RU2552882C2 - Способ работы электростанции - Google Patents

Способ работы электростанции Download PDF

Info

Publication number
RU2552882C2
RU2552882C2 RU2012138139/06A RU2012138139A RU2552882C2 RU 2552882 C2 RU2552882 C2 RU 2552882C2 RU 2012138139/06 A RU2012138139/06 A RU 2012138139/06A RU 2012138139 A RU2012138139 A RU 2012138139A RU 2552882 C2 RU2552882 C2 RU 2552882C2
Authority
RU
Russia
Prior art keywords
power
gas turbine
water vapor
power plant
energy
Prior art date
Application number
RU2012138139/06A
Other languages
English (en)
Other versions
RU2012138139A (ru
Inventor
Хамид ОЛИА
Ян ШЛЕЗИР
Original Assignee
Альстом Текнолоджи Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Альстом Текнолоджи Лтд filed Critical Альстом Текнолоджи Лтд
Publication of RU2012138139A publication Critical patent/RU2012138139A/ru
Application granted granted Critical
Publication of RU2552882C2 publication Critical patent/RU2552882C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Turbines (AREA)

Abstract

Изобретение относится к энергетике. Способ работы электростанции, содержащей газотурбинную установку и систему выработки энергии с помощью водяного пара, которая приводит в действие по меньшей мере один электрический генератор, при этом газотурбинная установка производит отходящие газы, которые направляют в паровой котел системы выработки энергии с помощью водяного пара. В установившемся режиме работы газотурбинная установка генерирует первую выходную мощность, паровая турбина вырабатывает вторую выходную мощность, при этом общая генерируемая мощность, представляющая собой сумму первой и второй выходных мощностей, по существу равна собственным нуждам электростанции. Также представлены способ запуска электростанции и способ снижения мощности электростанции. 3 н. и 6 з.п. ф-лы, 8 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к способу работы электростанции. В частности, далее сделана ссылка на электростанции с комбинированным циклом.
Уровень техники
Традиционно электростанции, такие как электростанции с комбинированным циклом (т.е. электростанции, содержащие паро- и газотурбинные установки), производят базовую электрическую энергию, которая поступает в электрическую сеть. С разбалансировкой рынка энергии при повышенных ценах на топливо и постепенным распространением возобновляемых источников энергии электростанции с комбинированным циклом все больше и больше используются для удовлетворения требований пиковых мощностей.
Для того чтобы удовлетворить требования пиковых нагрузок, необходимо очень быстро согласовать работу электростанций с комбинированным (парогазовым) циклом (в частности, в отношении электрической энергии, подводимой во внешнюю электрическую сеть). Другими словами, они должны быть способны работать с большой гибкостью. Например, когда энергия, необходимая для электрической сети, низкая, они должны быть способны уменьшить электрическую энергию, подводимую в электрическую сеть, вплоть до нуля, а когда электрическая сеть вновь требует электрическую энергию, они должны быть способны обеспечить ее очень быстро (в некоторых случаях они должны быть способны обеспечить десятки мегаватт в секунды).
В патентном документе ЕР 2 056 421 раскрыт способ подключения электростанции с комбинированным циклом (использующий паро- и газотурбинные установки) к электрической сети. Этот способ включает следующие стадии:
на первой стадии газовая турбина имеет полное число оборотов, но в электрическую сеть никакая электроэнергия не подается (при этом прерыватель тока разомкнут); при проведении этой стадии паровая турбина нагружается;
на второй стадии прерыватель тока замкнут; во время этой стадии паровая турбина дополнительно нагружается;
на третьей стадии электростанция активирует электрическую сеть; паровая турбина на этой стадии также нагружается;
на четвертой стадии электростанция снабжает электрическую сеть электроэнергией; в процессе осуществления этой стадии паровая турбина дополнительно нагружается.
Таким образом, очевидно, что в процессе осуществления стадий от первой по четвертую паровая турбина не обеспечивает подачу какой-либо электроэнергии в сеть, а именно паровая турбина находится в переходном режиме работы, в режиме нагружения.
По этой причине известный описанный выше способ может иметь некоторые недостатки.
Фактически, если паровая турбина работает в переходном режиме, она не способна подавать в электрическую сеть какую-либо электрическую мощность. Электростанция, таким образом, не может быть способной удовлетворить требования электрической сети в скачкообразной выработке электроэнергии. Например, в некоторых случаях потребности сети в скачкообразной выработке электростанцией электроэнергии могут составлять до 50 МВт/сек или более.
Сущность изобретения
Один аспект изобретения заключается таким образом в обеспечении способа, посредством которого электростанция с комбинированным циклом способна соответствовать требованиям внезапного скачкообразного изменения мощности, исходящим от сети.
Этот и другие аспекты достигаются согласно изобретению за счет обеспечения способов в соответствии с приложенными пунктами формулы изобретения.
Краткое описание чертежей
Другие особенности и преимущества изобретения будут более ясными из описания предпочтительного, но не единственного воплощения способа, иллюстрируемого в сопровождающих описание чертежах с помощью примера, не ограничивающего изобретение.
Фиг.1 и фиг.2 - схема электростанций с комбинированным циклом, которые могут быть использованы для осуществления способа.
Фиг.3 и фиг.4 - иллюстрация двух воплощений способа.
Фиг.5 и фиг.6 - иллюстрация воплощений запуска электростанции с доведением ее до параметров, при которых электростанция подключена к электрической сети (с разомкнутым или замкнутым прерывателем), но без подвода к ней какого-либо количества электроэнергии.
Фиг.7 и фиг.8 - воплощения разгрузки электростанции с доведением ее до параметров, при которых электростанция подключена к сети (с разомкнутым или замкнутым прерывателем), но без подвода к ней какого-либо количества электроэнергии.
Подробное описание воплощений изобретения
Способ может быть осуществлен в электростанции, схематически показанной на фиг.1.
Электростанция 1 содержит газотурбинную установку 2, имеющую компрессор 3, камеру 4 сгорания и турбину 5. В камеру 4 сгорания подают топливо 6 и окислитель 7 (обычно воздух, сжатый в компрессоре 3). В результате сжигания топлива 6 с окислителем 7 генерируются отходящие газы, которые расширяются в турбине 5 с получением механической энергии.
Турбина 5 выбрасывает отходящие газы 8, которые затем поступают в систему 10 выработки энергии с помощью водяного пара. Указанная система 10 выработки энергии с помощью водяного пара содержит котел 11 (называемый также котлом-утилизатором (HRSG)), который принимает отходящие газы 8 из газотурбинной установки 2 и производит водяной пар, который расширяется в паровой турбине 12. Как обычно, система оборудована конденсатором 13 и насосом 14.
Газотурбинная установка 2 и система 10 выработки энергии с помощью водяного пара приводят в действие электрический генератор 20, подключенный к электрической сети 21 посредством электрической линии 22.
Фиг.2 иллюстрирует пример другой электростанции. На этой фигуре одинаковые номера позиций обозначают одинаковые или подобные элементы из числа описанных выше.
В электростанции на фиг.2 каждая из газотурбинной установки 2 и системы 10 выработки энергии с помощью водяного пара приводит в действие один электрогенератор 20а, 20b. Электрогенераторы 20а и 20b, в свою очередь, подключены к электрической сети 21 посредством электрических линий 22 и соединены друг с другом с помощью электрической линии 23.
Возможны и какие-то другие схемы электростанции.
Способ работы электростанции описан далее со ссылкой на фиг.1 и фиг.3.
В соответствии с предложенным способом в установившемся режиме работы электростанции 1 газотурбинная установка вырабатывает первую выходную мощность 30, превышающую нулевое значение, а система 10 выработки энергии с помощью водяного пара вырабатывает вторую выходную мощность, превышающую нулевое значение, и общая полученная электрическая мощность 32 (общая полученная мощность представляет собой сумму первой и второй выходной мощности 30, 31) по существу равна собственным нуждам 33 электростанции 1.
Собственные нужды 33 соответствуют такой мощности, которая должна быть подведена к электростанции 1 или произведена электростанцией 1 для снабжения вспомогательного оборудования и для ее внутреннего использования. Таким образом, в режиме работы для собственных нужд 33 электростанция вырабатывает мощность для внутреннего использования, но она по существу не способна подавать какую-либо энергию в электрическую сеть 21.
В этой связи ссылочный номер позиции 32 на фиг.3 показывает, что мощность, подводимая в электрическую сеть, равна нулю.
Предпочтительно во время этой работы в установившемся режиме электрический генератор 20 подключен к электрической сети 21 (т.е. прерыватель замкнут). Следовательно, генератор 20 подает в сеть 21 напряжение, но не обеспечивает подвода в сеть какой-либо электрической мощности. В качестве альтернативы, электрический генератор 20 также может быть не подключен к сети 21 (т.е. прерыватель разомкнут).
В примере, представленном на фиг.3, выходная мощность 31 почти в два раза превышает величину выходной мощности 30. Тем не менее, ясно, что это лишь один из многочисленных возможных вариантов, и выходные мощности 30 и 31 вообще могут быть равны или могут отличаться.
В другом примере (фиг.4) газотурбинная установка 2 может вырабатывать отрицательную мощность или, другими словами, для ее работы может быть необходим подвод электроэнергии (главным образом, для работы компрессора). В этом случае электрическую мощность, необходимую для работы газотурбинной установки, обеспечивает система 10 выработки энергии с помощью водяного пара.
В этой связи фиг.4 показывает, что система 10 выработки энергии с помощью водяного пара генерирует выходную мощность 31, большую, чем собственные нужды 33 и чем требуется для газотурбинной установки 2 (поскольку ее выходная мощность 30 отрицательная). Поскольку положительная выходная электрическая мощность 31 компенсирует отрицательную выходную мощность 30, общая вырабатываемая мощность 32 (которая поступает в электрическую сеть 21) равна нулю.
При работе в таком режиме электростанция 1 готова подавать большую мощность в сеть 21 в очень короткие периоды времени, поскольку как газотурбинная установка 2, так и система 10 выработки энергии с помощью водяного пара уже находятся в рабочих режимах (подключены к сети 21 или не подключены). Кроме того, эти рабочие режимы могут поддерживаться в течение продолжительных периодов, так что электростанция 1 может быть постоянно подсоединена к сети без подачи в сеть 21 какой-либо электроэнергии, с ее подводом в электрическую сеть только в том случае, когда это необходимо. Электростанция 1 таким образом может работать для удовлетворения требованиям пиковой нагрузки, например, вместе с электростанциями, работающими на возобновляемых источниках энергии.
Описанный здесь установившийся режим работы может быть реализован из режима отключения электростанции (следовательно, для этого электростанция должна быть запущена) или из режима нормального функционирования, при котором электростанция подает электрическую энергию в сеть 21 (следовательно, электростанция должна быть ненагруженной).
Запуск
Запуск электростанции описан со ссылкой на фиг.5, которая показывает выходную мощность 30 газотурбинной установки 2, выходную мощность 31 системы 10 выработки энергии с помощью водяного пара и общую выработанную электрическую мощность 32 (равную сумме выходных мощностей 30 и 31).
Для запуска электростанции 1 на стадии 45 запускают газотурбинную установку 2 и нагружают электростанцию вплоть до нагрузки 33, соответствующей собственным нуждам, после чего поддерживают электростанцию в режиме нагрузки 33, соответствующей ее собственным нуждам (стадия 46).
Кроме того, на стадии 46 запускают систему 10 выработки энергии с помощью водяного пара (т.е. нагружают до частоты синхронизации) и затем нагружают на стадии 47. В этом режиме система 10 выработки энергии с помощью водяного пара вырабатывает вторую выходную электрическую мощность 31, большую, чем нулевая мощность.
В то время как система 10 выработки энергии с помощью водяного пара нагружается (на стадии 47), выходная мощность 30 газотурбинной установки 2 уменьшается.
Общая генерируемая мощность 32 (которая представляет собой сумму первой и второй электрических мощностей 30, 31) по существу равна собственным нуждам электростанции 1.
Фиг.6 демонстрирует дополнительный пример, в котором на стадии 47 выходную мощность 30 газотурбинной установки снижают до величины, меньшей нуля, т.е. для работы газотурбинной установки 2 требуется подвод электрической энергии. Как уже было отмечено, в этом случае мощность, необходимая для работы газотурбинной установки 2, может быть обеспечена системой 10 выработки энергии с помощью водяного пара, которая может вырабатывать выходную мощность, превышающую собственные нужды 33, так чтобы мощность 31 компенсировала мощность 30, а общая вырабатываемая мощность 32 по существу была равна нулю.
Электростанцию 1 затем поддерживают в установившемся режиме работы с общей генерируемой мощностью 32, по существу равной расходу электроэнергии 33 на собственные нужды (т.е. никакая электрическая мощность в сеть 21 не поступает).
Предпочтительно электрический генератор 20 подключен к сети 21. Поскольку в таком режиме электростанция 1 вырабатывает лишь энергию, соответствующую собственным нуждам 33, она не обеспечивает подачу какой-либо энергии в электрическую сеть 21.
В котле 11 генерируется водяной пар, который затем расширяется в паровой турбине 12. Паровая турбина 12 содержит статор 12а и ротор 12b. Предпочтительно, в то время как выходная мощность 30 газотурбинной установки 2 уменьшается на стадии 47, газотурбинную установку 2 регулируют таким образом, чтобы получить минимальную температуру пара, подходящую для ротора 12. Другими словами, поскольку между паром и ротором 12b происходит теплообмен, температура пара не может слишком отличаться от температуры указанного ротора 12b, т.к. это может вызвать значительные механические напряжения в роторе. По этой причине температура пара предпочтительно должна быть близка к температуре ротора 12b.
Снятие нагрузки
Далее со ссылкой с фиг.7 описан процесс снижения выходной мощности, осуществляемый для перевода электростанции 1 из режима, в котором она подает мощность в электрическую сеть 21, в режим, в котором она подключена к сети 21, но не подводит к ней какую-либо мощность.
На фиг.7 показаны первая выходная мощность 30 газотурбинной установки 2, вторая выходная мощность 31 системы 10 выработки энергии с помощью водяного пара, общая генерируемая мощность 32 (соответствующая мощности, подводимой в электрическую сеть 21) и собственные нужды 33.
Начиная от установившегося режима 54 работы электростанции 1, которая подает мощность в электрическую сеть 21, предложенный способ включает стадию 55 снижения первой выходной мощности 30 газотурбинной установки 2. В предпочтительном воплощении способа первую выходную мощность 30 снижают вплоть до достижения минимальной температуры пара, подходящей для ротора.
При проведении этой стадии вторая выходная мощность 31 системы 10 выработки энергии с помощью водяного пара также снижается вследствие уменьшения количества теплоты, содержащейся в отходящих газах газотурбинной установки, поступающих в паровой котел 11, что приводит к генерированию в котле 11 меньшего количества водяного пара.
После этого на стадии 56 уменьшается вторая выходная мощность 31 системы 10 выработки энергии с помощью водяного пара до установившегося режима (в то же время первая выходная мощность 30 газотурбинной установки 2 поддерживается по существу постоянной), а на последующей стадии 57 первая выходная мощность 30 газотурбинной установки 2 еще больше уменьшается, так что общая генерируемая мощность 32, т.е. сумма первой и второй выходных мощностей 30, 31, выработанных газотурбинной установкой и системой 10 выработки энергии с помощью водяного пара, по существу равна собственным нуждам 33 электростанции 1.
Фиг.7 иллюстрирует пример, в котором как газотурбинная установка, так и система 10 выработки энергии с помощью водяного пара вырабатывает положительную первую выходную мощность 30 и вторую выходную мощность 31.
Фиг.8 демонстрирует пример, в котором выходная мощность 30 газотурбинной установки уменьшается до нулевой величины. В этом случае для функционирования газотурбинной установки 2 необходим подвод энергии, и эта энергия подводится от системы 10 выработки энергии с помощью водяного пара.
В результате электростанция поддерживается в установившемся режиме (стадия 58), при этом общая вырабатываемая мощность 32 по существу равна мощности 33, необходимой для собственных нужд электростанции 1.
Электростанция 1, показанная на фиг.1, содержит газовую турбину 5, паровую турбину 12 и генератор 20, соединенные посредством одного единственного вала. Очевидно, что этот же способ может быть реализован в другой электростанции 1, имеющей более чем один вал, например в электростанции, показанной на фиг.2.
В этом случае газотурбинная установка 2 (или каждая газотурбинная установка 2, если используется более чем одна газотурбинная установка) и система 10 выработки энергии с помощью водяного пара (или каждая система 10 выработки энергии с помощью водяного пара, если используется более чем одна такая система) соединены с генераторами 20а, 20b, которые подключены к электрической сети 21. Передача энергии от системы 10 выработки электроэнергии за счет энергии водяного пара к газотурбинной установке 2 (когда это необходимо) может осуществляться посредством электрической сети 21. Другими словами, система 10 выработки энергии с помощью водяного пара может подавать электрическую энергию в сеть 21, а газотурбинная установка 2 может потреблять энергию от электрической сети 21 (при этом ее генератор 20а работает как электромотор), так что общая генерируемая мощность (которую подают в сеть 21 и которая представляет собой разность между мощностью, подводимой от системы 10 выработки энергии с помощью водяного пара, и мощности, потребляемой газотурбинной установкой 2, равна нулю.
Кроме того, или в качестве альтернативы электроэнергия может быть подведена непосредственно к генераторам 20а и 20b по электрической линии 23.
Помимо этого, возможно также отключение электростанции 1 от электрической сети 21.
Конечно, описанные выше особенности изобретения могут быть обеспечены независимо одна от другой.
На практике материалы и геометрические размеры элементов электростанции могут быть выбраны по усмотрению в соответствии с техническими требованиями и существующим уровнем технологии.
Перечень ссылочных позиций
1 - электростанция, 2 - газотурбинная установка, 3 - компрессор, 4 - камера сгорания, 5 - турбина, 6 - топливо, 7 - окислитель, 8 - продукты сгорания, 10 - система выработки энергии с помощью водяного пара, 11 - паровой котел, 12а - статор, 12b -ротор, 13 - конденсатор, 14 насос, 20, 20а, 20b - электрогенератор, 21 - электрическая сеть, 22, 23 - электрическая линия, 30 (30а) - первая выходная мощность от 2 газотурбинной установки, 31 (31а) - вторая выходная мощность от 12, 32 - общая генерируемая мощность (30+31), 33 - собственные нужды, 45, 46, 47 - стадии, 54,55,56, 57 - стадии, t - время.

Claims (9)

1. Способ работы электростанции (1), содержащей газотурбинную установку (2) и систему (10) выработки энергии с помощью водяного пара, которая приводит в действие по меньшей мере один электрический генератор (20), при этом в газотурбинной установке производят отходящие газы (8), которые направляют в паровой котел (11) системы (10) выработки энергии с помощью водяного пара, отличающийся тем, что в установившемся режиме газотурбинная установка (2) работает за счет подвода электроэнергии, система (10) выработки энергии с помощью водяного пара генерирует вторую выходную мощность (31) больше нуля, при этом общая генерируемая мощность (32), представляющая собой сумму первой и второй выходных мощностей (30, 31), по существу равна собственным нуждам (33) электростанции (1).
2. Способ по п. 1, отличающийся тем, что система (10) выработки энергии с помощью водяного пара генерирует вторую выходную мощность (31), которая больше указанных собственных нужд (33), при этом мощность, генерируемую системой (10) выработки энергии с помощью водяного пара, превышающую указанные собственные нужды (33), используют для привода газотурбинной установки (2).
3. Способ по п. 1, отличающийся тем, что электрический генератор (20) подключен к электрической сети (21).
4. Способ запуска электростанции (1), содержащей газотурбинную установку (2) и систему (10) выработки энергии с помощью водяного пара, которая приводит в действие по меньшей мере один электрический генератор (20), при этом газотурбинная установка (2) производит отходящие газы (8), которые направляют в паровой котел (11) системы (10) выработки энергии с помощью водяного пара, отличающийся тем, что запускают и нагружают газотурбинную установку (2) для генерирования первой выходной мощности (30), которая больше нуля и по существу равна собственным нуждам, затем запускают и нагружают систему (10) выработки энергии с помощью водяного пара для генерирования второй выходной мощности (31), которая больше нуля, снижают первую выходную мощность (30) так, что газотурбинная установка (2) работает за счет подвода электроэнергии при нагруженной системе (10) выработки энергии с помощью водяного пара, при этом общая генерируемая мощность (32), представляющая собой сумму первой и второй выходных мощностей (30, 31), по существу равна собственным нуждам (33) электростанции (1), и затем поддерживают работу электростанции (1) в установившемся режиме при общей генерируемой мощности (32), по существу равной собственным нуждам (33) электростанции (1).
5. Способ по п. 4, отличающийся тем, что электрический генератор (20) подключен к электрической сети (21).
6. Способ по п. 4, отличающийся тем, что в паровом котле (11) генерируется водяной пар, который затем расширяется в одной или более турбинах (12) системы (10) выработки энергии с помощью водяного пара, при этом турбина (12) содержит статор (12а) и ротор (12b), причем при снижении первой выходной мощности (30) газовую турбину регулируют так, чтобы получить минимальную температуру пара, подходящую для ротора (12b).
7. Способ снижения мощности электростанции (1), содержащей газотурбинную установку (2) и систему (10) выработки энергии с помощью водяного пара, которая приводит в действие по меньшей мере один электрический генератор (20), характеризующийся тем, что газотурбинная установка (2) производит отходящие газы (8), которые направляют в паровой котел (11) системы (10) выработки энергии с помощью водяного пара, в паровом котле (11) генерируется водяной пар, который затем расширяется в турбине (12) системы (10) выработки энергии с помощью водяного пара, причем турбина (12) содержит статор (12а) и ротор (12b), при этом уменьшают первую выходную мощность (30) газовой турбины (2), затем уменьшают вторую выходную мощность (31) системы (10) выработки энергии с помощью водяного пара, затем уменьшают первую выходную мощность (30) газотурбинной установки (2) таким образом, что общая генерируемая мощность (32), представляющая собой сумму первой и второй выходных мощностей (30, 31), по существу равна собственным нуждам (33) электростанции (1), и затем поддерживают работу электростанции (1) в установившемся режиме при общей генерируемой мощности (32), по существу равной собственным нуждам (33) электростанции (1).
8. Способ по п. 7, в котором в течение первого уменьшения первой выходной мощности (30) указанную первую выходную мощность (30) уменьшают до достижения минимальной температуры пара, подходящей для ротора (12b).
9. Способ по п. 7, в котором отключают электростанцию (1) от электрической сети (21).
RU2012138139/06A 2011-09-07 2012-09-06 Способ работы электростанции RU2552882C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11180459.7 2011-09-07
EP11180459 2011-09-07

Publications (2)

Publication Number Publication Date
RU2012138139A RU2012138139A (ru) 2014-03-27
RU2552882C2 true RU2552882C2 (ru) 2015-06-10

Family

ID=46682753

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012138139/06A RU2552882C2 (ru) 2011-09-07 2012-09-06 Способ работы электростанции

Country Status (8)

Country Link
US (1) US9127574B2 (ru)
EP (1) EP2568127B1 (ru)
JP (1) JP2013057318A (ru)
CN (1) CN102996190B (ru)
CA (1) CA2787868C (ru)
ES (1) ES2535513T3 (ru)
RU (1) RU2552882C2 (ru)
SG (1) SG188729A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2732860C2 (ru) * 2015-08-20 2020-09-23 Аурелия Турбинс Ой Система, способ и компьютерная программа для эксплуатации многокаскадной газовой турбины наземного или морского базирования
RU2810330C1 (ru) * 2023-07-25 2023-12-26 Акционерное общество "ОДК-Авиадвигатель" Способ импульсной разгрузки энергетической газотурбинной установки при внезапном сбросе нагрузки

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2775107A1 (en) * 2013-03-06 2014-09-10 Alstom Technology Ltd Method for starting-up and operating a combined-cycle power plant
DE102013206992A1 (de) 2013-04-18 2014-10-23 Siemens Aktiengesellschaft Bereitstellung negativer Regelleistung durch eine Gasturbine
US8847559B1 (en) * 2013-07-24 2014-09-30 Robert Ryan Jameson Horne Generator system and method of operation
DE102017113926A1 (de) * 2017-06-23 2018-12-27 Rwe Power Aktiengesellschaft Verfahren zum Betrieb eines Kraftwerks
JP7007029B2 (ja) 2017-11-09 2022-01-24 ミツビシ パワー アメリカズ インコーポレイテッド 複合サイクル発電装置のための追加的な動力供給

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU378644A1 (ru) * 1971-12-27 1973-04-18 Способ сохранения в резерве паротурбогенераторной установки„-,^-.-:^.-;-tv«;=
SU454362A1 (ru) * 1974-01-09 1974-12-25 Ленинградский технологический институт холодильной промышленности Парогазова установка
SU787695A1 (ru) * 1979-01-17 1980-12-15 Ивановский энергетический институт им.В.И.Ленина Энергетическа установка
DE3016777A1 (de) * 1980-04-30 1981-11-05 Hitachi, Ltd., Tokyo Verfahren und regeleinrichtung zum betreiben eines kombinierten gas- und dampfturbinen-karftwerks
SU1163681A1 (ru) * 1982-05-06 1985-12-15 Саратовский Ордена Трудового Красного Знамени Политехнический Институт Парогазова установка
EP1736638A1 (de) * 2005-06-21 2006-12-27 Siemens Aktiengesellschaft Verfahren zum Hochfahren einer Gas- und Dampfturbinenanlage
US20090044534A1 (en) * 2005-05-19 2009-02-19 Roberto Carapellucci Scheme of power enhancement for combined cycle plants through steam injection
RU2395696C1 (ru) * 2009-05-28 2010-07-27 Закрытое акционерное общество "НАУЧНО-ПРОИЗВОДСТВЕННАЯ КОМПАНИЯ "ДЕЛЬФИН-ИНФОРМАТИКА" Тепловая паротурбинная электростанция с парогенерирующей водород-кислородной установкой (варианты)
US20110016876A1 (en) * 2009-07-21 2011-01-27 Alstom Technology Ltd Method for the control of gas turbine engines
US7966102B2 (en) * 2007-10-30 2011-06-21 General Electric Company Method and system for power plant block loading

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3564273A (en) * 1967-11-09 1971-02-16 Gen Electric Pulse width modulated control system with external feedback and mechanical memory
US3588265A (en) * 1968-04-19 1971-06-28 Westinghouse Electric Corp System and method for providing steam turbine operation with improved dynamics
US3561216A (en) * 1969-03-19 1971-02-09 Gen Electric Thermal stress controlled loading of steam turbine-generators
US3552872A (en) * 1969-04-14 1971-01-05 Westinghouse Electric Corp Computer positioning control system with manual backup control especially adapted for operating steam turbine valves
US3703807A (en) * 1971-01-15 1972-11-28 Laval Turbine Combined gas-steam turbine power plant
FR2125680A5 (ru) * 1971-02-16 1972-09-29 Rigollot Georges
US3959635A (en) * 1972-04-24 1976-05-25 Westinghouse Electric Corporation System and method for operating a steam turbine with digital computer control having improved automatic startup control features
US3762162A (en) * 1972-05-16 1973-10-02 Hitachi Ltd Method of operating and control system for combined cycle plants
US4258424A (en) * 1972-12-29 1981-03-24 Westinghouse Electric Corp. System and method for operating a steam turbine and an electric power generating plant
US3849662A (en) * 1973-01-02 1974-11-19 Combustion Eng Combined steam and gas turbine power plant having gasified coal fuel supply
US4455614A (en) * 1973-09-21 1984-06-19 Westinghouse Electric Corp. Gas turbine and steam turbine combined cycle electric power generating plant having a coordinated and hybridized control system and an improved factory based method for making and testing combined cycle and other power plants and control systems therefor
JPS5171442A (ja) * 1974-12-18 1976-06-21 Hitachi Ltd Fukugosaikurupurantono shutsuryokuseigyohoshiki
US4103178A (en) * 1977-03-11 1978-07-25 Westinghouse Electric Corp. Black start system for large steam powered electric generation plants
JPS541742A (en) 1977-06-03 1979-01-08 Hitachi Ltd Controller of complex generating plant
JPS5564409A (en) 1978-11-10 1980-05-15 Seiko Instr & Electronics Ltd Agc circuit of receiver
JPS5847204Y2 (ja) * 1979-10-31 1983-10-28 株式会社日立製作所 複合サイクルプラントの出力制御方式
DE2945404C2 (de) * 1979-11-09 1983-05-11 Kraftwerk Union AG, 4330 Mülheim Verfahren zum Betrieb einer kombinierten Gas-Dampfturbinenanlage und Gas-Dampfturbinenanlage zur Durchführung dieses Verfahrens
US4362013A (en) * 1980-04-04 1982-12-07 Hitachi, Ltd. Method for operating a combined plant
US4329592A (en) * 1980-09-15 1982-05-11 General Electric Company Steam turbine control
DE3320228A1 (de) * 1983-06-03 1984-12-06 Kraftwerk Union AG, 4330 Mülheim Kraftwerk mit einer integrierten kohlevergasungsanlage
DE3320227A1 (de) * 1983-06-03 1984-12-06 Kraftwerk Union AG, 4330 Mülheim Kraftwerk mit einer integrierten kohlevergasungsanlage
DE3415224A1 (de) * 1984-04-21 1985-10-24 Kraftwerk Union AG, 4330 Mülheim Gasturbinen- und dampfkraftwerk mit einer integrierten kohlevergasungsanlage
JPS60249609A (ja) 1984-05-25 1985-12-10 Toshiba Corp コンバインドサイクル発電プラントの負荷制御装置
JPS6165026A (ja) 1984-09-05 1986-04-03 Toshiba Corp 自家発発電設備
JPS62502209A (ja) * 1985-03-15 1987-08-27 テイ−シイ−エイチ、サ−モ−コンサルテイング−ハイデルベルク、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツンク 結合型蒸気−ガスタ−ビンシステム
JPH03284197A (ja) 1990-03-28 1991-12-13 Mitsubishi Electric Corp 発電機の原動機制御装置
US5431016A (en) * 1993-08-16 1995-07-11 Loral Vought Systems Corp. High efficiency power generation
US5565017A (en) * 1993-12-17 1996-10-15 Air Products And Chemicals, Inc. High temperature oxygen production with steam and power generation
DE4409567A1 (de) * 1994-03-21 1995-09-28 Abb Management Ag Verfahren zur Kühlung von thermisch belasteten Komponenten einer Gasturbogruppe
US5666800A (en) * 1994-06-14 1997-09-16 Air Products And Chemicals, Inc. Gasification combined cycle power generation process with heat-integrated chemical production
US5473898A (en) * 1995-02-01 1995-12-12 Westinghouse Electric Corporation Method and apparatus for warming a steam turbine in a combined cycle power plant
US6244033B1 (en) * 1999-03-19 2001-06-12 Roger Wylie Process for generating electric power
CN1187520C (zh) * 1999-12-21 2005-02-02 西门子公司 汽轮机运行方法和具有按此方法工作的汽轮机的透平装置
US6644011B2 (en) * 2000-03-24 2003-11-11 Cheng Power Systems, Inc. Advanced Cheng Combined Cycle
US6608395B1 (en) * 2000-03-28 2003-08-19 Kinder Morgan, Inc. Hybrid combined cycle power generation facility
DE10056231B4 (de) 2000-11-13 2012-02-23 Alstom Technology Ltd. Verfahren zum Betrieb eines Kombikraftwerks
JP2003032898A (ja) 2001-07-18 2003-01-31 Kobe Steel Ltd 自家発電設備
US6588212B1 (en) * 2001-09-05 2003-07-08 Texaco Inc. Combustion turbine fuel inlet temperature management for maximum power outlet
JP2004080945A (ja) 2002-08-21 2004-03-11 Hokuei:Kk コジェネレーションシステムにおける制御方法
CN1330855C (zh) * 2002-09-17 2007-08-08 福斯特能源公司 利用再循环工作流体的先进混杂式煤气化循环
US6751959B1 (en) * 2002-12-09 2004-06-22 Tennessee Valley Authority Simple and compact low-temperature power cycle
JP4138596B2 (ja) 2003-07-17 2008-08-27 三菱重工業株式会社 コンバインドプラントの自動停止方法及び自動停止制御装置及びこの自動停止制御装置を備えたコンバインドプラント
US6766646B1 (en) * 2003-11-19 2004-07-27 General Electric Company Rapid power producing system and method for steam turbine
US7188478B2 (en) * 2004-09-13 2007-03-13 General Electric Company Power generation system and method of operating same
JP2006191748A (ja) 2005-01-06 2006-07-20 Kansai Electric Power Co Inc:The 集合型電力ネットワークシステム
EP1752619A2 (de) * 2005-04-18 2007-02-14 ALSTOM Technology Ltd Turbogruppe mit Anfahrvorrichtung
US20070130952A1 (en) * 2005-12-08 2007-06-14 Siemens Power Generation, Inc. Exhaust heat augmentation in a combined cycle power plant
SE531872C2 (sv) * 2006-01-24 2009-09-01 Bengt H Nilsson Med Ultirec Fa Förfarande för stegvis energiomvandling
EP2203680B1 (en) * 2007-09-25 2015-12-23 Bogdan Wojak Methods and systems for sulphur combustion
US8133298B2 (en) * 2007-12-06 2012-03-13 Air Products And Chemicals, Inc. Blast furnace iron production with integrated power generation
US20100146982A1 (en) * 2007-12-06 2010-06-17 Air Products And Chemicals, Inc. Blast furnace iron production with integrated power generation
EP2450535A1 (de) * 2008-06-27 2012-05-09 Alstom Technology Ltd Verfahren zur Primärregelung einer kombinierten Gas- und Dampfturbinenanlage
DE102008062588B4 (de) * 2008-12-16 2010-11-25 Siemens Aktiengesellschaft Verfahren zur Stabilisierung der Netzfrequenz eines elektrischen Stromnetzes
US8776521B2 (en) * 2010-02-26 2014-07-15 General Electric Company Systems and methods for prewarming heat recovery steam generator piping
DE102011102720B4 (de) * 2010-05-26 2021-10-28 Ansaldo Energia Switzerland AG Kraftwerk mit kombiniertem Zyklus und mit Abgasrückführung
CH703218A1 (de) * 2010-05-26 2011-11-30 Alstom Technology Ltd Verfahren zum Betreiben eines Gas-und-Dampf-Kombikraftwerk mit Rauchgasrezirkulation sowie Kraftwerk.
EP2395205A1 (en) * 2010-06-10 2011-12-14 Alstom Technology Ltd Power Plant with CO2 Capture and Compression
US8505299B2 (en) * 2010-07-14 2013-08-13 General Electric Company Steam turbine flow adjustment system
US9019108B2 (en) * 2010-08-05 2015-04-28 General Electric Company Thermal measurement system for fault detection within a power generation system
CH703770A1 (de) * 2010-09-02 2012-03-15 Alstom Technology Ltd Verfahren zum spülen der abgasrezirkulationsleitungen einer gasturbine.
DK2630342T3 (en) * 2010-10-19 2014-12-15 Alstom Technology Ltd Method for operation of a gas / steam-combi power plant with cogeneration and a gas / steam-combi power plant for carrying out the process
JP5665621B2 (ja) * 2011-03-25 2015-02-04 株式会社東芝 排熱回収ボイラおよび発電プラント
JP5774381B2 (ja) * 2011-05-31 2015-09-09 株式会社東芝 排熱回収ボイラおよび発電プラント
US8899909B2 (en) * 2011-06-27 2014-12-02 General Electric Company Systems and methods for steam turbine wheel space cooling
US20140116063A1 (en) * 2011-07-11 2014-05-01 Hatch Ltd. Advanced combined cycle systems and methods based on methanol indirect combustion
ES2578294T3 (es) * 2011-09-07 2016-07-22 Alstom Technology Ltd. Procedimiento de funcionamiento de una central eléctrica de ciclo combinado
KR101619754B1 (ko) * 2011-12-19 2016-05-11 제네럴 일렉트릭 테크놀러지 게엠베하 연도 가스 재순환을 갖는 가스 터빈 발전소에서의 가스 조성물의 제어
EP2642089B1 (en) * 2012-03-19 2016-08-24 General Electric Technology GmbH Method for operating a power plant
CN104981587B (zh) * 2012-03-28 2017-05-03 通用电器技术有限公司 联合循环发电厂及用于操作此类联合循环发电厂的方法
US20140150447A1 (en) * 2012-12-05 2014-06-05 General Electric Company Load ramp and start-up system for combined cycle power plant and method of operation
US9567913B2 (en) * 2013-01-28 2017-02-14 General Electric Company Systems and methods to extend gas turbine hot gas path parts with supercharged air flow bypass
EP2770171A1 (en) * 2013-02-22 2014-08-27 Alstom Technology Ltd Method for providing a frequency response for a combined cycle power plant
EP2775106A1 (en) * 2013-03-06 2014-09-10 Alstom Technology Ltd Method for operating a combined-cycle power plant
EP2775107A1 (en) * 2013-03-06 2014-09-10 Alstom Technology Ltd Method for starting-up and operating a combined-cycle power plant
US9618261B2 (en) * 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
EP2824293A1 (en) * 2013-07-08 2015-01-14 Alstom Technology Ltd Power plant with integrated fuel gas preheating
EP2837778A1 (en) * 2013-08-15 2015-02-18 ALSTOM Technology Ltd Operation of a gas turbine power plant with carbon dioxide separation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU378644A1 (ru) * 1971-12-27 1973-04-18 Способ сохранения в резерве паротурбогенераторной установки„-,^-.-:^.-;-tv«;=
SU454362A1 (ru) * 1974-01-09 1974-12-25 Ленинградский технологический институт холодильной промышленности Парогазова установка
SU787695A1 (ru) * 1979-01-17 1980-12-15 Ивановский энергетический институт им.В.И.Ленина Энергетическа установка
DE3016777A1 (de) * 1980-04-30 1981-11-05 Hitachi, Ltd., Tokyo Verfahren und regeleinrichtung zum betreiben eines kombinierten gas- und dampfturbinen-karftwerks
SU1163681A1 (ru) * 1982-05-06 1985-12-15 Саратовский Ордена Трудового Красного Знамени Политехнический Институт Парогазова установка
US20090044534A1 (en) * 2005-05-19 2009-02-19 Roberto Carapellucci Scheme of power enhancement for combined cycle plants through steam injection
EP1736638A1 (de) * 2005-06-21 2006-12-27 Siemens Aktiengesellschaft Verfahren zum Hochfahren einer Gas- und Dampfturbinenanlage
US7966102B2 (en) * 2007-10-30 2011-06-21 General Electric Company Method and system for power plant block loading
RU2395696C1 (ru) * 2009-05-28 2010-07-27 Закрытое акционерное общество "НАУЧНО-ПРОИЗВОДСТВЕННАЯ КОМПАНИЯ "ДЕЛЬФИН-ИНФОРМАТИКА" Тепловая паротурбинная электростанция с парогенерирующей водород-кислородной установкой (варианты)
US20110016876A1 (en) * 2009-07-21 2011-01-27 Alstom Technology Ltd Method for the control of gas turbine engines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2732860C2 (ru) * 2015-08-20 2020-09-23 Аурелия Турбинс Ой Система, способ и компьютерная программа для эксплуатации многокаскадной газовой турбины наземного или морского базирования
RU2810330C1 (ru) * 2023-07-25 2023-12-26 Акционерное общество "ОДК-Авиадвигатель" Способ импульсной разгрузки энергетической газотурбинной установки при внезапном сбросе нагрузки

Also Published As

Publication number Publication date
EP2568127A3 (en) 2013-07-03
CN102996190A (zh) 2013-03-27
SG188729A1 (en) 2013-04-30
ES2535513T3 (es) 2015-05-12
CA2787868A1 (en) 2013-03-07
CA2787868C (en) 2016-07-12
EP2568127A2 (en) 2013-03-13
US20130082467A1 (en) 2013-04-04
RU2012138139A (ru) 2014-03-27
EP2568127B1 (en) 2015-02-25
US9127574B2 (en) 2015-09-08
CN102996190B (zh) 2016-06-08
JP2013057318A (ja) 2013-03-28

Similar Documents

Publication Publication Date Title
RU2552882C2 (ru) Способ работы электростанции
RU2195763C2 (ru) Турбогенераторная установка
CN102996252B (zh) 用于操作联合循环电厂的方法
CN104033249B (zh) 用于操作联合循环动力设备的方法
US10072532B2 (en) Method for starting-up and operating a combined-cycle power plant
CN104578060B (zh) 一种sfc自启动燃汽轮机组的黑启动柴油机的选择方法
JP2006274868A (ja) ガスタービン発電機の運転制御装置
JP2010148350A (ja) 送電線網を安定させるための装置
JP2019027398A (ja) コンバインドサイクル発電プラントおよびコンバインドサイクル発電プラントの制御方法
KR20170086408A (ko) 파워 플랜트의 작동 방법 및 파워 플랜트
Yu et al. Variable speed control of single shaft micro turbine gas generator in micro grids
CN214506566U (zh) 黑启动电源***
US20220271563A1 (en) System and method for black starting power plant
JP2014125987A (ja) ガスタービンシステム及びガスタービンシステムの運転方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170907