RU2570099C1 - Способ изготовления полупроводниковой гетероструктуры - Google Patents

Способ изготовления полупроводниковой гетероструктуры Download PDF

Info

Publication number
RU2570099C1
RU2570099C1 RU2014132363/28A RU2014132363A RU2570099C1 RU 2570099 C1 RU2570099 C1 RU 2570099C1 RU 2014132363/28 A RU2014132363/28 A RU 2014132363/28A RU 2014132363 A RU2014132363 A RU 2014132363A RU 2570099 C1 RU2570099 C1 RU 2570099C1
Authority
RU
Russia
Prior art keywords
layer
mmol
temperature
arsine
trimethylgallium
Prior art date
Application number
RU2014132363/28A
Other languages
English (en)
Inventor
Анатолий Николаевич Бажинов
Михаил Петрович Духновский
Александр Евгеньевич Обручников
Юрий Петрович Пёхов
Юрий Андреевич Яцюк
Original Assignee
Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" (АО "НПП "Исток" им. Шокина")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" (АО "НПП "Исток" им. Шокина") filed Critical Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" (АО "НПП "Исток" им. Шокина")
Priority to RU2014132363/28A priority Critical patent/RU2570099C1/ru
Application granted granted Critical
Publication of RU2570099C1 publication Critical patent/RU2570099C1/ru

Links

Abstract

Изобретение относится к электронной технике. Способ изготовления полупроводниковой гетероструктуры для мощного полевого транзистора СВЧ включает расположение предварительно обработанной монокристаллической полуизолирующей подложки арсенида галлия на подложкодержатель в реакторе газофазной эпитаксии, запуск газа-носителя - водорода, нагрев подложкодержателя до рабочей температуры, запуск ростовых технологических газов и последующее наращивание в едином технологическом цикле последовательности слоев заданной полупроводниковой гетероструктуры. Каждый из последовательности слоев заданной полупроводниковой гетероструктуры - буферный слой GaAs, донорный слой n+-GaAs, спейсерный слой GaAs, канальный слой InyGa1-yAs, спейсерный слой AlxGa1-xAs, донорный слой n+-AlxGa1-xAs, барьерный слой AlxGa1-xAs, стоп-слой InzGa1-zP, барьерный слой AlxGa1-xAs, градиентный слой n+-AlxGa1-xAs, контактный слой n+-GaAs - наращивают при определенных технологических режимах, причем содержание химических элементов x, y, z определяются неравенствами 0,20≤x≤0,24, 0,21≤y≤0,28, 0,48≤z≤0,51 соответственно. Изобретение обеспечивает снижение плотности дефектов и повышение выхода годных полупроводниковых гетероструктур, повышение выходной мощности и выхода годных полевого транзистора СВЧ. 5 табл.

Description

Изобретение относится к электронной технике СВЧ, в частности к способам изготовления полупроводниковых гетероструктур, предназначенных, прежде всего, для мощных полевых транзисторов СВЧ.
Как известно, полупроводниковые структуры арсенида галлия (GaAs) до недавнего времени являлись основными полупроводниковыми структурами для полевых транзисторов СВЧ.
Быстродействие таких полевых транзисторов с субмикронными длинами канала составляет 10-12 ГГц.
Существенный прогресс в части повышения быстродействия обеспечило изобретение полупроводниковых гетероструктур, представляющих собой последовательность слоев, активная область которых состоит из легированных широкозонных и нелегированных узкозонных слоев.
Это обеспечивает существенное увеличение быстродействия таких полевых транзисторов (до 100 ГГц и более).
Известен способ эпитаксиального выращивания слоев полупроводниковых соединений типа III-V, в том числе эпитаксиальных структур, плазмохимический, в котором с целью повышения качества и расширения функциональных возможностей в вакуумной камере, в которой поддерживается плазма при таких значениях плотности и давления, при которых частицы газов и металлов диффузно распространяются в плазменной области, испаряют по меньшей мере один металл, активируют частицы газа и металла, затем осуществляют реакции между парами металлов и высокоактивными газами неметаллических элементов, в результате которых на нагретой подложке, погруженной в плазму, выращивают слой полупроводникового соединения [1].
Данный способ отличается высокой плотностью дефектов полупроводниковой гетероструктуры, обусловленной наличием в газовой фазе плазмы, приводящей к нарушению поверхности полупроводниковой гетероструктуры и соответственно низкому выходу годных.
Известен способ изготовления полупроводниковой структуры молекулярно-лучевой эпитаксией, основанный на испарении напыляемых материалов из твердого состояния, включающий формирование легированного слоя путем резистивного нагрева электрическим током источника материала, легированного примесью, в котором с целью повышения качества полупроводниковых структур формирование легированного слоя полупроводниковой структуры осуществляют одновременным испарением основного нелегированного материала и основного материала, легированного примесью.
При формировании легированного слоя полупроводниковой структуры поддерживают постоянной плотность потока основного материала путем подбора электрического тока, пропускаемого через источник этого материала, и электрического тока, пропускаемого через источник материала, легированного примесью.
При уменьшении или увеличении тока через источник нелегированного материала соответственно увеличивают или уменьшают электрический ток через источник материала, легированного примесью [2] - прототип.
Данный способ - молекулярно-лучевой эпитаксии по сравнению с первым аналогом (плазмохимическим способом) обеспечивает снижение плотности дефектов, обусловленных наличием плазмы.
Однако данный способ в силу использования метода резистивного нагрева, приводящего к нестабильности во времени испарения напыляемых материалов, отличается низкой воспроизводимостью параметров и соответственно низким выходом годных.
Техническим результатом изобретения является повышение выхода годных путем обеспечения воспроизводимости заданных функциональных свойств и характеристик слоев полупроводниковой гетероструктуры и повышение выходной мощности и выхода годных полевых транзисторов СВЧ.
Указанный технический результат достигается заявленным способом изготовления полупроводниковой гетероструктуры для мощного полевого транзистора СВЧ, включающим расположение предварительно обработанной монокристаллической полуизолирующей подложки арсенида галлия на подложкодержатель в реакторе газофазной эпитаксии, запуск газа-носителя - водорода, нагрев подложкодержателя до рабочей температуры, запуск ростовых технологических газов и последующее наращивание в едином технологическом цикле последовательности слоев заданной полупроводниковой гетероструктуры, в котором каждый из последовательности слоев заданной полупроводниковой гетероструктуры наращивают при следующих технологических режимах -
буферный слой GaAs при температуре (550-580)°C, потоке технологических газов, ммоль/с: арсина (1,11-1,13), триметилгаллия (0,065-0,067), в течение (560-1480) с,
донорный слой n+-GaAs при температуре (605-615)°C, потоке технологических газов, ммоль/с: арсина (2,45-2,47), триметилгаллия (0,125-0,127), моносилана (0,004-0,006), в течение (5-7) с,
спейсерный слой GaAs при температуре (605-615)°C, потоке технологических газов, ммоль/с: арсина (4,01-4,03), триметилгаллия (0,125-0,127), в течение (8-12) с,
канальный слой InyGa1-yAs при температуре (605-615)°C, потоке технологических газов, ммоль/с: арсина (4,01-4,03), триметилгаллия (0,071-0,073), триметилиндия (0,047-0,049), в течение (16-24) с,
спейсерный слой AlxGa1-xAs при температуре (620-630)°C, потоке технологических газов, ммоль/с: арсина (5,35-5,37), триметилгаллия (0,115-0,117), триметилалюминия (0,015-0,019), в течение (4-8) с,
донорный слой n+-AlxGa1-xAs при температуре (620-630)°C, потоке технологических газов, ммоль/с: арсина (5,35-5,37), триметилгаллия (0,115-0,117), триметилалюминия (0,015-0,019), моносилана (0,010-0,014), в течение (7-13) с,
барьерный слой AlxGa-1-xAs при температуре (620-630)°C, потоке технологических газов, ммоль/с: арсина (5,35-5,37), триметилгаллия (0,115-0,117), триметилалюминия (0,015-0,019), в течение (7-30) с,
стоп-слой InzGa1-zP при температуре (620-630)°C, потоке технологических газов, ммоль/с: триметилгаллия (0,052-0,054), триметилиндия (0,077-0,081), фосфина (17,8-18,0), в течение (10-13) с,
барьерный слой AlxGa1-xAs при температуре (620-63 0)°C, потоке технологических газов, ммоль/с: арсина (5,35-5,37), триметилгаллия (0,115-0,117), триметилалюминия (0,015-0,019), в течение (42-78) с,
градиентный слой n+-AlxGa1-xAs при температуре (620-630)°C, потоке технологических газов, ммоль/с: арсина (5,35-5,37), триметилгаллия (0,115-0,117), монотонном, линейном уменьшении триметилалюминия от (0,015-0,019) до ноля, моносилана (0,004-0,006), в течение (18-26) с,
контактный слой n+-GaAs из двух частей - нижней и верхней при температуре (620-630)°C, потоке технологических газов, ммоль/с: арсина (5,35-5,37), триметилгаллия (0,115-0,117), моносилана нижней части - (0,004-0,006), верхней - (0,009-0,011), в течение - нижней части (112-188) с, верхней - (38-74) с,
причем в соответствующем упомянутом слое содержание химических элементов x, y, z определяются неравенствами 0,2≤x≤0,24, 0,2≤у≤0,28, 0,48≤z≤0,51 соответственно,
наращивание проводят при потоке газа-носителя - водорода, ммоль/с (10,2-12,20).
Раскрытие сущности изобретения.
Совокупность существенных признаков заявленного способа изготовления полупроводниковой гетероструктуры, а именно совокупность указанных технологических режимов при наращивании каждого из последовательности полупроводниковых слоев заданной полупроводниковой гетероструктуры, в совокупности с собственно последовательностью их наращивания обеспечивает:
во-первых, заданные функциональные свойства и характеристики - толщину слоев, состав - качественный и количественный, концентрацию легирующей примеси заданной полупроводниковой гетероструктуры,
во-вторых, снижение плотности дефектов в буферном GaAs, канальном InyGa1-yAs, стоп-слое - InzGa1-zP, градиентном AlxGa1-xAs слоях, при этом в каждом из указанных слоев в силу различных причинно-следственных связей и, как следствие этого, - повышение выхода годных.
в-третьих, снижение токов утечки в полевом транзисторе СВЧ благодаря наращиванию указанным образом буферного GaAs, барьерного AlxGa1-xAs слоев полупроводниковой гетероструктуры и, как следствие, - повышение выходной мощности.
Указанные диапазоны температуры и потоков технологических газов для роста слоев полупроводниковой гетероструктуры являются оптимальными для обеспечения
а) низкой плотности дефектов,
б) резкого профиля легирования полупроводниковой гетероструктуры,
в) заданного элементного состава химического соединения слоев полупроводниковой гетероструктуры.
Указанные диапазоны времени роста слоев полупроводниковой гетероструктуры являются оптимальными для обеспечения заданных толщин слоев полупроводниковой гетероструктуры.
Указанные диапазоны содержания химических элементов x, y, z обеспечивают минимальные механические напряжения в каждом из соответствующих слоев и тем самым снижение плотности дефектов и, как следствие, - повышение выхода годных полупроводниковых гетероструктур и выхода годных полевых транзисторов СВЧ.
Наращивание каждого из указанных слоев полупроводниковой гетероструктуры при температуре роста как ниже, так и выше указанного диапазона температур недопустимо, в первом случае - из-за увеличения плотности дефектов, во втором - из-за диффузионного размытия профиля легирования.
Наращивание каждого из указанных слоев полупроводниковой гетероструктуры при значениях потоков технологических газов как ниже, так и выше указанного их диапазона недопустимо из-за увеличения плотности дефектов и отклонения от заданного элементного состава.
Наращивание каждого из указанных слоев полупроводниковой гетероструктуры при нарушении указанных значений временного диапазона недопустимо из-за не обеспечения заданных толщин слоев полупроводниковой гетероструктуры.
Наращивание каждого из указанных слоев полупроводниковой гетероструктуры при выходе в них содержания химических элементов за указанные пределы не допустимо из-за резкого увеличения механических напряжений.
Итак, совокупность существенных признаков заявленного способа изготовления полупроводниковой гетероструктуры для мощного полевого транзистора СВЧ в полной мере обеспечит указанный технический результат - снижение плотности дефектов и повышение выхода годных полупроводниковой гетероструктуры, повышение выходной мощности, полевого транзистора СВЧ и выхода его годных.
Примеры конкретной реализации заявленного способа изготовления полупроводниковой гетероструктуры для мощного полевого транзистора СВЧ.
Пример 1.
На монокристаллической полуизолирующей подложке арсенида галлия GaAs-S-INS-EPD1000-T62(76,2)M/LE-AV-LM Hitachi Gable толщиной 650 мкм посредством метода газофазной эпитаксии на установке (AIX 2400 G3) в едином технологическом цикле выращивают прямую последовательность слоев заявленной полупроводниковой гетероструктуры -
буферный слой GaAs при температуре 565°C, потоке технологических газов, ммоль/с: арсина 1,12, триметилгаллия 0,066, в течение 1200 с,
донорный слой n+-GaAs при температуре 610°C, потоке технологических газов, ммоль/с: арсина 2,46, триметилгалли 0,126, моносилана 0,005, в течение 6 с,
спейсерный слой GaAs при температуре 610°C, потоке технологических газов, ммоль/с: арсина 4,02, триметилгаллия 0,126, в течение 10 с,
канальный слой InyGa1-yAs при температуре 610°C, потоке технологических газов, ммоль/с: арсина 4,02, триметилгаллия 0,072, триметилиндия 0,048, в течение 20 с, при у, равном 0,24,
спейсерный слой AlxGa1-xAs при температуре 625°C, потоке технологических газов, ммоль/с: арсина 5,36, триметилгаллия 0,116, триметилалюминия 0,017, в течение 6 с, при x, равном 0,22,
донорный слой n+-AlxGa1-xAs при температуре 625°C, потоке технологических газов, ммоль/с: арсина 5,36, триметилгаллия 0,116, триметилалюминия 0,017, моносилана 0,012, в течение 10 с, при х, равном 0,22,
барьерный слой AlxGa1-xAs при температуре 625°C, потоке технологических газов, ммоль/с: арсина 5,36, триметилгаллия 0,116, триметилалюминия 0,017, в течение 18 с, при x, равном 0,22,
стоп-слой InzGai-zP при температуре 625°C, потоке технологических газов, ммоль/с: триметилгаллия 0,053, триметилиндия 0,079, фосфина 17,9, в течение 11 с, при z, равном 0,49,
барьерный слой AlxGa1-xAs при температуре 625°C, потоке технологических газов, ммоль/с: арсина 5,36, триметилгаллия 0,116, триметилалюминия 0,017, в течение 60 с, при x, равном 0,22,
градиентный слой n+-AlxGa1-xAs при температуре 625°C, потоке технологических газов, ммоль/с: арсина 5,36, триметилгаллия 0,116, монотонном, линейном уменьшении триметилалюминия от 0,017 до ноля, моносилана 0,005, в течение 22 с, при x, равном 0,22,
контактный слой n+-GaAs из двух частей - нижней и верхней при температуре 625°C, потоке технологических газов, ммоль/с: арсина 5,36, триметилгаллия 0,116, моносилана нижней части - 0,005, верхней - 0,010, в течение - нижней части 150 с, верхней - 56 с,
причем для всех упомянутых слоев при потоке газа-носителя - водорода, ммоль/с, 11,2.
Примеры 2-5.
Изготовлены образцы заявленной полупроводниковой гетероструктуры аналогично примеру 1, но при других параметрах технологических режимов наращивания слоев полупроводниковой гетероструктуры, согласно формуле изобретения (примеры 2-3) и за ее пределами (примеры 4-5).
На изготовленных образцах полупроводниковой гетероструктуры была измерена плотность дефектов размером 0,2-1,6 мкм и 1,6-63,0 мкм на установке Surfscan 6220 согласно технологической карте КРПГ.57802.00046.
Изготовленные образцы полупроводниковой гетероструктуры были использованы для изготовления мощных полевых транзисторов СВЧ.
На изготовленных образцах мощных полевых транзисторов СВЧ была измерена выходная мощность на рабочей частоте 10 ГГц.
Данные сведены в таблицы 1-5, в каждой из которых отражены данные технологического режима соответственно примеру конкретной реализации заявленного способа изготовления полупроводниковой гетероструктуры.
Как видно из таблицы:
1. Образцы полупроводниковой гетероструктуры, изготовленные согласно заявленной формуле изобретения, имеют плотность дефектов от 1,51 см-2 до 5,58 см-2 размером дефектов (0,2-1,6) мкм и от 1,07 см-2 до 6,44 см-2 размером дефектов (1,6-63,0) мкм (примеры 1-3)
в отличие от образцов, изготовленных за пределами, указанными в формуле изобретения, плотность дефектов которых составляет от 95,6 см-2 до 577,0 см-2 размером дефектов (0,2-1,6) мкм и от 116,0 см-2 до 992,0 см-2 размером дефектов (1,6-63,0) мкм (примеры 4-5),
плотность дефектов образца-прототипа - 35,5 см-2 размером дефектов (0,2-1,6) мкм и 46,7 см-2 размером дефектов (1,6-63,0) мкм.
2. Мощные полевые транзисторы СВЧ, изготовленные на полупроводниковой гетероструктуре, изготовленной согласно заявленной формуле изобретения, имеют выходную мощность порядка 1,2 Вт/мм (примеры 1-3) в отличие от образцов - за пределами, указанными в формуле изобретения, выходная мощность которых порядка 0,8 и 0,3 Вт/мм (примеры 4-5 соответственно).
Данные относительно выхода годных прототипа отсутствуют.
Таким образом, способ изготовления заявленной полупроводниковой гетероструктуры для полевых транзисторов СВЧ обеспечит по сравнению с прототипом снижение плотности дефектов примерно в (6-23) и (7-43) раза в обеих группах размеров дефектов соответственно.
Выходная мощность полевых транзисторов составляет 1,2 Вт/мм, что на сегодня является хорошим результатом.
Источники информации
1. Патент РФ №2462786, МПК H01L 21/205, приоритет 28.02.2006, опубл. 27.09.2012 г.
2. Патент РФ №2473148, МПК H01L 21/205, приоритет 07.07.2011 г., опубл. 20.01.2013 г. - прототип.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005

Claims (1)

  1. Способ изготовления полупроводниковой гетероструктуры для мощного полевого транзистора СВЧ, включающий расположение предварительно обработанной монокристаллической полуизолирующей подложки арсенида галлия на подложкодержатель в реакторе газофазной эпитаксии, запуск газа-носителя - водорода, нагрев подложкодержателя до рабочей температуры, запуск ростовых технологических газов и последующее наращивание в едином технологическом цикле последовательности слоев заданной полупроводниковой гетероструктуры, отличающийся тем, что каждый из последовательности слоев заданной полупроводниковой гетероструктуры наращивают при следующих технологических режимах - буферный слой GaAs при температуре (550-580)°C, потоке технологических газов, ммоль/с: арсина (1,11-1,13), триметилгаллия (0,065-0,067), в течение (560-1480) с, донорный слой n+-GaAs при температуре (605-615)°C, потоке технологических газов, ммоль/с: арсина (2,45-2,47), триметилгаллия (0,125-0,127), моносилана (0,004-0,006), в течение (5-7) с, спейсерный слой GaAs при температуре (605-615)°C, потоке технологических газов, ммоль/с: арсина (4,01-4,03), триметилгаллия (0,125-0,127), в течение (8-12) с, канальный слой InyGa1-yAs при температуре (605-615)°C, потоке технологических газов, ммоль/с: арсина (4,01-4,03), триметилгаллия (0,071-0,073), триметилиндия (0,047-0,049), в течение (16-24) с, спейсерный слой AlxGa1-xAs при температуре (620-630)°C, потоке технологических газов, ммоль/с: арсина (5,35-5,37), триметилгаллия (0,115-0,117), триметилалюминия (0,015-0,019), в течение (4-8) с, донорный слой n+-AlxGa1-xAs при температуре (620-630)°C, потоке технологических газов, ммоль/с: арсина (5,35-5,37), триметилгаллия (0,115-0,117), триметилалюминия (0,015-0,019), моносилана (0,010-0,014), в течение (7-13) с, барьерный слой AlxGa1-xAs при температуре (620-630)°C, потоке технологических газов, ммоль/с: арсина (5,35-5,37), триметилгаллия (0,115-0,117), триметилалюминия (0,015-0,019), в течение (7-30) с, стоп-слой InzGa1-zP при температуре (620-630)°C, потоке технологических газов, ммоль/с: триметилгаллия (0,052-0,054), триметилиндия (0,077-0,081), фосфина (17,8-18,0), в течение (10-13) с, барьерный слой AlxGa1-xAs при температуре (620-630)°C, потоке технологических газов, ммоль/с: арсина (5,35-5,37), триметилгаллия (0,115-0,117), триметилалюминия (0,015-0,019), в течение (42-78) с, градиентный слой n+-AlxGa1-xAs при температуре (620-630)°C, потоке технологических газов, ммоль/с: арсина (5,35-5,37), триметилгаллия (0,115-0,117), монотонном, линейном уменьшении триметилалюминия от (0,015-0,019) до ноля, моносилана (0,004-0,006), в течение (18-26) с, контактный слой n+-GaAs из двух частей - нижней и верхней при температуре (620-630)°C, потоке технологических газов, ммоль/с: арсина (5,35-5,37), триметилгаллия (0,115-0,117), моносилана нижней части - (0,004-0,006), верхней - (0,009-0,011), в течение - нижней части (112-188) с, верхней - (38-74) с, причем в соответствующем упомянутом слое содержание химических элементов x, y, z определяются неравенствами 0,20≤x≤0,24, 0,21≤y≤0,28, 0,48≤z≤0,51 соответственно, наращивание проводят при потоке газа-носителя - водорода, ммоль/с (10,2-12,2).
RU2014132363/28A 2014-08-05 2014-08-05 Способ изготовления полупроводниковой гетероструктуры RU2570099C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014132363/28A RU2570099C1 (ru) 2014-08-05 2014-08-05 Способ изготовления полупроводниковой гетероструктуры

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014132363/28A RU2570099C1 (ru) 2014-08-05 2014-08-05 Способ изготовления полупроводниковой гетероструктуры

Publications (1)

Publication Number Publication Date
RU2570099C1 true RU2570099C1 (ru) 2015-12-10

Family

ID=54846429

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014132363/28A RU2570099C1 (ru) 2014-08-05 2014-08-05 Способ изготовления полупроводниковой гетероструктуры

Country Status (1)

Country Link
RU (1) RU2570099C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2690859C1 (ru) * 2018-05-30 2019-06-06 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Способ изготовления полупроводниковых гетероструктур с атомарно гладкими стоп-слоями InGaP и InP на подложках GaAs и InP
RU2806808C1 (ru) * 2023-03-09 2023-11-07 Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" Способ изготовления полевого транзистора СВЧ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041393A (en) * 1988-12-28 1991-08-20 At&T Bell Laboratories Fabrication of GaAs integrated circuits
RU2065644C1 (ru) * 1994-06-14 1996-08-20 Институт физики полупроводников СО РАН Способ изготовления фотоприемного элемента на основе многослойных гетероструктур ga as/al ga as
RU2205468C1 (ru) * 2002-07-09 2003-05-27 Физико-технический институт им. А.Ф.Иоффе РАН Способ изготовления светоизлучающей структуры на квантовых точках и светоизлучающая структура
RU2257640C1 (ru) * 2004-04-28 2005-07-27 Физико-технический институт им. А.Ф. Иоффе РАН Способ изготовления светоизлучающей структуры и светоизлучающая структура
RU2462786C2 (ru) * 2005-02-28 2012-09-27 Зульцер Метко Аг Способ и установка для эпитаксиального выращивания полупроводников типа iii-v, устройство генерации низкотемпературной плазмы высокой плотности, эпитаксиальный слой нитрида металла, эпитаксиальная гетероструктура нитрида металла и полупроводник
RU2473148C1 (ru) * 2011-07-07 2013-01-20 Государственное образовательное учреждение высшего профессионального образования "Нижегородский государственный университет им. Н.И. Лобачевского" Способ изготовления полупроводниковой структуры молекулярно-лучевой эпитаксией и установка для сублимационной молекулярно-лучевой эпитаксии

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041393A (en) * 1988-12-28 1991-08-20 At&T Bell Laboratories Fabrication of GaAs integrated circuits
RU2065644C1 (ru) * 1994-06-14 1996-08-20 Институт физики полупроводников СО РАН Способ изготовления фотоприемного элемента на основе многослойных гетероструктур ga as/al ga as
RU2205468C1 (ru) * 2002-07-09 2003-05-27 Физико-технический институт им. А.Ф.Иоффе РАН Способ изготовления светоизлучающей структуры на квантовых точках и светоизлучающая структура
RU2257640C1 (ru) * 2004-04-28 2005-07-27 Физико-технический институт им. А.Ф. Иоффе РАН Способ изготовления светоизлучающей структуры и светоизлучающая структура
RU2462786C2 (ru) * 2005-02-28 2012-09-27 Зульцер Метко Аг Способ и установка для эпитаксиального выращивания полупроводников типа iii-v, устройство генерации низкотемпературной плазмы высокой плотности, эпитаксиальный слой нитрида металла, эпитаксиальная гетероструктура нитрида металла и полупроводник
RU2473148C1 (ru) * 2011-07-07 2013-01-20 Государственное образовательное учреждение высшего профессионального образования "Нижегородский государственный университет им. Н.И. Лобачевского" Способ изготовления полупроводниковой структуры молекулярно-лучевой эпитаксией и установка для сублимационной молекулярно-лучевой эпитаксии

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2690859C1 (ru) * 2018-05-30 2019-06-06 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Способ изготовления полупроводниковых гетероструктур с атомарно гладкими стоп-слоями InGaP и InP на подложках GaAs и InP
RU2806808C1 (ru) * 2023-03-09 2023-11-07 Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" Способ изготовления полевого транзистора СВЧ

Similar Documents

Publication Publication Date Title
CN101266999B (zh) 氮化镓基双异质结场效应晶体管结构及制作方法
CN100495724C (zh) 氮化镓基异质结场效应晶体管结构及制作方法
GB2452177A (en) Compound semiconductor epitaxial substrate and method for producing the same
US20160079370A1 (en) Semiconductor device, semiconductor wafer, and semiconductor device manufacturing method
JP2002170776A (ja) 低転位バッファーおよびその製造方法ならびに低転位バッファーを備えた素子
CN104835833A (zh) 高耐压氮化镓系半导体设备及其制造方法
CN104091759B (zh) 一种蓝宝石衬底AlN外延层高电子迁移率晶体管生长方法
RU2570099C1 (ru) Способ изготовления полупроводниковой гетероструктуры
Zhu et al. Very high mobility InP grown by low pressure metalorganic vapor phase epitaxy using solid trimethylindium source
CN111863945A (zh) 一种高阻氮化镓及其异质结构的制备方法
KR101032010B1 (ko) 화합물 반도체 에피택셜 기판 및 그 제조 방법
US11183385B2 (en) Method for passivating silicon carbide epitaxial layer
CN208368514U (zh) 基于Si衬底的GaN基射频器件外延结构
US20080217652A1 (en) Growth of AsSb-Based Semiconductor Structures on InP Substrates Using Sb-Containing Buffer Layers
CN114334651A (zh) 一种基于超薄氮化镓自支撑衬底的hemt制备方法
CN105633138A (zh) 一种砷化镓基双异质结双极晶体管结构及制备方法
CN111180311B (zh) 一种降低GaN衬底与外延层界面处Si浓度的方法
CN108155224A (zh) 氮化镓外延片、外延方法及氮化镓基晶体管
Houng CBE growth of AlGaAs/GaAs heterostructures and their device applications
Liu et al. Self-Nucleated Nonpolar GaN Nanowires with Strong and Enhanced UV Luminescence
KR101082773B1 (ko) 화합물 반도체 소자 및 그 제조 방법
JP2007042936A (ja) Iii−v族化合物半導体エピタキシャルウェハ
Sumi et al. High Temperature Growth of Non-polar a-Plane GaN Film Grown Using Gallium-Oxide as Ga Source
Missous Optical and electrical properties of In/sub. 48/(Al/sub x/Ga/sub (1-x)/)/sub. 52/P grown by solid source MBE using a GaP decomposition source
Tsang Current status review and future prospects of CBE, MOMBE and GSMBE