приемной катушки до передающих катушек. Технический результат: сокращение затрат при высокой чувствительности устройства. 2 н. и 7 з.п. ф-лы, 4 ил.

Description

При проведении определенных видов работ в отношении заготовок или обрабатываемых изделий существует опасность повреждения в результате обработки скрытого в заготовке или изделии объекте. К примеру, при сверлении в стене могут быть повреждены коммуникации, такие как водопровод, скрытая проводка или газовый трубопровод, проходящие внутри стены. В противном случае, может быть желательно осуществлять обработку именно так, чтобы попаданием в скрытый в заготовке предмет целенаправленно воздействовать на него, например, если отверстие из вышеупомянутого примера должно проходить через железную арматуру или несущую конструкцию внутри стены.
В уровне техники для обнаружения такого скрытого предмета известны металлодетекторы на основе катушек. Такие детекторы создают в области измерения магнитное поле. Если в области измерения находится металлический предмет, то этот предмет распознается по его воздействию на созданное магнитное поле. Зачастую для определения созданного магнитного поля используются по меньшей мере две приемные катушки, ориентированные и соединенные друг с другом таким образом, что в присутствии скрытого металлического объекта в области измерения измерительный сигнал, совокупно выдаваемый двумя приемными катушками, сходится к нулю (дифференциальное измерение). В варианте для создания магнитного поля используется несколько передающих катушек, управление которыми организовано так, что независимо от присутствия скрытого металлического объекта в области измерения измеренный в обеих приемных катушках сигнал сходится к нулю (измерение с компенсацией поля).
В документе DE 102007053881 А1 описан способ измерения для определения положения, соответственно, угла катушки по отношению к двум другим катушкам. Для этого посредством двух расположенных под углом друг относительно друга передающих катушек генерируют переменное магнитное поле. Приемная катушка оказывается в зоне действия переменного магнитного поля и управление передающими катушками изменяется таким образом, что в приемной катушке наводится напряжение, одинаковое от каждой из передающих катушек. Соотношение значений силы тока, выдаваемого передающими катушками, служит в качестве мерила для определения положения и/или угла приемной катушки по отношению к передающим катушкам.
В документе DE 102004047189 А1 описан металлоискатель, содержащий печатные катушки.
Задача настоящего изобретения состоит в создании простого и точного детектора для обнаружения скрытого металлического объекта. Другая задача настоящего изобретения состоит в разработке способа определения скрытого металлического объекта.
Указанные задачи решаются измерительным устройством, охарактеризованным в пункте 1 формулы изобретения, и способом, охарактеризованным в пункте 9 формулы изобретения. В зависимых пунктах формулы изобретения приведены предпочтительные варианты осуществления изобретения.
Предлагаемое в изобретении измерительное устройство для обнаружения скрытого металлического объекта содержит две передающие катушки для создания наложенных магнитных полей, приемную катушку, находящуюся в зоне действия обоих магнитных полей, и управляющее устройство для питания передающих катушек переменными напряжениями, сдвинутыми по фазе относительно друг друга на 180° таким образом, чтобы минимизировать по модулю (величине) наводимое в приемной катушке напряжение, синхронное с тактом подачи переменных напряжений. При отсутствии скрытого металлического объекта в зоне действия магнитных полей переменные напряжения находятся в заранее заданном соотношении, а измерительное устройство содержит микрокомпьютер, выполненный с возможностью обнаружения скрытого металлического объекта, если соотношение переменных напряжений отличается от заранее заданного соотношения.
Если система испытывает возмущение со стороны скрытого металлического объекта, то в приемной катушке наводится переменное напряжение, синхронное с тактом подачи переменных напряжений. Система регулирования выполнена таким образом, чтобы минимизировать по модулю эти переменные составляющие напряжения (т.е. сделать их равными нулю). Постоянные составляющие напряжения или также несинхронные переменные составляющие напряжения вследствие постороннего ввода остаются неучтенными. Это дает преимущество, заключающееся в возможности снижения уязвимости измерительного устройства перед помехами.
Преимуществом предлагаемого в изобретении решения является то, что с использованием только трех катушек можно проводить как дифференциальное измерение, так и измерение с компенсацией поля. Благодаря этому при высокой чувствительности измерительного устройства могут быть сокращены производственные затраты, что может быть связано с экономическими выгодами.
Предпочтительно, чтобы магнитные поля передающих катушек периодически изменялись по модулю и фазе. Переменные напряжения дают возможность синхронной демодуляции, в результате чего могут очень эффективно подавляться являющиеся помехами сигналы с частотами, неравными частоте модуляции. Помимо этого переменными напряжениями могут создаваться переменные магнитные поля для индуцирования вихревых токов в немагнитных материалах, таких как медь, благодаря которым их затем можно детектировать.
Приемная катушка может быть расположена симметрично между передающими катушками. Благодаря этому в зависимости от направления приближения скрытого металлического объекта знак измеренного значения может отличаться и на основе знака может быть принято решение о том, реагировать на этот объект или нет. Таким образом, можно избежать ошибочных измерений.
В зоне действия магнитных полей передающих катушек может быть расположена по меньшей мере одна дополнительная приемная катушка, причем управляющее устройство выполнено с возможностью питания передающих катушек переменными напряжениями на основании наведенного в приемной катушке и в дополнительной приемной катушке напряжения.
При этом измерительное устройство может быть выполнено соответственно конструкции и расположению передающих и приемных катушек, с возможностью определения по меньшей мере одной из следующих характеристик: направления, удаленности (глубины) и размера скрытого металлического объекта, посредством наведенных в приемных катушках напряжений. Приемная катушка и дополнительная приемная катушка могут занимать различные положения и/или, из-за их формы, протяженности или конструкции, могут иметь отличающиеся значения чувствительности. Это позволяет, при соответствующих конструкции и расположении приемных и передающих катушек, определять направление, удаленность от измерительного устройства и/или размер скрытого объекта путем проведения сравнительных измерений с помощью нескольких приемных катушек. В частности, используя две комбинации передающих катушек с первой приемной катушкой, с одной стороны, и второй приемной катушкой, с другой стороны, можно создавать магнитные поля, силовые линии которых будут покрывать различные расстояния. С помощью каждой из комбинаций катушек можно обнаруживать металлические объекты в соответствующих положениях по глубине, если отношение переменных напряжений не соответствует отношению расстояний от соответствующей приемной катушки до передающих катушек, т.е. если соотношение переменных напряжений отличается от заранее заданного соотношения. По разности глубин можно определять размер обнаруженного объекта.
Хотя можно использовать катушки любых типов, предпочтительно, чтобы по меньшей мере одна из катушек представляла собой катушку с воздушным сердечником (также известную как катушка без сердечника). Это дает возможность сконструировать измерительное устройство таким образом, что оно только очень слабо реагирует на температурные влияния или влияния, связанные со старением, в результате чего можно осуществлять калибровку однократно, в рамках процесса изготовления измерительного устройства.
Предпочтительно, чтобы по меньшей мере одна из катушек была выполнена в виде печатной схемы ("печатной катушки") на плате. Это дает возможность реализации точного изготовления одной или более печатных катушек с небольшими производственными затратами. При этом управляющее устройство может быть смонтировано на той же самой плате. За счет сокращения издержек, связанных с электрическим монтажом и монтажом на плате схемных элементов, может быть получена дополнительная экономия производственных издержек.
Также можно заменить приемную катушку датчиком магнитного поля. Например, можно применить магниторезистивный датчик магнитного поля, такой как датчик Холла.
Предлагаемый в соответствии со вторым аспектом изобретения способ обнаружения скрытого металлического объекта включает создание наложенных магнитных полей посредством двух передающих катушек, определение напряжения, наведенного в приемной катушке, находящейся в зоне действия обоих магнитных полей, питание передающих катушек переменными напряжениями, сдвинутыми по фазе относительно друг друга на 180°, таким образом, чтобы минимизировать по модулю (величине) наводимое в приемной катушке напряжение, синхронное с тактом подачи переменных напряжений, установление отсутствия скрытого металлического объекта в случае, если в зоне действия магнитных полей переменные напряжения находятся в заранее заданном соотношении, обнаружение скрытого металлического объекта в случае, если соотношение переменных напряжений отличается от указанного заранее заданного соотношения.
Изобретение также может быть реализовано в машиночитаемом носителе данных с записанным в нем программным кодом, предназначенным для осуществления охарактеризованного выше способа при выполнении программного кода в устройстве обработки данных.
Далее изобретение более подробно описано со ссылками на прилагаемые чертежи, на которых показано:
на фиг. 1 - блок-схема предлагаемого в изобретении измерительного устройства,
на фиг. 2 - расположение катушек и скрытого металлического объекта для измерительного устройства, показанного на фиг. 1,
на фиг. 3 - расположение нескольких приемных катушек для измерительного устройства, показанного на фиг. 1, и
на фиг. 4 - блок-схема последовательности выполнения операций предлагаемого в изобретении способа, осуществляемого с помощью измерительного устройства, показанного на фиг. 1.
На фиг. 1 показана блок-схема измерительного устройства 100. Измерительное устройство 100 представляет собой часть металлодетектора 105 для обнаружения скрытого металлического объекта, например, из железосодержащего материала.
Тактовый генератор 110 (генератор тактовых импульсов) имеет два выхода, на которых он формирует периодические сдвинутые по фазе переменные сигналы, предпочтительно со сдвигом по фазе на 180°. Переменные сигналы могут включать в себя, в частности, сигналы прямоугольной, треугольной или синусоидальной формы. Соответствующие выходы тактового генератора соединены с первым управляемым усилителем 115 и вторым управляемым усилителем 120. Каждый из управляемых усилителей 115, 120 имеет управляющий вход, посредством которого он принимает сигнал, регулирующий коэффициент усиления управляемого усилителя 115, 120. Выход первого управляемого усилителя 115 соединен с первой передающей катушкой 125, а выход второго управляемого усилителя 120 соединен со второй передающей катушкой 130. Остальные концы каждой из передающих катушек 125 и 130 электрически соединены с "массой".
Как обозначено точками около передающих катушек 125 и 130, передающие катушки 125 и 130 ориентированы в одном направлении. При питании противоположными по отношению к "массе" напряжениями передающие катушки 125 и 130 формируют магнитные поля с противоположными ориентациями. При отсутствии объекта и при симметричном расположении приемной катушки 135 между передающими катушками 125 и 130 равен нулю магнитный поток, пронизывающий приемную катушку 135, а также равно нулю наведенное в приемной катушке 135 напряжение. Тот же самый эффект может быть достигнут также за счет соответствующего переориентирования передающих катушек 125, 130 и адаптации полярностей выдаваемых управляемыми усилителями 115, 120 напряжений.
Принцип измерения может быть не менее предпочтительным образом преобразован, если передающие катушки питаются напряжениями, имеющими одинаковую полярность по отношению к "массе". В то время как при питании напряжениями противоположной полярности при симметричном расположении приемной катушки 135 между передающими катушками 125 и 130 в случае отсутствия скрытого объекта прикладываемые к передающим катушкам 125, 130 напряжения в течение полупериода имеют практически одну и ту же амплитуду, при питании напряжениями одинаковой полярности это не требуется. Более того, также возможно, что при питании напряжениями одинаковой полярности амплитуды прикладываемых к передающим катушкам 125, 130 напряжений в течение полупериода отличаются уже в случае отсутствия объекта и при симметричном расположении приемной катушки 135 между передающими катушками 125, 130. Тогда в следующем за этим полупериоде эти амплитуды прикладываются к каждой из других передающих катушек 130, 125. В присутствии же скрытого металлического объекта имеет место отличие амплитуд на каждой другой из пары передающих катушек 125, 130 также в следующих друг за другом полупериодах. В этом случае передающие катушки 125, 130 должны ориентироваться в одном направлении, так что обеими передающими катушками 125, 130 формируются магнитные поля одинаковой направленности. Тем самым магнитный поток, пронизывающий приемную катушку 135, постоянен во времени и наведенное в приемной катушке 135 напряжение равно нулю.
Дальнейшее описание относится к варианту осуществления с противоположной полярностью питающих напряжений и ориентацией передающих катушек 125, 130 в одном направлении.
Приемная катушка 135 одним своим выводом соединена с "массой", а второй ее вывод ведет к входному усилителю 140. В другом варианте осуществления приемную катушку 135 можно заменить датчиком магнитного поля, например датчиком Холла. Приемная катушка 135 своими концами также может быть соединена с обоими входами дифференциального усилителя, при этом выход дифференциального усилителя соединен с входным усилителем 140. Входной усилитель 140 показан в виде имеющего постоянный коэффициент усиления, однако в других вариантах осуществления также возможно управление коэффициентом усиления входного усилителя 140. Это позволяет оказывать воздействие, например, на пространственное разрешение и/или чувствительность измерительного устройства 100 и обеспечивает возможность их регулирования, например, в зависимости от измеряемой величины.
Выход входного усилителя 140 соединен с синхронным детектором 145. Кроме того, синхронный детектор 145 соединен с тактовым генератором 110 и принимает от него тактовый сигнал, указывающий на фазовый угол формируемых на выходах тактового генератора 110 сигналов. В простом варианте осуществления изобретения, в котором формируемые тактовым генератором 110 сигналы представляют собой симметричные прямоугольные сигналы, в качестве тактового сигнала может быть использован один из выходных сигналов. Синхронный детектор 145 осуществляет коммутацию путем переключения принимаемого входным усилителем 140 измерительного сигнала, по существу на основании формируемого тактовым генератором 110 тактового сигнала, попеременно на свой верхний и нижний выход.
Оба выхода синхронного детектора 145 соединены с интегратором (интегрирующим компаратором) 150, который здесь проиллюстрирован в виде операционного усилителя, включенного в схему с двумя резисторами и двумя конденсаторами. Также возможны другие варианты осуществления изобретения, например, в виде активного фильтра нижних частот. Также возможно цифровое исполнение после синхронного детектора 145, при котором сигнал на выходах синхронного детектора 145 в один или несколько моментов времени в пределах полупериода подвергается аналого-цифровому преобразованию, а затем сравнивается с соответствующим значением из ближайшего полупериода. Разница подвергается интегрированию и, например, снова переводится в аналоговый сигнал и используется для управления усилителями. В то время как синхронный детектор 145 подает принятый от входного усилителя 140 измерительный сигнал на свой нижний выход, интегратор 150 интегрирует этот сигнал по времени и формирует результат, подавая его на свой выход. В то время как синхронный детектор 145 подает измерительный сигнал, принятый от входного усилителя 140, на свой верхний выход, он с инвертированием интегрируется по времени интегратором 150 и результат выдается на выход интегратора 150. Напряжение на выходе интегратора 150 представляет собой интеграл разности значений на выходах синхронного детектора, прошедших обработку фильтром нижних частот.
Синхронный детектор учитывает только наведенные напряжения, синхронные с переменными напряжениями управляемых усилителей 115, 120. Постоянные составляющие или также несинхронные переменные составляющие наведенных напряжений остаются неучтенными, и поэтому измерительное устройство устойчиво к помехам такого типа. Если в приемной катушке 135 магнитным полем первой передающей катушки 125 наводится точно такое же напряжение, как и магнитным полем второй передающей катушки 130, то выдаваемые на выходах синхронного детектора 145 сигналы, усредненные по времени, равны, и на выходе интегратора 150 формируется сигнал, который сходится к нулю ("массе"). Если же имеет место перевес влияние магнитного поля одной из передающих катушек 125, 130, то выдаваемые на выходах синхронного детектора 145 сигналы в среднем теперь уже не равны, и на выходе интегратора 150 формируется положительный или отрицательный сигнал.
Наведенное в приемной катушке 135 напряжение испытывает воздействие вследствие неравных расстояний от приемной катушки 135 до передающих катушек 125, 130. Соответствующее воздействие возникает в результате неравенства амплитуд выдаваемых передающими катушками 125, 130 напряжений. Поскольку положение приемной катушки 135 неизменно по отношению к передающим катушкам 125, 130, заранее заданное соотношение между амплитудами выдаваемых управляемыми усилителями 115, 120 напряжений соответствует случаю отсутствия объекта. Если соотношение напряжений отличается от заранее заданного соотношения, то это дает возможность сделать заключение о наличии скрытого объекта в зоне наложенных магнитных полей передающих катушек 125, 130.
Формируемый интегратором 150 сигнал через вывод 155 подается на дальнейшую обработку. Кроме того, имеется микрокомпьютер 165, соединенный с управляющими входами управляемых усилителей 115, 120. Микрокомпьютер 165 выполняет сравнение поданного к нему сигнала с пороговым значением и выдает на выход 170 сигнал, указывающий на скрытый металлический объект. Пользователю сигнал может выводиться в виде оптического или звукового сигнала.
Помимо этого микрокомпьютер 165 может осуществлять еще и прочую обработку сигналов, снимаемых с управляющих входов управляемых усилителей 115, 120, и, в зависимости от них, регулировать параметры измерительного устройства 100. К примеру, может варьироваться частота или форма сигнала переменных напряжений на выходах тактового генератора 110 или может изменяться чувствительность приемного усилителя 140. В другом варианте осуществления посредством микрокомпьютера 165 реализованы другие показанные элементы измерительного устройства 100, к примеру, тактовый генератор 110, синхронный детектор 145 или интегратор 150.
Тот же самый сигнал интегратора 150 также используется для регулирования коэффициентов усиления управляемых усилителей 115 и 120, при этом второй управляемый усилитель 120 соединен с выходом интегратора 150 непосредственно, а первый управляемый усилитель 115 соединен с выходом интегратора 150 посредством инвертора 160. Инвертор 160 реализует операцию инверсии в отношении подаваемого на него сигнала таким образом, что в зависимости от выходного сигнала интегратора 150 коэффициент усиления первого управляемого усилителя 115 увеличивается в той мере, в какой понижается коэффициент усиления второго управляемого усилителя 120, соответственно, происходит инвертирование. Также возможно, что имеет место регулирование только коэффициента усиления одного из двух управляемых усилителей, в то время как коэффициент усиления другого управляемого усилителя удерживается на фиксированном значении.
На фиг. 2 показано расположение 200 передающих катушек 125, 130 и приемной катушки 135 по отношению к скрытому металлическому объекту 210 для пояснения принципа измерения, на котором основано действие измерительного устройства 100, показанного на фиг. 1. Передающие катушки 125 и 130 ориентированы друг по отношению к другу таким образом, что направления их главных магнитных полей находятся на одной линии, при этом между передающими катушками 125, 130 имеется некоторый интервал. В случае передающих катушек 125, 130, диаметр которых существенно превышает их длину, например, если передающие катушки 125, 130 выполнены в виде печатных катушек, передающие катушки 125, 130 могут находиться в параллельных друг другу плоскостях, в примере с печатными катушками, например, на противолежащих поверхностях платы.
Как описано выше со ссылками на фиг. 1, передающие катушки 125, 130 расположены и соединены друг с другом таким образом, что они в зависимости от формируемых тактовым генератором 110 сигналов создают переменные магнитные поля, причем в каждый момент времени магнитное поле первой передающей катушки 125 направлено противоположно магнитному полю второй передающей катушки 130. На участке между передающими катушками 125 и 130 наложенные магнитные поля взаимно компенсируются. На этом участке расположена приемная катушка 135, причем ось, вокруг которой намотана приемная катушка 135, предпочтительно перпендикулярна поверхности этого участка. Приемная катушка 135 может быть расположена на одной линии с передающими катушками 125 и 130 или со сдвигом в сторону по отношению к ним. Если передающие катушки 125 и 130 находятся на одной линии друг с другом, то участок представляет собой плоскость.
Скрытый металлический объект 210 находится в зоне магнитных полей передающих катушек 125 и 130, при этом расстояние от скрытого металлического объекта 210 до первой передающей катушки 125 меньше, чем до второй передающей катушки 130. Следовательно, магнитное поле первой передающей катушки 125 в большей степени испытывает воздействие со стороны скрытого металлического объекта 210, чем магнитное поле второй передающей катушки 130. Соответственно, приемная катушка 135 подвергается действию неравносильных магнитных полей передающих катушек 125, 130, так что в области приемной катушки 135 существует результирующее магнитное поле и в приемной катушке 135 наводится положительное напряжение. Если скрытый металлический объект 210 находится ближе ко второй передающей катушке 130, чем к первой передающей катушке 125, то, соответственно, разность напряжений отрицательная.
Величина наведенного в приемной катушке 135 напряжения зависит от несимметричности создаваемых передающими катушками 125, 130 магнитных полей, действующих на приемную катушку 135. Поэтому на выходе интегратора 150 устанавливается сигнал, зависящий от несимметричности магнитных полей.
В зависимости от выходного напряжения интегратора 150 коэффициенты усиления управляемых усилителей 115, 120 усиливаются противоположным образом, так что передающие катушки 125, 130 питаются напряжениями разной величины. Тогда создаваемые передающими катушками 125, 130 магнитные поля в области приемной катушки 135 снова имеют одинаковое значение и отличные знаки, так что наведенное в приемной катушке 135 напряжение снова сходится к нулю. Присутствие скрытого металлического объекта 210 в магнитных полях может быть зарегистрировано вследствие отклонения от нуля сигнала регулирования, прикладываемого к выводу 155. В варианте осуществления металлические скрытые объекты регистрируются только на основании заранее заданного знака сигнала регулирования. Так, объекты на стороне передающих катушек 125, 130 игнорируются, ибо наличие их может быть вызвано, например, пользователем измерительного устройства.
На фиг. 3 показано расположение 300 нескольких приемных катушек для показанного на фиг. 1 измерительного устройства 100. Вдобавок к приемной катушке 135 обеспечена дополнительная приемная катушка 310. Один вывод этой дополнительной приемной катушки 310 соединен с "массой", а другой - с переключателем 320. Переключатель 320 обеспечивает избирательное соединение либо второго вывода дополнительной приемной катушки 310 с входом входного усилителя 140, либо второго вывода приемной катушки 135 с входом входного усилителя 140.
Дополнительная приемная катушка 310 имеет большее число витков, чем приемная катушка 135, и, таким образом, при сопоставимом магнитном поле выдает больший выходной сигнал, чем приемная катушка 135. Приемные катушки 135 и 310 могут быть расположены, например, рядом друг с другом или концентрично, например, в виде печатных катушек.
В другом варианте осуществления приемные катушки 135 и 310 выполнены одинаковыми. Благодаря наличию соответствующих многих дополнительных приемных катушек 310 в соединении с переключателем 320 с подходящим количеством положений переключения, в зависимости от расположения приемных катушек 135, 310 может быть определено направление, удаленность и/или размер скрытого металлического объекта 210, например, методом триангуляции на основании расположения приемных катушек 135, 310.
В варианте осуществления в описанной выше со ссылками на фиг. 2 плоскости может быть расположено множество приемных катушек 135, 310 одинакового типа. Те приемные катушки 135, 310, которые находятся ближе всего к скрытому металлическому объекту 210, требуют максимальной несимметричности создаваемых передающими катушками 125, 130 магнитных полей. Таким образом, путем переключения посредством переключателя 320 можно определить, какая из приемных катушек 135, 310 находится ближе всего к скрытому металлическому объекту 210, что позволяет можно сделать вывод о направлении скрытого металлического объекта 210 по отношению к передающим катушкам 125, 130.
На фиг. 4 показана блок-схема последовательности выполнения операций способа 400 обнаружения скрытого металлического объекта 210 с использованием измерительного устройства 100, показанного на фиг. 1 и 2. На шаге 410 посредством двух передающих катушек 125, 130 создают по-разному ориентированные переменные магнитные поля. На шаге 420 определяют напряжение, наведенное в приемной катушке 135. На шаге 430 в зависимости от определенного на шаге 420 наведенного напряжения регулируют коэффициенты усиления усилителей 115, 120 таким образом, что наводимое в приемной катушке 135 напряжение, синхронное с тактом подачи переменных напряжений, сводится к минимуму по модулю. На заключительном шаге 440 скрытый металлический объект 210 обнаруживают (регистрируют) на основании несимметричного питания передающих катушек 125, 130 напряжением, соответственно, неодинаковой модуляции параметров усилителей 115, 120. Для этого сравнивают, превышает ли прикладываемое к выводу 155 напряжение нулевое значение более чем на заранее заданную меру, причем сама эта мера может представлять любое значение.

Claims (9)

1. Измерительное устройство (100) для обнаружения скрытого металлического объекта (210), содержащее:
- две передающие катушки (125, 130) для создания наложенных магнитных полей,
- приемную катушку (135), находящуюся в зоне действия обоих магнитных полей,
- управляющее устройство (110-120, 145-160) для питания передающих катушек (125, 130) переменными напряжениями, сдвинутыми по фазе относительно друг друга на 180° таким образом, чтобы минимизировать по модулю наводимое в приемной катушке (135) напряжение, синхронное с тактом подачи переменных напряжений,
отличающееся тем, что при отсутствии скрытого металлического объекта (210) в зоне действия магнитных полей переменные напряжения находятся в заранее заданном соотношении, а измерительное устройство (100) содержит микрокомпьютер (165), выполненный с возможностью обнаружения скрытого металлического объекта (210), если соотношение переменных напряжений отличается от заранее заданного соотношения.
2. Измерительное устройство (100) по п. 1, отличающееся тем, что магнитные поля передающих катушек (125, 130) периодически изменяются по модулю и фазе.
3. Измерительное устройство (100) по п. 1, отличающееся тем, что приемная катушка (135) расположена симметрично между передающими катушками (125, 130).
4. Измерительное устройство (100) по п. 3, отличающееся наличием по меньшей мере одной дополнительной приемной катушки (310), расположенной в зоне действия магнитных полей передающих катушек (125, 130), причем управляющее устройство (110-120, 145-160) выполнено с возможностью питания передающих катушек (125, 130) переменными напряжениями на основании наведенного в приемной катушке (135) и в дополнительной приемной катушке (310) напряжения.
5. Измерительное устройство (100) по п. 4, отличающееся тем, что оно выполнено соответственно конструкции и расположению передающих и приемных катушек (125, 130, 135, 310), с возможностью определения по меньшей мере одной из следующих характеристик: направления, удаленности и размера скрытого металлического объекта (210), посредством наведенных в приемных катушках (135, 310) напряжений.
6. Измерительное устройство (100) по п. 1, отличающееся тем, что по меньшей мере одна из катушек (125, 130, 135) представляет собой катушку с воздушным сердечником.
7. Измерительное устройство (100) по одному из предыдущих пунктов, отличающееся тем, что по меньшей мере одна из катушек (125, 130, 135) выполнена в виде печатной схемы на плате.
8. Измерительное устройство (100) по п. 7, отличающееся тем, что управляющее устройство (110-120, 145-160) смонтировано на указанной плате.
9. Способ (400) обнаружения скрытого металлического объекта (210), включающий:
- создание (410) наложенных магнитных полей посредством двух передающих катушек (125, 130),
- определение (420) напряжения, наведенного в приемной катушке (135), находящейся в зоне действия обоих магнитных полей,
- питание (430) передающих катушек (125, 130) переменными напряжениями, сдвинутыми по фазе относительно друг друга на 180°, таким образом, чтобы минимизировать по модулю наводимое в приемной катушке (135) напряжение, синхронное с тактом подачи переменных напряжений,
- установление отсутствия скрытого металлического объекта (210) в случае, если в зоне действия магнитных полей переменные напряжения находятся в заранее заданном соотношении,
- обнаружение (440) скрытого металлического объекта (210) в случае, если соотношение переменных напряжений отличается от указанного заранее заданного соотношения.
RU2012152545/28A 2010-05-07 2011-04-15 Обнаружение скрытого металлического или магнитного объекта RU2583346C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102010028721.0 2010-05-07
DE102010028721 2010-05-07
DE102010031147.2 2010-07-09
DE201010031147 DE102010031147A1 (de) 2010-05-07 2010-07-09 Erfassung eines metallischen oder magnetischen Objekts
PCT/EP2011/056025 WO2011138151A2 (de) 2010-05-07 2011-04-15 Erfassung eines metallischen oder magnetischen objekts

Publications (2)

Publication Number Publication Date
RU2012152545A RU2012152545A (ru) 2014-06-20
RU2583346C2 true RU2583346C2 (ru) 2016-05-10

Family

ID=44626148

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012152545/28A RU2583346C2 (ru) 2010-05-07 2011-04-15 Обнаружение скрытого металлического или магнитного объекта

Country Status (6)

Country Link
US (2) US9110122B2 (ru)
EP (2) EP2567264B1 (ru)
CN (2) CN102870013B (ru)
DE (2) DE102010031147A1 (ru)
RU (1) RU2583346C2 (ru)
WO (2) WO2011138150A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671914C1 (ru) * 2017-08-07 2018-11-07 Тимур Марсович Алеев Способ обнаружения металлических объектов и устройство для его осуществления - металлообнаружитель
EP4198464A1 (de) * 2021-12-20 2023-06-21 Bizerba SE & Co. KG Förderbandwaage mit metalldetektor

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133501A1 (de) * 2009-05-18 2010-11-25 Sick Ag Sensor zum detektieren metallischer objekte
DE102010031147A1 (de) * 2010-05-07 2011-11-10 Robert Bosch Gmbh Erfassung eines metallischen oder magnetischen Objekts
DE102010043010C5 (de) * 2010-10-27 2017-10-05 Ifm Electronic Gmbh Induktiver Näherungsschalter
DE102010043078A1 (de) * 2010-10-28 2012-05-03 Robert Bosch Gmbh Sensorvorrichtung, insbesondere Metallsensor, mit feldkompensiertem Magnetfeldsensor
EP2589987A1 (de) 2011-11-07 2013-05-08 Robert Bosch GmbH Ortungsgerät
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
CN103175551B (zh) * 2013-03-05 2015-06-24 上海兰宝传感科技股份有限公司 衰减系数为1的电感式传感器
CN103115634B (zh) * 2013-03-05 2015-07-08 上海兰宝传感科技股份有限公司 多线圈材料辨别型电感式传感器
DE102013205910A1 (de) 2013-04-04 2014-10-09 Robert Bosch Gmbh Objektsuchgerät und Verfahren zum Orten eines metallischen und/oder magnetisierbaren Objekts
DE102013209808A1 (de) * 2013-05-27 2014-11-27 iCONTROLS k.s. Induktiver Sensor
CN103364451B (zh) * 2013-06-03 2016-01-20 华中科技大学 一种基于频率特性的设备内导体材料识别方法
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
DE102013221495A1 (de) * 2013-10-23 2015-04-23 Robert Bosch Gmbh Ortungsgerät
JP2015216828A (ja) 2014-04-24 2015-12-03 パナソニック株式会社 異物検出装置、無線送電装置、及び無線電力伝送システム
DE102015011634B4 (de) 2014-09-19 2023-01-12 Elmos Semiconductor Se Vorrichtung zum ISO26262 konformen Betrieb eines induktiven Drehwinkelsensors durch Erkennung asymmetrischer Fehlerzustände
US10209385B2 (en) 2014-10-03 2019-02-19 Cable Detection Limited Buried service detection
EP3002614B1 (en) 2014-10-03 2021-02-24 Cable Detection Limited Buried service detection
CN108351227A (zh) * 2015-10-29 2018-07-31 Tdk株式会社 磁检测装置以及移动体检测装置
CN106990442A (zh) * 2017-05-10 2017-07-28 上海海事大学 一种基于电磁感应的墙内电流便携手持检测装置
US10996289B2 (en) * 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
DE102018128469B4 (de) 2018-11-14 2020-11-12 Senis Ag Magnetfeldsensor mit geringem Rauschen und hoher Bandbreite
US20230014749A1 (en) * 2019-12-05 2023-01-19 Nokta Muhendislik A.S. Metal detector having transmitter with active magnetic compensation
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11759117B2 (en) 2020-08-23 2023-09-19 Albert A. Mikhail Surgical ferromagnetic object detection system and method
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3225166A1 (de) * 1982-07-06 1984-01-12 Gebhard Balluff Fabrik feinmechanischer Erzeugnisse GmbH & Co, 7303 Neuhausen Metalldetektor
SU1195803A1 (ru) * 1984-05-07 1986-05-23 Предприятие П/Я А-7904 Металлоискатель
RU26139U1 (ru) * 2002-04-29 2002-11-10 ЗАО "Научно-производственное предприятие "Локаторная техника" Металлообнаружитель
DE10122741A1 (de) * 2001-05-10 2002-11-14 Bosch Gmbh Robert Detektor zur Ortung metallischer Gegenstände
RU2300788C2 (ru) * 2005-08-08 2007-06-10 Машковцев Владимир Викторович Ручной металлодетектор
RU2360268C1 (ru) * 2008-02-29 2009-06-27 Виктор Олегович Арбузов Вихретоковое устройство

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3240478A1 (de) * 1982-11-02 1984-05-03 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Sensor zum erfassen von magnetfeldverzerrungen bzw. aus diesen ableitbaren messgroessen
US4994742A (en) * 1988-10-25 1991-02-19 Atlantic Richfield Company Hall effect device and magnetic coil circuits for magnetic field detection
DE4141264C1 (en) * 1991-12-14 1993-03-18 Werner Turck Gmbh & Co Kg, 5884 Halver, De Inductive proximity sensor - has oscillator in bridge circuit in branch of current source and continuously restores bridge balance
DE4423661A1 (de) * 1994-07-06 1996-01-11 Foerster Inst Dr Friedrich Suchspulenanordnung
SE506154C2 (sv) * 1995-10-13 1997-11-17 Asea Brown Boveri Förfarande och anordning för induktiv mätning av mått och läge hos objekt av elektriskt ledande material
DE19850749C1 (de) * 1998-11-04 2000-03-30 Eckart Hiss Sensor
US6172499B1 (en) * 1999-10-29 2001-01-09 Ascension Technology Corporation Eddy current error-reduced AC magnetic position measurement system
DE10011230C9 (de) * 2000-03-08 2006-05-04 Mesutronic Gerätebau GmbH Auswerteeinrichtung für ein Metallsuchgerät
DE60106215T2 (de) * 2000-03-22 2005-04-28 The Johns Hopkins University Elektromagnetisches sensorsystem zur objektunterscheidung sowie methode zum entdecken und identifizieren von metallobjekten
US6724191B1 (en) * 2000-05-09 2004-04-20 Admiralty Corporation Systems and methods useful for detecting presence and/or location of various materials
US6992482B2 (en) * 2000-11-08 2006-01-31 Jentek Sensors, Inc. Magnetic field sensor having a switchable drive current spatial distribution
US6720775B2 (en) * 2001-06-12 2004-04-13 General Electric Company Pulsed eddy current two-dimensional sensor array inspection probe and system
US6710599B2 (en) * 2002-04-02 2004-03-23 Geonics Limited Apparatus for measuring terrain conductivity
US6693419B2 (en) * 2002-05-28 2004-02-17 Allegro Microsystems, Inc. Proximity detector
JP3942580B2 (ja) 2003-11-10 2007-07-11 パシフィック電子株式会社 金属検出器および金属検出方法
DE102004047189A1 (de) 2004-09-29 2006-04-06 Robert Bosch Gmbh Sensor zur Ortung metallischer Objekte sowie Verfahren zur Auswertung von Messsignalen eines solchen Sensors
DE102004047190A1 (de) * 2004-09-29 2006-04-06 Robert Bosch Gmbh Detektor zur Ortung metallischer Objekte
CN100337127C (zh) * 2005-05-25 2007-09-12 淄博威特电气有限公司 在金属管线探测中直观指示管线位置的方法及其装置
WO2007002302A2 (en) * 2005-06-28 2007-01-04 Wyle Laboratories, Inc. Magnetoresistive sensor based eddy current crack finder
FR2888319B1 (fr) * 2005-07-07 2008-02-15 Nanotec Solution Soc Civ Ile Procede de mesure sans contact d'un deplacement relatif ou d'un positionnement relatif d'un premier objet par rapport a un second objet, par voie inductive.
US7701337B2 (en) * 2005-08-31 2010-04-20 Allan Westersten Hybrid-technology metal detector
DE102006053023B4 (de) * 2006-02-10 2018-10-04 Werner Turck Gmbh & Co. Kg Induktiver Näherungsschalter
DE102006032277B4 (de) * 2006-07-12 2017-06-01 Infineon Technologies Ag Magnetfeldsensorbauelement
DE102006053222B4 (de) * 2006-11-11 2009-01-29 Werner Turck Gmbh & Co. Kg Induktiver Näherungsschalter mit an einem Schirm befestigter Ergänzungsspule
DE102007062862A1 (de) * 2006-12-21 2008-07-10 Micro-Epsilon Messtechnik Gmbh & Co. Kg Verfahren und Sensoranordnung zum Bestimmen der Position und/oder Positionsänderung eines Messobjekts relativ zu einem Sensor
US20080297158A1 (en) * 2007-05-31 2008-12-04 Zircon Corporation Gradiometric Directional Metal Detector
US7733091B2 (en) * 2007-09-10 2010-06-08 University Of New Brunswick Probe, system and method suitable for unilateral nuclear magnetic resonance
DE102007053881B4 (de) 2007-11-09 2010-05-12 Gerd Reime Messverfahren und Messvorrichtung zur induktiven Winkel- und/oder Positionsbestimmung
CN101556253B (zh) 2008-04-09 2011-09-21 中国电子科技集团公司第五十研究所 一种隐藏金属物品的探测装置和方法
DE102009009061A1 (de) * 2009-01-21 2010-07-29 Gerd Reime Verfahren zum induktiven Erzeugen eines elektrischen Messsignals sowie zugehörige Sensorvorrichtung
DE102009029928A1 (de) * 2009-06-19 2010-12-23 Gerd Reime Metalldetektor
DE102009021804A1 (de) * 2009-05-18 2010-11-25 Gerd Reime Metalldetektor
CN101650442B (zh) 2009-09-15 2012-06-13 合肥安大电子检测技术有限公司 智能杂质金属检测***及其检测方法
DE102010031147A1 (de) * 2010-05-07 2011-11-10 Robert Bosch Gmbh Erfassung eines metallischen oder magnetischen Objekts
DE102010028722A1 (de) * 2010-05-07 2011-11-10 Robert Bosch Gmbh Erfassung eines metallischen oder magnetischen Objekts
EP2555019B1 (de) * 2011-08-05 2015-08-05 Sick Ag Induktiver Näherungssensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3225166A1 (de) * 1982-07-06 1984-01-12 Gebhard Balluff Fabrik feinmechanischer Erzeugnisse GmbH & Co, 7303 Neuhausen Metalldetektor
SU1195803A1 (ru) * 1984-05-07 1986-05-23 Предприятие П/Я А-7904 Металлоискатель
DE10122741A1 (de) * 2001-05-10 2002-11-14 Bosch Gmbh Robert Detektor zur Ortung metallischer Gegenstände
RU26139U1 (ru) * 2002-04-29 2002-11-10 ЗАО "Научно-производственное предприятие "Локаторная техника" Металлообнаружитель
RU2300788C2 (ru) * 2005-08-08 2007-06-10 Машковцев Владимир Викторович Ручной металлодетектор
RU2360268C1 (ru) * 2008-02-29 2009-06-27 Виктор Олегович Арбузов Вихретоковое устройство

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671914C1 (ru) * 2017-08-07 2018-11-07 Тимур Марсович Алеев Способ обнаружения металлических объектов и устройство для его осуществления - металлообнаружитель
EP4198464A1 (de) * 2021-12-20 2023-06-21 Bizerba SE & Co. KG Förderbandwaage mit metalldetektor

Also Published As

Publication number Publication date
EP2567264A2 (de) 2013-03-13
WO2011138151A3 (de) 2012-08-02
US20130207648A1 (en) 2013-08-15
CN102859393A (zh) 2013-01-02
RU2012152545A (ru) 2014-06-20
US9110122B2 (en) 2015-08-18
CN102870013A (zh) 2013-01-09
EP2567264B1 (de) 2014-06-11
WO2011138150A2 (de) 2011-11-10
EP2567265A2 (de) 2013-03-13
US20130193959A1 (en) 2013-08-01
DE102010031142A1 (de) 2011-11-10
WO2011138150A3 (de) 2012-07-19
WO2011138151A2 (de) 2011-11-10
EP2567265B1 (de) 2016-03-23
DE102010031147A1 (de) 2011-11-10
CN102870013B (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
RU2583346C2 (ru) Обнаружение скрытого металлического или магнитного объекта
CA2758046C (en) Metal detector
CA2759017C (en) Method for inductive generating an electrical measurement signal and related sensor device
US9304107B2 (en) Detection of a metal or magnetic object
US9983073B2 (en) Solid borne sound wave phase delay comparison
US20080197835A1 (en) Method and device for distance measurement by means of capacitive or inductive sensors
EP1037056A1 (en) Current sensor
US9304225B2 (en) Method and sensor unit for locating and/or detecting metallic or metal-containing objects and materials
US9638823B2 (en) Metal sensor
JP2005300534A (ja) 磁気誘電性流量計の作動方法
US20230014749A1 (en) Metal detector having transmitter with active magnetic compensation
US20130249539A1 (en) Detection of a Metal or Magnetic Object
JP2009186433A (ja) 渦電流式試料測定方法と、渦電流センサと、渦電流式試料測定システム
US9372217B2 (en) Cable detector
JP6145467B2 (ja) 位置検出装置
JP4389033B2 (ja) 位相監視型金属検出装置
CN108732403B (zh) 一种电流传感器及其磁通平衡电路
EP3255445B1 (en) Magneto-impedance (mi) magnetic sensor
JP2017520849A (ja) 硬貨検出システム
JP5209994B2 (ja) 渦電流センサ
JP3035724B2 (ja) 金属探知方法
JP2021051046A (ja) ゼロフラックス型磁気センサ及びそれを備える非接触電流計並びにゼロフラックス型磁気センサの制御回路及び制御方法
JP2003247855A (ja) 距離センサ及び距離検出方法
JPH0368891A (ja) 導電体の検知方法及びその装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180416