RU2564095C1 - Анод топливного элемента на основе молибденовых бронз и платины и способ его изготовления - Google Patents

Анод топливного элемента на основе молибденовых бронз и платины и способ его изготовления Download PDF

Info

Publication number
RU2564095C1
RU2564095C1 RU2014115837/07A RU2014115837A RU2564095C1 RU 2564095 C1 RU2564095 C1 RU 2564095C1 RU 2014115837/07 A RU2014115837/07 A RU 2014115837/07A RU 2014115837 A RU2014115837 A RU 2014115837A RU 2564095 C1 RU2564095 C1 RU 2564095C1
Authority
RU
Russia
Prior art keywords
electrode
moo
molybdenum
anode
platinum
Prior art date
Application number
RU2014115837/07A
Other languages
English (en)
Inventor
Борис Иванович Подловченко
Виталий Владимирович Кузнецов
Original Assignee
Борис Иванович Подловченко
Виталий Владимирович Кузнецов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Борис Иванович Подловченко, Виталий Владимирович Кузнецов filed Critical Борис Иванович Подловченко
Priority to RU2014115837/07A priority Critical patent/RU2564095C1/ru
Application granted granted Critical
Publication of RU2564095C1 publication Critical patent/RU2564095C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

Изобретение относится к области электротехники, а именно к аноду низкотемпературного метанольного топливного элемента с полимерной мембраной и способу его изготовления. Предложенный анод содержит в качестве каталитического слоя композитный материал, приготовленный из соединений платины и водородсодержащих молибденовых бронз состава НxМоО3; где х принимает значение от 0,2 до 0,4. Повышение стабильности тока электроокисления метанола во времени, существенное снижение рабочего потенциала анода при электроокислении метанола до 0,4-0,6 В, а также устойчивость к примеси СО в водороде является техническим результатом изобретения. 2 н.п. ф-лы, 3 ил., 2 табл., 10 пр.

Description

Область техники, к которой относится изобретение
Изобретение относится к области электрохимического материаловедения и электрохимической технологии, более конкретно к аноду низкотемпературного топливного элемента с полимерной мембраной, использующего в качестве топлива метанол или водород. Изобретение также предоставляет способ изготовления такого анода.
Уровень техники
В международной заявке WO 2008/110651 (опубл. 18.09.2008) раскрыт трехкомпонентный катализатор состава Pt-Ru-MeOx (Me представляет собой Мо, W или V), нанесенный на углеродную подложку, в котором Pt и Ru присутствуют в форме металлических наночастиц, a Me присутствует в форме оксидов в различных спепенях окисления, отличающийся тем, что соотношение атомов Pt/Ru находится в пределах 0,1-2, соотношение атомов Pt/Me находится в пределах 0,1-10. Катализатор способен окислять СО до СО2 при потенциалах, начиная с 0,1 В, по отношению к обратимому водородному электроду в растворе серной кислоты с концентрацией 0,5 моль/л. Примерами предпочтительного осуществления изобретения подтверждено эффективное окисление СО до CO2 начиная с потенциала 0,3 В. Рассматриваемый катализатор не предназначен для непосредственного применения метанола в качестве топлива.
В заявке US 20060141334 (опубл. 29.06.2006) описан твердый анодный катализатор для низкотемпературых топливных элементов, активный слой которого является солью гетерополикислоты, включающей благородный металл и/или переходный металл; эта соль имеет молекулярную массу от 800 до 10000. Благородный металл выбран из платиновой группы, а переходный металл может быть молибденом. В примерах показана применимость промышленно выпускаемой гетерополикислоты состава Na5H3[PtMo6O24]·xH2O (структура андерсеновского типа) в качестве катализатора окисления метанола в топливном элементе (1 М СН3ОН+0,5 М H2SO4). Электроокисление метанола в значимой степени начинается лишь при потенциале выше 0,5 В, а максимальный анодный ток достигается при потенциале не ниже 0,75 В по отношению к обратимому водородному электроду (ОВЭ) в том же растворе, что является недостатком при практическом применении разработанного анода.
В патенте СА 2219213 (опубл. 25.04.1998) раскрыт состав анодного катализатора, включающий платину, компонент М и компонент Y, где платина и компонент М образуют сплав и сплав Pt-M находится в тесном контакте с компонентом Y. Компонент М выбран из элементов групп IIIA и IVA, а Y представляет молибден, вольфрам или их оксиды. Предложенные катализаторы эффективны для окисления водорода, содержащего порядка 12 частей на миллион СО. Их применение для электроокисления метанола не описано.
В заявке US 20050147867 (опубл. 07.06.2005) раскрыт состав активного слоя электрода, включающего два компонента. Первый каталитический компонент соответствует формуле Pt-Y (Y - молибден, вольфрам или их оксиды), второй каталитический компонент может быть описан формулой Pt-M (М представляет собой, в частности, рутений); первый и второй каталитические компоненты формируют один смешанный слой и находятся в электрическом контакте друг с другом. Показано, что катализатор эффективно работает лишь до содержания СО в газовой смеси в 100 ppm, что является существенным недостатком таких катализаторов и делает их применение малоперспективным.
В патенте СА 2268694 (опубл. 15.10.1999) раскрыт анод топливного элемента для окисления метанола, который в качестве первичного каталитически активного компонента содержит, по меньшей мере, один металл платиновой группы или его сплав, отличающийся тем, что в состав каталитического слоя также входят комплексы переходного металла с незамещенными и замещенными фталоцианинами, за счет чего усиливается каталитический эффект металла платиновой группы при анодном окислении метанола. В качестве переходного металла применяют никель или палладий. Согласно представленным в патенте данным каталитический эффект в отношении реакции электроокисления СН3ОН по сравнению с Pt/Pd-электродом небольшой. В патенте отсутствуют сведения об устойчивости электродного материала в процессе его длительной работы.
В заявке ЕР 1819004 (опубл. 15.08.2007) раскрыт катализатор для прямого окисления спирта, содержащий платину и вещество, приготовленное из молибдена и, по меньшей мере, одного молибденового соединения в качестве активной составляющей. В диапазоне потенциалов 0,4-0,6 В относительно хлорид-серебряного электрода сравнения, т.е. более 0,6 В относительно ОВЭ, бинарные платино-молибденовые катализаторы, содержащие 69-82% Pt, при окислении метанола способны давать ток плотностью 5-25 мА/см2 геометрической поверхности электрода при загрузке Pt ~0,37 мг/см2. Однако для практического использования таких анодов желательно проводить окисление метанола при менее положительных электродных потенциалах.
В публикации Weishan Li, Jin Lu, Jinghua Du, Dongsheng Lu, Hongyu Chen, Hong Li, Yingmin W. «Electrocatalytic oxidation ofmethanol on polyaniline-stabilized Pt-НхМоО3 in sulfuric acid solution». Electrochemistry Communications. №7 (2005). P. 406-410 описан электрод с каталитическим слоем состава полианилин-платина-молибденовая бронза (Pan-Pt-HxMoO3, где x принимает значения от 0 до 2), на котором окисление метанола (0,1 М СН3ОН+0,5 М H2SO4) возможно при потенциале 0,6 В относительно хлорид-серебряного электрода (более 0,8 В относительно ОВЭ). В первоначальный момент электролиза токи на Pan-Pt-HxMoO3-электроде существенно превышают токи на Pt-электроде. Однако спустя 1800 секунд после начала электролиза (потенциал составляет 0,6 В относительно хлорид-серебряного электрода) токи на Pan-Pt-НхМоО3-электроде уменьшаются практически до нуля. Это является существенным недостатком предложенной системы.
В публикации Р. Justin, G. Ranga Rao «Methanol oxidation on МоО3 promoted Pt/C electrocatalyst». International Journal of Hydrogen Energy. Vol.36 (2011). P.5875-5884 описаны катализаторы C/Pt-МоО3, в которых массовое соотношение Pt:МоО3 составляет 2:1, 2:2 и 2:3, а каталитический слой нанесен на углеродный носитель Vulcan carbon XC-72R (производство Cabot Corp.). Для катализатора C/Pt-МоО3 (2:2) исследование окисления метанола (1,0 М СН3ОН+0,5 М H2SO4) при потенциале 0,6 В относительно хлорид-серебряного электрода (~0,80 В относительно ОВЭ) показало уменьшение тока от 300 до 200 мА/мг Pt в течение первых 1800 секунд электролиза, что соответствует снижению каталитической активности на треть.
В качестве аналога предлагаемого технического решения авторы рассматривают анод метанольного топливного элемента, описанный в статье X.D. Xiang, Q.M. Huang, Z. Fu, Y.L. Lin, W. Wu, S.J. Hu, W.S. Li «НхМоО3-assisted deposition of platinum nanoparticles on MWNTs for electrocatalytic oxidation ofmethanol». International Journal of Hydrogen Energy. Vol.37 (2012) P.4710-4716. В этой публикации описаны катализаторы для электроокисления метанола, нанесенные на одностенные углеродные нанотрубки (MWNTs). Наночастицы платины нанесены на указанный носитель полиольным методом с использованием этиленгликоля в качестве восстановителя. В состав активного слоя электрода введены молибденовые бронзы HxMoO3, где х принимает значение от 0 до 2. При потенциале 0,6 В относительно хлорид-серебряного электрода (~0.80 В относительно ОВЭ) в системе 0,5 М H2SO4+0.5 M СН3ОН указанный электрод способен давать ток плотностью не ниже 0,4 А/см2 геометрической поверхности электрода. За время эксперимента (1000 с) плотность тока уменьшается примерно на треть.
Главным недостатком анодов, описанных в указанных научных публикациях, является то, что электроокисление метанола проводится при сильно положительных потенциалах относительно обратимого водородного электрода в том же растворе (не ниже 0,8 В). Это делает неперспективным их применение в реальных топливных элементах вследствие крайне небольшой электродвижущей силы, которая может быть получена в метанол-кислородных топливных элементах, использующих такие аноды. Кроме того, предложенные электроды отравляются продуктами прочной хемосорбции, что приводит к уменьшению токов окисления в течение времени.
Таким образом, существует потребность в разработке новых анодов для низкотемпературных метанольных и водородных топливных элементов для преодоления и устранения указанных недостатков известных технических решений.
Раскрытие изобретения
В результате обширных исследований авторы настоящего изобретения установили, что недостатки известного уровня техники в большой мере могут быть преодолены созданием анода низкотемпературного метанольного или водородного топливного элемента с полимерной мембраной, включающего электропроводный углеродный носитель, каталитический слой и токоотвод, который в качестве каталитического слоя содержит композитный материал, приготовленный из соединений платины и водородсодержащих молибденовых бронз состава HxMoO3, где х принимает значение от 0,2 до 0,4, и для получения указанного каталитического композитного материала:
а) химически синтезируют молибденовую бронзу состава HxMoO3, где х принимает значение от 0,2 до 0,4, восстановлением оксида молибдена (VI) цинковым порошком в среде 2-3 М хлористоводородной кислоты при 0-10°С;
б) синтезированную бронзу намазывают на поверхность электропроводного углеродного носителя с получением электрода-предшественника С/HxMoO3;
в) электрод-предшественник высушивают в токе аргона при температуре от 150 до 200°С и помещают в электрохимическую ячейку с деаэрированным раствором, содержащим растворимую соль Pt(II) в 0,5-1,0 М серной кислоте;
г) в растворе, насыщенном аргоном, проводят бестоковое осаждение платины на электрод-предшественник за счет перезарядки молибденовой бронзы с получением электрода, имеющего каталитический слой из nPt0 (Hx-2n-МоО3), и полученный электрод отмывают 0,5-1,0 М серной кислотой от соединений платины с получением анода низкотемпературного метанольного или водородного топливного элемента.
Первым техническим результатом является повышение стабильности тока электроокисления метанола во времени. Другим техническим результатом является существенное снижение рабочего потенциала анода при электроокислении метанола до 0,4-0,6 В относительно обратимого водородного электрода в том же растворе, что более приемлемо для реальных электрокаталитических приложений. Третьим техническим результатом изобретения является распространение области применения анода низкотемпературного топливного элемента с полимерной мембраной не только на процесс электроокисления метанола, но и на процесс окисления водорода, существенно загрязненного монооксидом углерода. Еще одним результатом является замена в составе каталитического слоя анода дефицитного и дорогостоящего рутения на более доступный и дешевый молибден без ухудшения каталитической активности и других важных электрохимических характеристик получаемого электрода.
Технические результаты достигаются за счет осуществления предлагаемого способа изготовления анода низкотемпературного метанольного или водородного топливного элемента с полимерной мембраной, характеризующийся следующей последовательностью операций:
а) химически синтезируют молибденовую бронзу состава HxMoO3, где х принимает значение от 0,2 до 0,4, восстановлением оксида молибдена (VI) цинковым порошком в среде 2-3 М хлористоводородной кислоты при 0-10°С;
б) синтезированную бронзу намазывают на поверхность электропроводного углеродного носителя с получением электрода-предшественника С/HxMoO3;
в) электрод-предшественник высушивают в токе аргона при температуре от 150 до 200°С и помещают в электрохимическую ячейку с деаэрированным раствором, содержащим растворимую соль Pt(II) в 0,5-1,0 М серной кислоте;
г) в растворе, насыщенном аргоном, проводят бестоковое осаждение платины на электрод-предшественник за счет перезарядки молибденовой бронзы с получением электрода, имеющего каталитический слой из nPt (Hx-2nMoO3), и полученный электрод отмывают 0,5-1,0 М серной кислотой от соединений платины с получением анода низкотемпературного метанольного или водородного топливного элемента.
Не ограничиваясь конкретной теорией, авторы изобретения утверждают, что предлагаемый способ изготовления электрода обеспечивает образование на его поверхности каталитического слоя, эффективно окисляющего метанол и моноксид углерода при потенциалах 0,4-0,6 В относительно ОВЭ в том же растворе. Эффективность электроокисления объясняется бифункциональным механизмом электрокатализа: на частицах платины происходит адсорбция СО-подобных частиц, а окисленная молибденовая бронза обеспечивает присутствие кислородсодержащих соединений на границе Pt/Hx-2nMoO3. В результате химической реакции между ними происходит десорбция хемосорбированного вещества, являющегося ядом для электроокисления малых органических молекул, с поверхности платины. Это приводит к ускорению электроокисления метанола (монооксида углерода) через слабосвязанные с поверхностью электрода частицы.
Краткое описание чертежей
На фиг.1 представлена хроноамперометрограмма окисления метанола (система 0,5 М H2SO4/1,0 М СН3ОН) на аноде при потенциале 0,60 В относительно ОВЭ в соответствии с одним из вариантов осуществления изобретения (кривая а) по сравнению с анодом со слоем платины, нанесенной электроосаждением из раствора H2PtCl6 при Е 0,25 В (кривая b).
На фиг.2 представлена хроноамперометрограмма окисления метанола (система 0,5 М H2SO4/0,5 М СН3ОН) на аноде-аналоге изобретения (кривая b) при потенциале 0,6 В относительно хлорид-серебряного электрода (0,8 В относительно ОВЭ) по сравнению с анодом со слоем платины, осажденной на носителе (одностенные углеродные нанотрубки MWNTs, кривая а).
На фиг.3 показана анодная поляризационная кривая, полученная на предлагаемом аноде в 0,5 М растворе H2SO4, насыщенном СО на вращающемся дисковом электроде (ВДЭ).
Осуществление изобретения
Возможность осуществления изобретения с достижением его технических результатов будет показана на следующих примерах.
Пример 1. Изготовление анода
Водородсодержащую молибденовую бронзу получают химическим восстановлением 3,0 г МоО3 цинковым порошком (первая порция составляет 0,5 г, последующие порции 0,1 г) в среде 2-3 М хлористоводородной кислоты при 0-10°С.
В результате синтеза получают красную моноклинную бронзу НхМоО3 с содержанием водорода в ней х=0,2-0,4.
Полученную бронзу без связующего наносят на плоскую поверхность стеклоуглерода (GC) или иного углеродного носителя в расчете 3,75±0,3 мг на 1 см2 геометрической поверхности электрода. Толщина нанесенного слоя молибденовых бронз составляет приблизительно 9 мкм. Приготовленный таким образом электрод высушивают в токе аргона особой чистоты, получая электрод-предшественник.
Перед осаждением платины электрод-предшественник С/HxMoO3 поляризуют в 0,5 М серной кислоте в течение 30 мин, поддерживая потенциал приблизительно равным -0,1 В отн. о.в.э., учитывая, что более низкий потенциал приводит к разрушению слоя молибденовой бронзы. Затем прекращают наложение внешнего поляризующего тока и раствор серной кислоты заменяют деаэрированным раствором, содержащим 0,002 моль/л K2PtCl4 в 0,5 М серной кислоте, что обеспечивает осаждение платины без протекания внешнего тока. Продолжительность осаждения составляет от 9 до 12 ч, при этом достигается практически постоянное значение потенциала электрода, составляющее приблизительно 0,55 В. Дальнейшая выдержка электрода в растворе не имеет смысла, поскольку скорость осаждения платины становится очень низкой, а слой оксидных соединений молибдена может разрушаться.
Полученный материал охарактеризован методом рентгенофазового анализа (РФА). На дифрактограмме наблюдаются рефлексы при 2θ=33,82°, 39,74° и 67,63°, характерные для платины и при 2θ=12,83°, 23,40°, 25,77°, 27,39°, характерные для окисленной молибденовой бронзы (CuKα-излучение).
Примеры 2-9. Электрохимическое окисление метанола
Анод с геометрической поверхностью 2 см помещают в ячейку, наполненную раствором (20-100 мл), содержащим от 0,1 до 1,0 моль/л метанола и 0,5 моль/л серной кислоты. При помощи потенциостата потенциал анода задают в интервале от 0,4 до 0,6 В и в течение времени от 10 минут до 5 часов регистрируют зависимость тока, протекающего через анод, от времени. Данные приведены в таблицах 1 и 2.
Таблица 1
Пример(1) Концентрация метанола, моль/л Время измерения, мин Ток, мкА Снижение тока*, %
в начале в конце
2 0,1 10 100 70 30
3 0,5 100 110 75 32
4 0,75 200 115 72 37
5 1,0 300 120 75 38
(1) Потенциал анода: 0,45 В
Таблица 2
Пример(2) Концентрация метанола, моль/л Время измерения, мин Ток, мА Снижение тока*, %
в начале в конце
6 0,1 10 8,0 6,0 25
7 0,5 100 10,0 7,5 25
8 0,75 200 10,0 8,0 20
9 1,0 300 12,0 9,5 21
(2) Потенциал анода: 0,60 В
* по отношению к начальному значению
Результаты показывают, что при потенциале 0,45 В относительное снижение тока во времени сопоставимо с аналогичной величиной для анода-аналога, работающего при намного более высоком потенциале 0,8 В относительно ОВЭ, что соответствует значению 0,6 В относительно хлорид-серебряного электрода, приведенному в статье, описывающей аналог. Из-за того, что данные, полученные в соответствии с изобретением, и данные, приведенные в статье X.D. Xiang, Q.M. Huang, Z. Fu, Y.L. Lin, W. Wu, S.J. Hu, W.S. Li «НхМоО3-assisted deposition of platinum nanoparticles on MWNTs for electrocatalytic oxidation of methanol». International Journal of Hydrogen Energy. Vol.37 (2012). P. 4710-4716, относятся к разным значениям потенциала электрода (0,6 и 0,8 В соответственно), их сравнение невозможно.
Известно, что Pt-Ru-электроды, такие как электрод, описанный в статье Chi С.-F., Yang M.-C., Weng H.-Sh. A proper amount of carbon nanotubes for improving the performance of Pt-Ru/C catalysts for methanol electrooxidation // Journal of Power Sources. Vol.193 (2009). P.462-469, обладают наилучшей каталитической активностью в реакции электроокисления метанола. Сравнение каталитической активности анода, изготовленного в соответствии с изобретением, с данными, приведенными в указанной статье, показало, что активность изготовленных образцов не уступает активности дорогостоящего и дефицитного Pt-Ru-катализатора. Кроме того, при сравнении данных надо иметь в виду, что приведенные в статье данные относятся к 30°С, тогда как характеристики анодов в соответствии с изобретением были получены при более низкой температуре (25°С).
Относительное снижение тока во времени (за 800 с) для предлагаемого электрода меньше (23%), чем для аналога MWNTs/Pt-HxMoO3 (30%). Таким образом, анод, изготовленный в соответствии с изобретением, превосходит известные аналоги по устойчивости каталитического эффекта во времени.
Пример 10
Водный раствор H2SO4 (0,5 М) в течение 30 минут насыщают барботированием СО со скоростью приблизительно 1 пузырек в минуту. На поверхность вращающегося дискового электрода (ВДЭ) наносят каталитический слой, приготовленный в соответствии с изобретением, ВДЭ помещают в раствор, задают и поддерживают частоту вращения 500 мин-1 и проводят электроокисление оксида углерода (II) (СО) в потенциодинамическом режиме при развертке потенциала от Енач 0,3 В в анодную сторону со скоростью 5 мВ/с, осуществляя поляризационные измерения.
Эффективное окисление растворенного в электролите СО начинается при потенциалах положительнее 0,3 В, а предельный диффузионный ток окисления достигается при потенциале 0,4 В, что существенно лучше по сравнению с результатами для аналогов (0,50-0,60 В), в частности - для раскрытого в заявке WO 2008/110651.
Высокая электрокаталитическая активность предложенного катализатора в реакции электроокисления растворенного в электролите СО позволяет считать, что электрод должен иметь высокую устойчивость к примеси СО в водороде, используемом в водородно-кислородном топливном элементе, и, следовательно, включающий его элемент способен работать на водороде с большим содержанием СО.

Claims (2)

1. Анод низкотемпературного метанольного топливного элемента с полимерной мембраной, включающий электропроводный углеродный носитель, каталитический слой и токоотвод, отличающийся тем, что в качестве каталитического слоя содержит композитный материал, приготовленный из соединений платины и водородсодержащих молибденовых бронз состава HxMoO3, где х принимает значение от 0,2 до 0,4, и указанный каталитический композитный материал получен способом, при осуществлении которого:
а) химически синтезируют молибденовую бронзу состава HxMoO3, где х принимает значение от 0,2 до 0,4, восстановлением оксида молибдена (VI) цинковым порошком в среде 2-3 М хлористоводородной кислоты при 0-10°С;
б) синтезированную бронзу намазывают на поверхность электропроводного углеродного носителя с получением электрода-предшественника С/HxMoO3;
в) электрод-предшественник высушивают в токе аргона при температуре от 150 до 200°С и помещают в электрохимическую ячейку с деаэрированным раствором, содержащим растворимую соль Pt(II) в 0,5-1,0 М серной кислоте;
г) в растворе, насыщенном аргоном, проводят бестоковое осаждение платины на электрод-предшественник за счет перезарядки молибденовой бронзы с получением электрода, имеющего каталитический слой из nPt (Hx-2nMoO3) и полученный электрод отмывают 0,5-1,0 М серной кислотой от соединений платины с получением анода низкотемпературного метанольного или водородного топливного элемента.
2. Способ изготовления анода низкотемпературного метанольного или водородного топливного элемента с полимерной мембраной, характеризующийся тем, что при осуществлении указанного способа:
а) химически синтезируют молибденовую бронзу состава HxMoO3, где х принимает значение от 0,2 до 0,4, восстановлением оксида молибдена (VI) цинковым порошком в среде 2-3 М хлористоводородной кислоты при 0-10°С;
б) синтезированную бронзу намазывают на поверхность электропроводного углеродного носителя с получением электрода-предшественника С/HxMoO3;
в) электрод-предшественник высушивают в токе аргона при температуре от 150 до 200°С и помещают в электрохимическую ячейку с деаэрированным раствором, содержащим растворимую соль Pt(II) в 0,5-1,0 М серной кислоте;
г) в растворе, насыщенном аргоном, проводят бестоковое осаждение платины на электрод-предшественник за счет перезарядки молибденовой бронзы с получением электрода, имеющего каталитический слой из nPt0 (Hx-2nMoO3), и полученный электрод отмывают 0,5-1,0 М серной кислотой от соединений платины с получением анода низкотемпературного метанольного или водородного топливного элемента.
RU2014115837/07A 2014-04-21 2014-04-21 Анод топливного элемента на основе молибденовых бронз и платины и способ его изготовления RU2564095C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014115837/07A RU2564095C1 (ru) 2014-04-21 2014-04-21 Анод топливного элемента на основе молибденовых бронз и платины и способ его изготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014115837/07A RU2564095C1 (ru) 2014-04-21 2014-04-21 Анод топливного элемента на основе молибденовых бронз и платины и способ его изготовления

Publications (1)

Publication Number Publication Date
RU2564095C1 true RU2564095C1 (ru) 2015-09-27

Family

ID=54250939

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014115837/07A RU2564095C1 (ru) 2014-04-21 2014-04-21 Анод топливного элемента на основе молибденовых бронз и платины и способ его изготовления

Country Status (1)

Country Link
RU (1) RU2564095C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834642A (zh) * 2019-04-15 2020-10-27 武汉氢阳能源有限公司 一种有机物电催化氧化催化剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922488A (en) * 1997-08-15 1999-07-13 Exxon Research And Engineering Co., Co-tolerant fuel cell electrode
US6855452B1 (en) * 1998-12-09 2005-02-15 Johnson Matthey Public Limited Company Electrode structure
JP2007005284A (ja) * 2005-05-27 2007-01-11 Asahi Kasei Corp 燃料電池用電極触媒及びその製造方法
EP1819004A1 (en) * 2004-11-25 2007-08-15 Ricoh Company, Ltd. Electrode catalyst, method for preparation thereof, direct alcohol fuel cell
JP2009117355A (ja) * 2007-10-18 2009-05-28 Toshiba Corp 燃料極触媒、燃料極触媒の製造方法、燃料電池および燃料電池の製造方法
RU2422947C2 (ru) * 2005-08-01 2011-06-27 Брукхейвен Сайенс Эссоушиитс Электрокатализатор восстановления кислорода, содержащий его топливный элемент и способ получения электроэнергии
CN103606687A (zh) * 2013-11-26 2014-02-26 华南师范大学 一种用于直接甲醇燃料电池的阳极催化剂多孔阵列Pt-p-HxMoO3及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922488A (en) * 1997-08-15 1999-07-13 Exxon Research And Engineering Co., Co-tolerant fuel cell electrode
US6855452B1 (en) * 1998-12-09 2005-02-15 Johnson Matthey Public Limited Company Electrode structure
EP1819004A1 (en) * 2004-11-25 2007-08-15 Ricoh Company, Ltd. Electrode catalyst, method for preparation thereof, direct alcohol fuel cell
JP2007005284A (ja) * 2005-05-27 2007-01-11 Asahi Kasei Corp 燃料電池用電極触媒及びその製造方法
RU2422947C2 (ru) * 2005-08-01 2011-06-27 Брукхейвен Сайенс Эссоушиитс Электрокатализатор восстановления кислорода, содержащий его топливный элемент и способ получения электроэнергии
JP2009117355A (ja) * 2007-10-18 2009-05-28 Toshiba Corp 燃料極触媒、燃料極触媒の製造方法、燃料電池および燃料電池の製造方法
CN103606687A (zh) * 2013-11-26 2014-02-26 华南师范大学 一种用于直接甲醇燃料电池的阳极催化剂多孔阵列Pt-p-HxMoO3及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834642A (zh) * 2019-04-15 2020-10-27 武汉氢阳能源有限公司 一种有机物电催化氧化催化剂及其制备方法和应用
CN111834642B (zh) * 2019-04-15 2021-12-17 武汉氢阳能源有限公司 一种有机物电催化氧化催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
US6183894B1 (en) Electrocatalyst for alcohol oxidation in fuel cells
CN105377428B (zh) 燃料电池用电极催化剂、及使催化剂活化的方法
EP2917952B1 (en) Method for producing a catalyst for fuel cells
US8048548B2 (en) Electrocatalyst for alcohol oxidation at fuel cell anodes
Carrión-Satorre et al. Performance of carbon-supported palladium and palladiumruthenium catalysts for alkaline membrane direct ethanol fuel cells
Jukk et al. Oxygen reduction on Pd nanoparticle/multi-walled carbon nanotube composites
Erikson et al. Oxygen reduction on electrodeposited Pd coatings on glassy carbon
Franceschini et al. Mesoporous Pt electrocatalyst for methanol tolerant cathodes of DMFC
US20080241642A1 (en) Electrochemical oxidation of formic acid using a noble metal based catalyst with admetals
Habibi et al. Electrooxidation of 2-propanol and 2-butanol on the Pt–Ni alloy nanoparticles in acidic media
Calderón et al. Palladium–nickel catalysts supported on different chemically-treated carbon blacks for methanol oxidation in alkaline media
JP2006210135A (ja) 触媒電極材料、触媒電極、及びこれらの製造方法、電極触媒用の担体材料、並びに電気化学デバイス
Urbańczyk et al. NiPt sinter as a promising electrode for methanol electrocatalytic oxidation
Chai et al. Heterogeneous Ir3Sn–CeO2/C as alternative Pt-free electrocatalysts for ethanol oxidation in acidic media
JP2014229516A (ja) 燃料電池用触媒の製造方法
JP2018141227A (ja) 二酸化炭素を電気化学的に還元し、より多くのエチレンを生成する方法、電解装置、二酸化炭素還元電極、及び二酸化炭素還元触媒
RU2561711C2 (ru) Способ изготовления каталитического электрода на основе гетерополисоединений для водородных и метанольных топливных элементов
KR20200093985A (ko) 금속 합금 촉매의 제조 방법, 금속 합금 촉매를 이용한 이산화탄소 환원 방법, 및 이산화탄소 환원 시스템
JP2011090916A (ja) 燃料電池用陽極触媒、その製造方法、および膜電極接合体
Saipanya et al. Electrochemical deposition of platinum and palladium on gold nanoparticles loaded carbon nanotube support for oxidation reactions in fuel cell
RU2564095C1 (ru) Анод топливного элемента на основе молибденовых бронз и платины и способ его изготовления
JP5058805B2 (ja) 貴金属微粒子の製造方法
Al-Akraa et al. Tuning the activity and stability of platinum nanoparticles toward the catalysis of the formic acid electrooxidation
Jin et al. High catalytic activity of Pt-modified Ag electrodes for oxidation of glycerol and allyl alcohol
WO2013065997A1 (ko) 백금 나노덴드라이트가 담지된 전기전도성 텅스텐 산화물 나노와이어 및 그 제조 방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160422