RU2525952C2 - Жаропрочный сплав на основе никеля - Google Patents

Жаропрочный сплав на основе никеля Download PDF

Info

Publication number
RU2525952C2
RU2525952C2 RU2012104486/02A RU2012104486A RU2525952C2 RU 2525952 C2 RU2525952 C2 RU 2525952C2 RU 2012104486/02 A RU2012104486/02 A RU 2012104486/02A RU 2012104486 A RU2012104486 A RU 2012104486A RU 2525952 C2 RU2525952 C2 RU 2525952C2
Authority
RU
Russia
Prior art keywords
nickel
heat
alloy
ppm
content
Prior art date
Application number
RU2012104486/02A
Other languages
English (en)
Other versions
RU2012104486A (ru
Inventor
Мохамед НАЗМИ
Андреас КЮНЦЛЕР
Клаус Пауль ГЕРДЕС
Original Assignee
Альстом Текнолоджи Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41198665&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2525952(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Альстом Текнолоджи Лтд. filed Critical Альстом Текнолоджи Лтд.
Publication of RU2012104486A publication Critical patent/RU2012104486A/ru
Application granted granted Critical
Publication of RU2525952C2 publication Critical patent/RU2525952C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Catalysts (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Изобретение относится к жаропрочному сплаву на основе никеля. Сплав содержит, мас. %: 7,7 - 8,3 Cr, 5,0 - 5,25 Co, 2,0 - 2,1 Mo, 7,8 - 8,3 W, 5,8 - 6,1 Та, 4,9 - 5,1 Аl, 1,0 - 1,5 Ti, 1,0 - 2,0 Re, 0 - 0,5 Nb, 0,11 - 0,15 Si, 0,1 - 0,7 Hf, 0,02 - 0,17 C, 50 - 400 частей на миллион В, остальное - никель и неизбежные примеси. Сплав характеризуется высокой стойкостью к окислению, коррозионной стойкостью и положительными свойствами ползучести при высоких температурах.18 з.п. ф-лы, 3 ил., 1 табл.

Description

Область техники, к которой относится изобретение
Изобретение относится к области технологии получения материалов. Оно касается жаропрочного сплава на основе никеля, предназначенного, в частности, для изготовления монокристаллических сплавов (сплав SX) или сплавов, полученных направленной кристаллизацией (сплав DS), например лопаток для газовых турбин. Однако сплав согласно изобретению пригоден также для традиционно отливаемых компонентов.
Уровень техники
Подобные жаропрочные сплавы на основе никеля известны. При высоких температурах монокристаллические компоненты из таких сплавов обладают очень высокой прочностью материала. В результате, например, температура на регулирующей ступени газовых турбин может быть повышена, что увеличивает эффективность газовой турбины.
Для этого в жаропрочных сплавах на основе никеля, предназначенных для монокристаллических компонентов и известных из US 4,643,782, ЕР 0 208 645 и US 5,270,123, содержатся упрочняющие твердый раствор легирующие элементы, например Re, W, Мо, Со, Сr, а также образующие γ'-фазы элементы, например Аl, Та, Ti. Содержание тугоплавких легирующих элементов (W, Мо, Re) в основной матрице (аустенитная γ-фаза) постоянно возрастает с увеличением температуры во время нагружения сплава. Так, например, обычные жаропрочные сплавы на основе никеля для получения монокристаллов содержат 6-8% W, ок. 3-6% Re и до 2% Мо (данные в мас. %). Раскрытые в перечисленных выше источниках информации сплавы характеризуются высоким пределом ползучести, хорошими свойствами усталости при низком числе циклов нагружения и усталости при большом числе циклов нагружения, а также стойкостью к окислению.
Эти известные сплавы были разработаны для авиационных турбин и поэтому оптимизированы в расчете на кратко- или среднесрочное применение, т.е. длительность нагружения рассчитана на величину до 20 000 часов. В противоположность этому компоненты газовых турбин промышленного типа должны быть рассчитаны на длительность нагружения до 75 000 часов, т.е. на долгосрочное применение.
При длительности нагружения 300 часов согласно документу US 4,643,782, например, в сплаве CMSX-4 при экспериментальном использовании в газовой турбине при температуре свыше 1000°С обнаружено сильное укрупнение зерна в γ'-фазе, что сопровождается повышением скорости ползучести сплава.
Следовательно, из-за наличия долгосрочного нагружения газовых турбин необходимо повысить стойкость к окислению известных сплавов при очень высоких температурах.
Из GB 2 234 521 А известно, что в результате обогащения жаропрочных сплавов на основе никеля бором или углеродом при направленном затвердевании образуются структуры, характеризующиеся эквиосевой или призматической структурой зерна. Углерод и бор упрочняют границы зерен, так как они вызывают выделение карбидов и боридов по границам зерен, которые устойчивы при высоких температурах. Кроме того, присутствие этих элементов на границах зерен и вдоль их замедляет процесс диффузии, являющийся основной причиной слабости границ зерен. Поэтому возможно увеличить разориентацию (составляющую обычно 6°) до 10-12° и, тем не менее, получить хорошие свойства материала при высоких температурах.
Из ЕР 1359231 В1 известен жаропрочный сплав на основе никеля, характеризующийся улучшенной разливаемостью и повышенной стойкостью к окислению по сравнению с известными жарочными сплавами на основе никеля и особенно пригодный, кроме того, например, для изготовления крупных монокристаллических компонентов длиной более 80 мм для газовых турбин. Раскрытый в этом документе жаропрочный сплав на основе никеля характеризуется следующим химическим составом (данные приведены в мас.%): 7,7 - 8,3 Cr, 5,0 - 5,25 Co, 2,0 - 2,1 Mo, 7,8 - 8,3 W, 5,8 - 6,1 Та, 4,9 - 5,1 Аl, 1,3 - 1,4 Ti, 0,11 - 0,15 Si, 0,11 - 0,15 Hf, 200 -750 ч./млн С, 50 - 400 ч./млн В, остальное - никель и обусловленные технологией примеси. Предпочтительный сплав с содержанием (данные приведены в мас.%): 7,7 - 8,3 Cr, 5,0 - 5,25 Co, 2,0 - 2,1 Mo, 7,8 - 8,3 W, 5,8 - 6,1 Та, 4,9 - 5,1 Аl, 1,3 - 1,4 Ti, 0,11 - 0,15 Si, 0,11 - 0,15 Hf, 200 - 300 ч./млн С, 50 - 100 ч./млн В, остальное - никель и обусловленные технологией примеси, особенно пригоден для изготовления крупных монокристаллических компонентов, например лопаток для газовых турбин.
Сущность изобретения
Целью изобретения является создание сплава, характеризующегося по сравнению со сплавами, известными из уровня техники, дополнительно оптимизированными свойствами при использовании в качестве компонентов газовой турбины. В основу изобретения положена задача создания жаропрочного сплава на основе никеля, обладающего высокой стойкостью к окислению при одновременно высокой коррозионной стойкости (при разных свойствах топлива) и являющегося, кроме того, предпочтительно менее дорогостоящим по сравнению с аналогичными известными жаропрочными сплавами на основе никеля.
Согласно изобретению указанная задача решается тем, что жаропрочный сплав на основе никеля по изобретению имеет следующий химический состав, мас.%:
7,7-8,3 Cr
5,0-5,25 Со
2,0-2,1 Мо
7,8-8,3 W
5,8-6,1 Та
4,9-5,1Аl
1,0-1,5 Ti
1,0-2,0 Re
0-0,5 Nb
0,11-0,15 Si
0,1-0,7 Hf
0,02-0,17 С
50-400 ч./млн В
остальное - никель и обусловленные технологией примеси.
Преимущества изобретения проявляются в том, что сплав обладает очень высокой стойкостью к окислению при одновременно очень большой коррозионной стойкости при высоких температурах. Неожиданно оказалось, что указанные преимущества могут быть достигнуты относительно малой добавкой рения.
Особое преимущество достигается в том случае, когда содержание рения в сплаве составляет 1,0 - 1,5 мас. %, предпочтительно 1,5 мас. %. Если содержание углерода составляет только ок. 200 - 300 ч./млн, а содержание бора - 50 - 100 ч./млн, предпочтительно 90 ч./млн, то в этом случае такие сплавы по изобретению особенно пригодны для изготовления монокристаллических компонентов. В случае необходимости содержание Nb в сплаве согласно изобретению может составлять до 0,5 мас. %, предпочтительно от 0,1 до 0,2 мас. %.
Особо предпочтительный жаропрочный сплав на основе никеля имеет следующий химический состав (мас. %):
8,2 Cr
5,2 Со
2,1 Мо
8,1 W
6,1 Та
5,0 Al
1,4 Ti
1,5 Re
0-0,2 Nb
0,12 Si
0,1-0,6Hf
0,095-0,17 С
240-290 ч./млн В
остальное - никель и обусловленные технологией примеси.
Такой сплав обладает превосходными свойствами при высоких температурах и вследствие сравнительно низкого содержания в нем рения является, кроме того, не слишком дорогостоящим.
Ниже приводится еще один предпочтительный химический состав сплава, мас.%:
8,2 Сr
5,2 Со
2,1 Мо
8,1 W
6,1 Та
5,0 Al
1,4 Ti
1,5 Re
0,1 Nb
0,12 Si
0,1 Hf
200 ч./млн С
90 ч./млн В
остальное - никель и обусловленные технологией примеси.
Такой сплав особенно пригоден для изготовления монокристаллических компонентов.
Другие предпочтительные варианты выполнения приведены в зависимых пунктах формулы изобретения.
Краткое описание чертежей
На чертежах приведен пример выполнения изобретения.
фиг.1 показывает результаты испытаний на растяжение (предел текучести, прочность на разрыв, относительное удлинение при разрыве) при комнатной температуре контрольного сплава, известного из уровня техники и сплава согласно изобретению;
фиг.2 показывает зависимость изменения удельной массы от времени при температуре 950°С для сплавов, приведенных на фиг.1;
фиг.3 показывает зависимость предела текучести от параметра Ларсона-Миллера для сплавов на фиг.1.
Осуществление изобретения
Ниже изобретение подробнее поясняется с помощью примера выполнения и фиг.1-3.
Исследовали жаропрочные сплавы на основе никеля с химическим составом, мас. %, приведенным в таблице 1.
Таблица 1
Химический состав исследованных сплавов
Контрольный сплав IN738LC (DS) KNX1 (СС) KNX2 (СС) KNX3 (СС) KNX4 (СС) Контрольный сплав KNX0 (СС)
Ni Остальное Остальное Остальное Остальное Остальное Остальное
Сr 16 8,2 8,2 8,2 8,2 8,2
Со 8,5 5,2 5,2 5,2 5,2 5,2
Мо 1,7 2,1 2,1 2,1 2,1 2,1
W 2,6 8,1 8,1 8,1 8,1 8,1
Та 1,7 6,1 6,1 6,1 6,1 6,1
Аl 3,4 5 5 5 5 5
Ti 3,4 1,4 1,4 1,4 1,4 1,4
Hf - 0,6 0,1 0,1 0,1 0,11
С - 0,17 0,02 0,095 0,17 0,02
В 0,01 0,029 0,009 0,024 0,029 0,009
Si - 0,12 0,12 0,12 0,12 0,12
Nb 0,9 - 0,1 - 0,2 -
Zr 0,1 - - - - -
Re - 1,5 1,5 1,5 1,5 -
Сплав IN738LC является контрольным сплавом, известным из уровня техники, KNXO также является контрольным сплавом (документ ЕР 1 359 231 В1), сплавы KNX1 - KNX4 являются сплавами согласно изобретению. Аббревиатура СС означает «conventionelly cast», т.е. традиционно отливаемый сплав с обычной поликристаллической структурой, аббревиатура DS означает «directionally solidified», т.е. сплав, полученный направленной кристаллизацией.
В отличие от сплавов по изобретению контрольные сплавы не легированы элементами С, Si, Hf, Re.
Углерод совместно с содержащимся бором упрочняет границы зерен, в частности также малоугловые границы зерен, которые расположены в направлении <001> в SX или DS лопатках газовых турбин из жаропрочных сплавов на основе никеля, так как эти элементы вызывают выделение по границам зерен карбидов/боридов, устойчивых при высоких температурах. Кроме того, присутствие углерода на или по границам зерен снижает процесс диффузии, являющийся основной причиной слабости границ зерен. В результате существенно улучшается отливка длинных монокристаллических компонентов, например, лопаток для газовых турбин длиной около 200-230 мм.
Жаропрочные сплавы на основе никеля с низким содержанием углерода и бора (не более 200-300 ч./млн С и 50-100 ч./млн В) согласно пункту 1 формулы изобретения могут применяться в качестве монокристаллических сплавов, и при повышенном содержании этих элементов (максимальные пределы см. в п.1 формулы изобретения) изготовленные из соответствующих сплавов компоненты могут также отливаться традиционным способом.
В результате добавки кремния в количестве от 0,11 до 0,15 вес. %, прежде всего в комбинации с гафнием в приведенных величинах, достигается существенное улучшение стойкости к окислению при высоких температурах по сравнению с жаропрочным сплавом на основе никеля, известным из уровня техники (см., например, фиг.2).
Алюминий и хром в указанных количествах также обеспечивают хорошую стойкость к окислению жаропрочного сплава на основе никеля согласно изобретению. Хром в сочетании с кремнием положительно сказывается, кроме того, на повышении коррозионной стойкости.
Re, W, Мо, Со и Сr представляют собой легирующие элементы, упрочняющие твердый раствор, а Аl, Та и Ti являются образующими γ'-фазы элементами, каждый из которых повышает прочность материала при высоких температурах. Поскольку считается, что решающее значение для достижения максимально возможной температуры во время нагружения сплава определяет, в частности, содержание тугоплавких легирующих элементов (W, Мо, Re) в основной матрице, то эти легирующие элементы, прежде всего Re, добавляли до настоящего времени в относительно больших количествах.
Умеренное содержание рения в жаропрочном сплаве на основе никеля согласно изобретению, составляющее предпочтительно 1,5 мас. %, оптимально повышает предел текучести сплава, с одной стороны, и не требует экстремально высоких затрат, с другой стороны, по сравнению, например. с известными из уровня техники монокристаллическими жаропрочными сплавами на основе никеля второго и третьего поколений, содержащими относительно большое количество рения (от ок. 3 до 6 мас.%).
На фиг.1 представлены результаты испытаний на растяжение (предел текучести, прочность на разрыв, относительное удлинение при разрыве) при комнатной температуре для сплава (DS IN738LC), известного из уровня техники, и сплава СС KNX1 согласно изобретению. Соответствующий химический состав сплавов приведен в таблице 1.
Перед изготовлением образов для испытания на временное сопротивление материал подвергали следующей термообработке:
1. IN738LC: 1120С/2 ч/ охлаждение воздуходувкой (GFC)
+845°С/24 ч/ охлаждение на воздухе
2. KNX1: 1260°С/2,5 ч/охлаждение на воздухе
+1080°С/5 ч/ охлаждение на воздухе
+870°С/16 ч/охлаждение на воздухе
На фиг.1 хорошо видно, что исследуемый сплав KNX1 согласно изобретению (отлитый традиционным способом) характеризуется по сравнению с известным (направленно затвердевавшим) сплавом IN738LC существенно большим пределом текучести σ0,2. Прочность на разрыв σUTS и относительное удлинение при разрыве ε, правда, меньше, чем у контрольного сплава, что однако с учетом планируемого назначения (в качестве компонентов газовой турбины) вряд ли это имеет значение.
На фиг.2 представлена квазиизотермическая диаграмма окисления. Для названных сплавов DS IN738LC и СС KNX1 показано соответствующее изменение удельной массы Δm/A (данные приведены в мг/см2) при температуре Т=950°С и времени t от 0 до 720 ч. Если сравнить характеристики обеих кривых, то во всем исследуемом диапазоне отмечается превосходство сплава СС KNX1 согласно изобретению. При времени выдержки от 5 часов и более изменение массы исследуемого образца из сплава согласно изобретению составляет лишь около 60% от изменения веса исследуемого образца из контрольного сплава.
На фиг.3 показана, с одной стороны, зависимость предела текучести от параметра Ларсона-Миллера для тех же сплавов, что и на фигурах 1, 2. Показатели для обоих исследованных сплавов могут быть представлены в виде одной кривой, т.е. они сопоставимы. Если же учесть тот факт, что сплавы DS (или SX) обычного типа обладают благодаря своей структуре повышенным пределом текучести по сравнению с традиционными сплавами не направленно затвердевшими поликристаллическими структурами с сопоставимым химическим составом, то для сплавов со структурой DS или DX согласно изобретению следует ожидать существенно лучшие характеристики текучести.
С другой стороны, из фиг.3 следует, что предел текучести при высоких температурах в огромной степени улучшен в сплаве СС KNX2 согласно изобретению по сравнению с известным контрольным сплавом СС KNX0. Было установлено, что во время нагрузки при Т=950°С и σ=140 МПа контрольный сплав СС KNX0 разрушался уже через 17,2 часа, в то время как сплав СС KNX2 согласно изобретению выдерживал эту нагрузку в течение времени, превышавшего более чем в 3,5 раза время контрольного сплава. Поскольку химические составы этих обоих сплавов отличаются по существу только содержанием рения (сплав СС KNX2 согласно изобретению содержит 1,5 мас.% Re, а сплав СС KNX0 не содержит рения), то преимущество сплава по изобретению объясняется оптимальным влиянием данного элемента, присутствующего в указанном, относительно умеренном количестве.
Само собой разумеется, что изобретение не ограничивается описанными примерами своего осуществления.

Claims (19)

1. Жаропрочный сплав на основе никеля, отличающийся тем, что имеет следующий химический состав, мас. %:
7,7-8,3 Cr
5,0-5,25 Со
2,0-2,1 Мо
7,8-8,3 W
5,8-6,1 Та
4,9-5,1 Аl
1,0-1,5 Ti
1,0-2,0 Re
0-0,5 Nb
0,11-0,15 Si
0,1-0,7 Hf
0,02-0,17 С
50-400 ч./млн В
остальное - никель и неизбежные примеси.
2. Жаропрочный сплав на основе никеля по п.1, отличающийся тем, что содержание в нем рения составляет 1,0-1,5 мас. %.
3. Жаропрочный сплав на основе никеля по п.2, отличающийся тем, что содержание в нем рения составляет 1,5 мас. %.
4. Жаропрочный сплав на основе никеля по любому из пп.1-3, отличающийся тем, что содержание в нем ниобия составляет 0-0,2 мас. %.
5. Жаропрочный сплав на основе никеля по п.4, отличающийся тем, что содержание в нем ниобия составляет 0,1-0,2 мас. %.
6. Жаропрочный сплав на основе никеля по п.5, отличающийся тем, что содержание в нем ниобия составляет 0,1 мас. %.
7. Жаропрочный сплав на основе никеля по любому из пп.1-3,5 или 6, отличающийся тем, что содержание в нем гафния составляет 0,1-0,6 мас. %.
8. Жаропрочный сплав на основе никеля по п.4, отличающийся тем, что содержание в нем гафния составляет 0,1-0,6 мас. %.
9. Жаропрочный сплав на основе никеля по п.7, отличающийся тем, что содержание в нем гафния составляет 0,1 мас. %.
10. Жаропрочный сплав на основе никеля по п.8, отличающийся тем, что содержание в нем гафния составляет 0,1 мас. %.
11. Жаропрочный сплав на основе никеля по любому из пп.1-3, 5, 6, 8-10, отличающийся тем, что содержание в нем углерода составляет 0,02-0,095 мас. %, предпочтительно 0,02-0,03 мас. %.
12. Жаропрочный сплав на основе никеля по п.4, отличающийся тем, что содержание в нем углерода составляет 0,02-0,095 мас. %, предпочтительно 0,02-0,03 мас. %.
13. Жаропрочный сплав на основе никеля по п.7, отличающийся тем, что содержание в нем углерода составляет 0,02-0,095 мас. %, предпочтительно 0,02-0,03 мас. %.
14. Жаропрочный сплав на основе никеля по любому из пп.1-3, 5, 6, 8-10, 12, 13, отличающийся тем, что содержание бора в нем составляет 50-100 ч./млн, предпочтительно 90 ч./млн.
15. Жаропрочный сплав на основе никеля по п.4, отличающийся тем, что содержание бора в нем составляет 50-100 ч./млн, предпочтительно 90 ч./млн.
16. Жаропрочный сплав на основе никеля по п.7, отличающийся тем, что содержание бора в нем составляет 50-100 ч./млн, предпочтительно 90 ч./млн.
17. Жаропрочный сплав на основе никеля по п.11, отличающийся тем, что содержание бора в нем составляет 50-100 ч./млн, предпочтительно 90 ч./млн.
18. Жаропрочный сплав на основе никеля по п.1, отличающийся тем, что он имеет следующий химический состав, мас.%:
8,2 Сr
5,2 Со
2,1 Мо
8,1 W
6,1 Та
5,0 Al
1,4 Ti
1,5 Re
0-0,2 Nb
0,12 Si
0,1-0,6 Hf
0,095-0,17 С
240-290 ч./млн В
остальное - никель и неизбежные примеси.
19. Жаропрочный сплав на основе никеля по п.1, отличающийся тем, что он имеет следующий химический состав, мас. %:
8,2 Сr
5,2 Со
2,1 Мо
8,1 W
6,1 Та
5,0 Al
1,4 Ti
1,5 Re
0,1 Nb
0,12 Si
0,1 Hf
0,02 С
90 ч./млн В
остальное - никель и неизбежные примеси.
RU2012104486/02A 2009-07-09 2010-07-01 Жаропрочный сплав на основе никеля RU2525952C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH01069/09A CH701415A1 (de) 2009-07-09 2009-07-09 Nickel-Basis-Superlegierung.
CH01069/09 2009-07-09
PCT/EP2010/059368 WO2011003804A1 (de) 2009-07-09 2010-07-01 Nickel-basis-superlegierung

Publications (2)

Publication Number Publication Date
RU2012104486A RU2012104486A (ru) 2013-08-20
RU2525952C2 true RU2525952C2 (ru) 2014-08-20

Family

ID=41198665

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012104486/02A RU2525952C2 (ru) 2009-07-09 2010-07-01 Жаропрочный сплав на основе никеля

Country Status (6)

Country Link
US (1) US9017605B2 (ru)
EP (1) EP2451986B2 (ru)
JP (1) JP5595495B2 (ru)
CH (1) CH701415A1 (ru)
RU (1) RU2525952C2 (ru)
WO (1) WO2011003804A1 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH701415A1 (de) 2009-07-09 2011-01-14 Alstom Technology Ltd Nickel-Basis-Superlegierung.
WO2013167513A1 (en) 2012-05-07 2013-11-14 Alstom Technology Ltd Method for manufacturing of components made of single crystal (sx) or directionally solidified (ds) superalloys
JP6016016B2 (ja) * 2012-08-09 2016-10-26 国立研究開発法人物質・材料研究機構 Ni基単結晶超合金
RU2685455C2 (ru) * 2015-12-15 2019-04-18 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Литейный никелевый сплав с равноосной структурой

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2088685C1 (ru) * 1995-03-14 1997-08-27 Уфимский государственный авиационный технический университет Жаропрочный сплав на никелевой основе
RU2186144C1 (ru) * 2000-11-16 2002-07-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Никелевый жаропрочный сплав для монокристального литья и изделие, выполненное из этого сплава
US6905559B2 (en) * 2002-12-06 2005-06-14 General Electric Company Nickel-base superalloy composition and its use in single-crystal articles
EP1359231B1 (de) * 2002-04-30 2005-10-19 ALSTOM Technology Ltd Nickel-Basis-Superlegierung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526499A (en) 1967-08-22 1970-09-01 Trw Inc Nickel base alloy having improved stress rupture properties
US4643782A (en) * 1984-03-19 1987-02-17 Cannon Muskegon Corporation Single crystal alloy technology
US5270123A (en) * 1992-03-05 1993-12-14 General Electric Company Nickel-base superalloy and article with high temperature strength and improved stability
US6190471B1 (en) 1999-05-26 2001-02-20 General Electric Company Fabrication of superalloy articles having hafnium- or zirconium-enriched protective layer
JP3679973B2 (ja) 2000-04-17 2005-08-03 三菱重工業株式会社 単結晶Ni基耐熱合金およびタービン翼およびガスタービン
DE60108212T2 (de) 2000-08-30 2005-12-08 Kabushiki Kaisha Toshiba Monokristalline Nickel-Basis-Legierungen und Verfahren zur Herstellung und daraus hergestellte Hochtemperaturbauteile einer Gasturbine
DE50112339D1 (de) 2001-12-13 2007-05-24 Siemens Ag Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
EP1997923B1 (en) 2006-03-20 2016-03-09 National Institute for Materials Science Method for producing an ni-base superalloy
ES2444407T3 (es) * 2006-09-07 2014-02-24 Alstom Technology Ltd Procedimiento para el tratamiento térmico de súper-aleaciones a base de níquel
CH701415A1 (de) 2009-07-09 2011-01-14 Alstom Technology Ltd Nickel-Basis-Superlegierung.
CH702642A1 (de) 2010-02-05 2011-08-15 Alstom Technology Ltd Nickel-Basis-Superlegierung mit verbessertem Degradationsverhalten.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2088685C1 (ru) * 1995-03-14 1997-08-27 Уфимский государственный авиационный технический университет Жаропрочный сплав на никелевой основе
RU2186144C1 (ru) * 2000-11-16 2002-07-27 Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Никелевый жаропрочный сплав для монокристального литья и изделие, выполненное из этого сплава
EP1359231B1 (de) * 2002-04-30 2005-10-19 ALSTOM Technology Ltd Nickel-Basis-Superlegierung
US6905559B2 (en) * 2002-12-06 2005-06-14 General Electric Company Nickel-base superalloy composition and its use in single-crystal articles

Also Published As

Publication number Publication date
EP2451986A1 (de) 2012-05-16
WO2011003804A1 (de) 2011-01-13
US20120128527A1 (en) 2012-05-24
EP2451986B1 (de) 2013-08-21
RU2012104486A (ru) 2013-08-20
JP5595495B2 (ja) 2014-09-24
JP2012532982A (ja) 2012-12-20
US9017605B2 (en) 2015-04-28
CH701415A1 (de) 2011-01-14
EP2451986B2 (de) 2017-10-18

Similar Documents

Publication Publication Date Title
US9945019B2 (en) Nickel-based heat-resistant superalloy
US20160201166A1 (en) Heat-resistant superalloy
JP5177559B2 (ja) Ni基単結晶超合金
JP4036091B2 (ja) ニッケル基耐熱合金及びガスタービン翼
JP5582532B2 (ja) Co基合金
JP3814662B2 (ja) Ni基単結晶超合金
US20110194971A1 (en) Heat-resistant superalloy
JP2009097094A (ja) ニッケル基超合金
TWI248975B (en) Nickel-base superalloy for high temperature, high strain application
US20090317288A1 (en) Ni-Base Superalloy and Method for Producing the Same
US6740292B2 (en) Nickel-base superalloy
RU2525952C2 (ru) Жаропрочный сплав на основе никеля
US20080240972A1 (en) Low-density directionally solidified single-crystal superalloys
JP5063550B2 (ja) ニッケル基合金及びそれを用いたガスタービン翼
JP5787535B2 (ja) 改善された劣化挙動を有するニッケル基超合金
JP2004256840A (ja) 複合強化型Ni基超合金とその製造方法
JPH09268337A (ja) 鍛造製高耐食超耐熱合金
JPH05505426A (ja) 鋳造用ニッケル系合金
JP3135691B2 (ja) 低熱膨張超耐熱合金
JP2011219853A (ja) クリープ特性に優れた単結晶ニッケル基超耐熱合金
RU2353691C2 (ru) Состав жаропрочного никелевого сплава (варианты)
EP3366794A1 (en) Ni-based superalloy
RU2383642C1 (ru) Жаропрочный литейный сплав на основе никеля
RU2768947C1 (ru) Жаропрочный никелевый сплав для литья деталей с монокристаллической структурой
JPH10226837A (ja) ガスタービンディスク用耐熱鋼

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20170518

MM4A The patent is invalid due to non-payment of fees

Effective date: 20180702