RU2520162C2 - Способ мониторинга контроллера трехфазного электродвигателя и/или электродвигателя - Google Patents

Способ мониторинга контроллера трехфазного электродвигателя и/или электродвигателя Download PDF

Info

Publication number
RU2520162C2
RU2520162C2 RU2011126660/28A RU2011126660A RU2520162C2 RU 2520162 C2 RU2520162 C2 RU 2520162C2 RU 2011126660/28 A RU2011126660/28 A RU 2011126660/28A RU 2011126660 A RU2011126660 A RU 2011126660A RU 2520162 C2 RU2520162 C2 RU 2520162C2
Authority
RU
Russia
Prior art keywords
counter
phase currents
electric motor
phase
value
Prior art date
Application number
RU2011126660/28A
Other languages
English (en)
Other versions
RU2011126660A (ru
Inventor
Фалько АБЕЛЬ
Ральф ХОХХАУЗЕН
Original Assignee
Бсх Бош Унд Сименс Хаусгерете Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бсх Бош Унд Сименс Хаусгерете Гмбх filed Critical Бсх Бош Унд Сименс Хаусгерете Гмбх
Publication of RU2011126660A publication Critical patent/RU2011126660A/ru
Application granted granted Critical
Publication of RU2520162C2 publication Critical patent/RU2520162C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0805Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for synchronous motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Изобретение относится к области электроники и электротехники, в частности к способу мониторинга контроллера трехфазного электродвигателя и/или электродвигателя. Способ мониторинга предполагает измерение двух фазных токов (ia, ib), проверку того, имеет ли один из двух измеренных фазных токов (ia, ib) значение, по существу, равное нулю, генерацию сигнала ошибки, если, по меньшей мере, один из двух измеренных фазных токов (ia, ib), по существу, равен нулю, проверку того, имеют ли два измеренных фазных тока (ia, ib) значения, по существу, отличные от нуля, образование суммы двух измеренных фазных токов (ia, ib), генерацию сигнала ошибки, если полученная сумма двух измеренных фазных токов (ia, ib), по существу, равна нулю. При этом при появлении сигнала ошибки увеличивают значение первого счетчика, затем увеличивают значение второго счетчика, если первый счетчик в течение определенного периода многократно превышает свое первое предельное значение. Затем распознают отсутствие, по меньшей мере, одного из трех фазных токов в том случае, если второй счетчик превышает второе предельное значение. Бытовой прибор, в частности посудомоечная или стиральная машина, содержит электродвигатель и устройство для мониторинга работоспособности электродвигателя. Технический результат изобретения - повышение надежности распознавания повреждений электродвигателя. 2 н. и 5 з.п. ф-лы, 2 ил.

Description

Область техники
Изобретение относится к способу мониторинга контроллера трехфазного электродвигателя и/или мониторинга электродвигателя, в частности асинхронного или синхронного электродвигателя.
Уровень техники
На уровне техники известно применение откачивающих насосов с однофазными электродвигателями с расщепленными полюсами в посудомоечных машинах. Эти двигатели рассчитаны на дискретную рабочую точку, и на них непосредственно подается напряжение электрической сети. Сбой единственной фазы приводит к остановке и может быть немедленно распознан по отсутствию тока фазы.
Раскрытие изобретения
Задачей изобретения является разработка способа, который позволит осуществлять проверку работоспособности контроллера электродвигателя и/или проверку работоспособности электродвигателя, в частности, в бытовом приборе. В частности, должен использоваться электродвигатель, который отличается большей универсальностью по сравнению с упомянутым электродвигателем с расщепленными полюсами.
Согласно изобретению эта задача решается способом мониторинга контроллера трехфазного электродвигателя и/или способом мониторинга электродвигателя, в частности асинхронного или синхронного электродвигателя, который содержит, по меньшей мере, следующие этапы:
- измерение двух фазных токов (ia, ib),
- проверка того, имеет ли один из двух измеренных фазных токов (ia, ib) значение, по существу, равное нулю,
- генерация сигнала ошибки, если, по меньшей мере, один из двух измеренных фазных токов (ia, ib), по существу, равен нулю,
- проверка того, имеют ли два измеренных фазных тока (ia, ib) значения, по существу, отличные от нуля,
- образование суммы двух измеренных фазных токов (ia, ib),
- генерация сигнала ошибки, если полученная сумма двух измеренных фазных токов (ia, ib), по существу, равна нулю.
В описываемой здесь системе измеренные токи проверяются в отношении возможной ошибочной комбинации на предмет того, что один из измеренных токов равен нулю, а другие токи не равны нулю, и/или сумма измеренных токов, по существу, равна нулю. Если выполняется, по меньшей мере, одно из условий, то выводится сигнал ошибки, который показывает, что контроллер и/или электродвигатель не работает надлежащим образом.
При этом следует заметить, что при отсутствии фазы фазный ток в отсутствующей фазе равен нулю, а в двух других фазах противоположные токи имеют одинаковую величину (противопоставление фаз). Так как оба фазных тока являются синусоидальными токами, которые каждые 180° переходят через ноль, и так как даже трехфазные токи каждые 180° переходят через ноль, способ, предлагаемый изобретением, должен учитывать, что «нулевое значение» допустимо в течение известного периода и не может служить основой для вынесения суждения о работоспособности. Кроме того, упомянутое измерение фазных токов также имеет допуски, то есть, предпочтительно, определены границы (первое поле допуска), внутри которых допускается фазный ток, равный нулю. Также заданы границы (второе поле допуска), в которые должна укладываться разность двух фазных токов, чтобы можно было идентифицировать оба фазных тока как противоположные друг другу. Согласно способу, предлагаемому изобретением, достаточно измерить лишь два из трех фазных токов, так как три обмотки синхронного электродвигателя включены по схеме «звезда». Так как суммарный ток точки звезды схемы соединения звездой равен нулю, на основании двух измеренных фазных токов можно рассчитать полную трехфазную систему, то есть, можно рассчитать отсутствующий фазный ток (ток обмотки). Если фаза отсутствует, необходимо различать, имеется ли в соответствующей обмотке один из двух измерителей тока, выполняющих измерение токов, или речь идет об обмотке, не имеющей измерителя тока.
Предпочтительно, второй счетчик увеличивает свое значение, когда первый счетчик многократно превышает первое предельное (задаваемое) значение в течение определенного промежутка времени.
Предпочтительно, отсутствие, по меньшей мере, одного фазного тока, то есть сбой, по меньшей мере, одной фазы асинхронного или синхронного электродвигателя, распознается тогда, когда второй счетчик превышает второе, в частности, задаваемое предельное значение. Такой способ обеспечивает высокую надежность распознавания отсутствия, по меньшей мере, одной фазы синхронного электродвигателя.
В частности, второй счетчик может увеличить свое значение, а таймер может быть запущен тогда, когда первый счетчик превысит первое предельное значение. Предпочтительно, первый счетчик сбрасывается, когда он превышает первое предельное значение. Второй счетчик, в частности, продолжает прирастать, если в течение определенного периода первый счетчик, по меньшей мере, еще один раз превысит первое предельное значение. В зависимости от достоверности определения можно предусмотреть, что первый счетчик должен был превысить первое предельное значение не только еще один раз, но более двух раз. Под упомянутым определенным периодом понимается, в частности, задаваемое время отсчета упомянутого таймера.
Кроме того, изобретение относится к устройству для мониторинга работоспособности электродвигателя бытового прибора, в частности к устройству для осуществления описанного выше способа, причем электродвигатель представляет собой трехфазный синхронный электродвигатель с тремя обмотками, включенными по схеме «звезда», и с возбуждением от постоянных магнитов и оснащен полевым векторным регулятором, причем измерительное устройство измеряет два фазных тока, а детекторная схема использует результаты измерений для контроля частоты вращения синхронного электродвигателя и/или для контроля наличия всех фазных токов в обмотках синхронного электродвигателя.
Кроме того, изобретение относится к бытовому прибору, в частности посудомоечной или стиральной машине, который оснащен устройством вышеупомянутого типа.
Краткое описание чертежей
Изобретение иллюстрируется фигурами, на которых изображено:
Фигура 1: блок-схема, обеспечивающая мониторинг работоспособности синхронного электродвигателя.
Фигура 2: эквивалентная схема векторного регулятора для трехфазного синхронного электродвигателя с возбуждением от постоянных магнитов.
Осуществление изобретения
Изобретение основывается на трехфазном синхронном электродвигателе с тремя обмотками и с возбуждением от постоянных магнитов, установленном в бытовом приборе, в частности в посудомоечной или стиральной машине, причем синхронный электродвигатель служит, например, приводом насоса бытового прибора, в частности откачивающего и/или циркуляционного насоса.
На фигуре 1 показаны три обмотки 100, 101 и 102 трехфазного синхронного электродвигателя 108 с тремя обмотками и с возбуждением от постоянных магнитов, причем три обмотки 100-102 соединены в точке 103 звезды. К обмоткам 100 и 101 присоединено по одному измерителю 104, 105 тока, которые измеряют соответствующие фазные токи ia, ib. Фазные токи ia, ib с помощью устройства 106 переводятся, в частности, трансформируются в токи iα, iβ компонентов. Два фазных тока ia, ib и/или два тока iα, iβ компонентов подаются на детекторную схему 107, которая выполняет мониторинг частоты n вращения синхронного электродвигателя 108 и/или мониторинг наличия всех трех фазных токов в трех обмотках 100, 101, 102 синхронного электродвигателя 108. Так как суммарный ток в точке 103 звезды равен нулю, достаточно измерить фазные токи ia, ib только в двух обмотках 100, 101. Ток в обмотке 102 можно рассчитать. Для уточнения терминологии следует заметить, что «обмотки» упоминаются, когда речь идет о физической системе, а «фазы» - когда речь идет о генерации системы напряжений.
Управление синхронным электродвигателем 108 осуществляется с помощью так называемого полевого векторного регулятора. При этом два фазных тока ia, ib используются для того, чтобы с учетом модели синхронного электродвигателя 108 можно было управлять этим двигателем с помощью трехфазной системы напряжений с широтно-импульсной модуляцией. Эта система напряжений позволяет настраивать частоту, фазовый угол и амплитуду. Соответственно, питание синхронного электродвигателя 108 осуществляется с помощью так называемого модулятора.
Токи ia, ib обмоток, которые могут также называться фазными токами, измеряются (как уже говорилось) с помощью двух измерителей 104, 105 тока. Оба измерителя 104, 105 тока содержат по одному шунтирующему резистору, причем падение напряжения, имеющее место на соответствующем шунтирующем резисторе, прямо пропорционально соответствующему фазному току ia, ib.
Фигура 2 иллюстрирует регулирующий контур полевого векторного регулятора с помощью эквивалентной схемы регулятора. В трехфазной системе токов с токами, смещенными на 120°, измеряются два фазных тока ia, ib. Это выполняется с помощью измерителей 104, 105 тока (см. фиг.1). С помощью трансформации Кларка, имеющей обозначение 1 (устройство 106 на фигуре 1), два реальных фазных тока ia, ib, смещенных на 120°, преобразуются в сложную ортогональную систему координат, ориентированную на статор. Это означает, что теперь имеется двухфазная 90°-система, которая содержит токи iα, iβ компонентов. Два этих тока iα, iβ компонентов поворачиваются на роторный угол φ в систему координат ротора с помощью трансформации Парка, имеющей обозначение 2. В результате образуются повернутые компоненты id, iq тока, причем id соответствует току возбуждения, а iq - току синхронного электродвигателя, образующему крутящий момент. Эти компоненты id, iq тока в последующих каскадах 3, 4 пи-регулятора доводятся до различных заданных значений id soll и iq soll. После этого происходит обратная трансформация, которая имеет обозначение 5 и выдает на выходе компоненты uα, uβ напряжения для модели 6 двигателя, а также амплитуды для модулятора 7. Под модулятором 7 подразумевается элемент, который способен генерировать трехфазную систему напряжений с широтно-импульсной модуляцией и настраиваемой частотой, фазовым углом и амплитудой. Такой модулятор 7 также называется преобразователем. Для формирования амплитуды компонентов uα, uβ напряжения на входе модулятора 7 предусмотрено устройство 8 получения абсолютных чисел. Упомянутый ранее роторный угол φ (угол выбега ротора) не измеряется непосредственно на синхронном электродвигателе 108, а рассчитывается с помощью модели 6 двигателя на основании компонентов iα, iβ тока и компонентов uα, uβ напряжения. Модель 6 двигателя имитирует синхронный электродвигатель 108. На основании дифференцирования роторного угла по времени рассчитывается частота n вращения. Этот процесс обозначается цифрой 9. На основании частоты n вращения, зная дискретные периоды модуляции, рассчитывается текущее угловое положение для модулятора 7. Поскольку в момент пуска синхронного электродвигателя 108 информация о токе и частоте вращения отсутствует, синхронный электродвигатель 108 запускается в управляемом режиме. Для этого предусмотрена линейная модель 10, которая, получив начальную крутизну характеристики, выдает текущую заданную частоту вращения и текущее угловое положение. Заданные значения обоих компонентов id, iq тока являются фиксированными. На фигуре 2 показаны три переключателя 11, 12, 13, которые занимают на фигуре положение, необходимое для пуска синхронного электродвигателя 108. Когда синхронный электродвигатель 108 запущен, они переключаются. При пуске модулятор 7 проходит таблицу синусов с целью создания шаблона выходного напряжения с угловым приращением характеристики линейной модели 10 и амплитудой на основании регулирующих контуров пусковых заданных значений тока. По достижении заданной частоты n вращения, при которой могут быть надежно измерены фазные токи ia, ib и может быть надежно рассчитана модель 6 двигателя, производится переключение из управляемого режима в регулируемый режим. Это означает, что переключатели 11-13 переключаются, и возникает точка синхронизации. Регулятор 15 частоты вращения, выполненный в виде пи-регулятора, рассчитывает на основании имеющегося отклонения частоты вращения заданное значение iq soll компонента iq тока, образующего крутящий момент. Компонент id тока возбуждения сводится к нулю.
В отношении измерения фазных токов iα, iβ следует заметить, что они измеряются с помощью двух шунтирующих резисторов измерителей 104, 105 тока в основаниях обмоток синхронного электродвигателя 108. В модуляторе 7, в частности, реализована полумостовая схема. Падение напряжения на обоих шунтирующих резисторах с помощью двух быстродействующих усилительных схем приводится в соответствие с диапазоном измерения напряжения микроконтроллером, который составляет от 0 до 5 В. Усилительные схемы имеют идентичную структуру и рассчитаны таким образом, чтобы измерение тока могло выполняться без задержек с шагом широтно-импульсной модуляции. Поскольку на обоих основаниях необходимо измерять положительные и отрицательные токи одинаковой амплитуды, каждая из усилительных схем имеет напряжение смещения, находящееся в середине возможного диапазона регулирования. Соответствующее напряжение смещения всегда измеряется при остановленном двигателе и проверяется на достоверность. Чтобы свести к минимуму влияние помех, напряжения смещения фильтруются с помощью КВ-фильтра нижних частот. В случае недостоверного напряжения смещения программное обеспечение преобразователя переходит в состояние ошибки, в котором активизация насоса невозможна.
Сканирование фазных токов ia, ib выполняется в режиме прерывания и осуществляется с частотой широтно-импульсной модуляции широтно-импульсного модулятора преобразователя. Момент выборки находится в середине процесса активизации трех мощных полупроводниковых Lowside-приборов преобразователя. В этот момент три обмотки синхронного электродвигателя 108 замыкаются накоротко через мощный полупроводниковый прибор, и можно измерить ток свободного хода обмоток двигателя. Так как сканирование запускается точно в середине импульса, влияние помех, обусловленных синхронизирующим фронтом сигнала широтно-импульсной модуляции, сводится к минимуму. Во время одного цикла широтно-импульсной модуляции всегда измеряется только один ток. Оба тока измеряются со смещением на время цикла широтно-импульсной модуляции до расчета модели двигателя. При этом предполагается, что ток в фазах синхронного электродвигателя не изменяется во время цикла широтно-импульсной модуляции. Частота широтно-импульсной модуляции выбирается таким образом, чтобы выполнялось это условие. Измерение токов выполняется с разрешением аналого-цифрового преобразователя 10 бит. При таком разрешении отображается двойная амплитуда фазных токов.
Модуляция выходного напряжения преобразователя реализована методом таблицы соответствий (LUT). Текущий угол выходного напряжения сохраняется в аккумуляторе фазы (16 бит) и корректируется каждые 600 мкс с помощью регулирующего алгоритма. Между коррекциями угол модуляции продолжает перемещаться с постоянной угловой скоростью. LUT имеет разрешение 16 бит и 256 опорных точек и заложена в память контроллера. Обновление значений широтно-импульсной модуляции выполняется в каждом втором цикле широтно-импульсной модуляции. Выходное напряжение корректируется с помощью напряжения промежуточного контура преобразователя при каждом расчете значения модуляции. Таким образом, можно в максимально возможной степени компенсировать влияние скачков напряжения в промежуточном контуре преобразователя.
Как уже упоминалось, этап трансформации выполняется во время так называемого полевого векторного регулирования, чтобы перевести фазные токи ia, ib в токи iα, iβ компонентов. На этом этапе трансформации выполняются исключительно алгебраические операции, а модель отсутствует. Как уже упоминалось, токи iα, iβ компонентов описывают трехфазную систему токов в ортогональной системе координат. На основании двух токов iα, iβ компонентов рассчитывается угол относительно статора. Измерение периодически повторяется. Предпочтительно, периодичность выбирается таким образом, чтобы она удовлетворяла требованиям к распознаванию ошибок. На основании текущих измерений путем дифференцирования угла по времени рассчитывается угловая скорость и, как следствие, частота n вращения синхронного двигателя 108. Предпочтительно, образуется разность соседних углов и разность соседних моментов времени, и в целях дифференцирования разность углов делится на разность моментов времени.
Так как шаблоны токов могут быть отклонены, вследствие чего может измениться временная привязка двух шаблонов токов ia, ib и снизиться точность измерения в нижнем диапазоне частоты вращения, может быть предусмотрена, предпочтительно, фильтрация частоты вращения. Выгодной альтернативой фильтрации является применение критериев выбора. Если у-значения х-значений соответствуют шаблону, то результат считается истинным.
Как уже упоминалось, три обмотки 100-102 синхронного электродвигателя 1008 включены по схеме «звезда». Так как суммарный ток точки звезды равен нулю, достаточно измерить две из трех обмоток (см. пояснения к фигуре 1). В случае отсутствия фазы, то есть фазного тока этой фазы, следует различать, установлен ли в этой фазе один из двух измерителей тока, или речь идет о неизмеряемой фазе. Таким образом, следует проверить наличие в этой фазе одного из двух измерителей 104, 105 тока.
Ток в отсутствующей фазе, то есть в соответствующей обмотке, равен нулю, а в двух других фазах/обмотках противоположные токи имеют одинаковую величину. Происходит так называемое противопоставление фаз. Так как оба фазных тока ia, ib являются синусоидальными токами, которые каждые 180° переходят через ноль, и так как даже трехфазные токи каждые 180° переходят через ноль, при измерении нулевого тока следует учитывать, что он допустим в течение известного периода. Измерение токов с помощью измерителей 104, 105 также имеет допуски, то есть должны быть определены известные границы, внутри которых допускается фазный ток, равный нулю. Также необходимо задать границы, в которые может укладываться разность двух токов, чтобы можно было идентифицировать оба тока как противоположные друг другу. В первом случае в качестве границ определено первое поле допуска, а во втором случае - второе поле допуска. Для мониторинга полноты фаз синхронного электродвигателя 108, то есть наличия сбоя, по меньшей мере, одной фазы синхронного электродвигателя 108, оба измеренных тока ia, ib проверяются на наличие следующих возможных ошибочных комбинаций: а) если один из измеренных фазных токов ia, ib укладывается в первое поле допуска, то этот фазный ток принимается равным нулю; b) если разность двух измеренных фазных токов ia, ib укладывается во второе поле допуска, оба измеренных фазных тока принимаются как противоположные друг другу в противопоставлении фаз.
На этапе а) проверяется, не находится ли один из двух токов ia, ib ниже границы нулевого тока, определенной первым полем допуска. На этапе b) проверяется, не находится ли разность измеренных токов ia, ib ниже границы противопоставления фаз, определенной вторым полем допуска.
Следует заметить, что распознавание нулевого тока в принципе проще распознавания противопоставления фаз. При наступлении одного из двух указанных событий значение первого счетчика прирастает, в частности увеличивается, в степени, зависящей от вида события. Если при измерении не выполняется ни первый, ни второй критерий, первый счетчик сбрасывается.
Если значение этого первого счетчика превышает первое предельное значение, то значение второго счетчика увеличивается, а первый счетчик сбрасывается. Кроме того, запускается таймер. Если в течение определенного времени, в частности заданного времени отсчета таймера, произойдет повторное или по меньшей мере одно повторное превышение первого предельного значения первого счетчика, то значение второго счетчика увеличится еще больше. Если этого не произойдет, второй счетчик будет сброшен. Если значение второго счетчика превысит второе предельное значение, то будет распознан сбой фазы, то есть отсутствие фазного тока в обмотке 100, 101, 102.
По существу, о способе определения частоты вращения можно сказать, что для этого используются токи iα, iβ компонентов, полученные на этапе трансформации полевого векторного регулирования, без формирования какой-либо модели. Расчет углов относительно статора всегда выполняется, по меньшей мере, в два определенных момента времени, причем разность моментов времени должна удовлетворять лишь требованиям к точности для распознавания состояния покоя (с учетом последующей фильтрации/анализа). Расчет частоты вращения (приближенной частоты вращения) вытекает из дифференцирования угла во времени. Кроме того, выполняется оценка информации о частоте вращения (в частности, значения частоты вращения у из х в пределах поля допуска).
При проверке полноты фаз выполняется измерение двух фазных токов синхронного электродвигателя, включенного по схеме «звезда». Соразмерное увеличение значения первого счетчика выполняется в том случае, если ток находится ниже границы нулевого тока или разность двух токов лежит в пределах границ противопоставления фаз. Значение второго счетчика увеличивается, если первый счетчик в течение определенного периода многократно превышает свое первое предельное значение. Сбой фазы распознается, если второй счетчик превышает определенное для него второе предельное значение.

Claims (7)

1. Способ мониторинга контроллера трехфазного электродвигателя и/или мониторинга электродвигателя, в частности асинхронного или синхронного электродвигателя, который содержит, по меньшей мере, следующие шаги:
- шаг измерения двух фазных токов (ia, ib),
- шаг проверки того, имеет ли один из двух измеренных фазных токов (ia, ib) значение, по существу, равное нулю,
- шаг генерации сигнала ошибки, если, по меньшей мере, один из двух измеренных фазных токов (iа, ib), по существу, равен нулю,
- шаг проверки того, имеют ли два измеренных фазных тока (ia, ib) значения, по существу, отличные от нуля,
- шаг образования суммы двух измеренных фазных токов (ia, ib),
- шаг генерации сигнала ошибки, если полученная сумма двух измеренных фазных токов (ia, ib), по существу, равна нулю, причем
- при появлении сигнала ошибки увеличивают значение первого счетчика, увеличивают значение второго счетчика, если первый счетчик в течение определенного периода многократно превышает свое первое предельное значение,
- распознают отсутствие, по меньшей мере, одного из трех фазных токов в том случае, если второй счетчик превышает второе предельное значение.
2. Способ по п.1, отличающийся тем, что значение второго счетчика увеличивают, а таймер запускают тогда, когда первый счетчик превышает первое предельное значение.
3. Способ по одному из пп.1-2, отличающийся тем, что первый счетчик сбрасывают, когда он превышает первое предельное значение.
4. Способ по одному из пп.1-2, отличающийся тем, что значение второго счетчика увеличивают еще больше, когда первый счетчик в течение определенного периода, по меньшей мере, еще один раз превышает первое предельное значение.
5. Способ по п.4, отличающийся тем, что определенный период представляет собой задаваемое время отсчета таймера.
6. Способ по одному из пп.1, 2 или 5, отличающийся тем, что электродвигатель используют для работы бытового прибора, в частности, посудомоечной или стиральной машины.
7. Бытовой прибор, в частности посудомоечная или стиральная машина, которая, по меньшей мере, содержит электродвигатель и устройство для мониторинга работоспособности электродвигателя согласно способу по одному или нескольким из предыдущих пунктов.
RU2011126660/28A 2008-12-19 2009-11-24 Способ мониторинга контроллера трехфазного электродвигателя и/или электродвигателя RU2520162C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008055012.4 2008-12-19
DE102008055012A DE102008055012A1 (de) 2008-12-19 2008-12-19 Verfahren zur Überwachung einer Ansteuereinrichtung eines 3-strängigen Elektromotors und/oder des Elektromotors
PCT/EP2009/065755 WO2010069722A2 (de) 2008-12-19 2009-11-24 Verfahren zur überwachung einer ansteuereinrichtung eines 3-strängigen elektromotors und/oder des elektromotors

Publications (2)

Publication Number Publication Date
RU2011126660A RU2011126660A (ru) 2013-01-27
RU2520162C2 true RU2520162C2 (ru) 2014-06-20

Family

ID=42193939

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011126660/28A RU2520162C2 (ru) 2008-12-19 2009-11-24 Способ мониторинга контроллера трехфазного электродвигателя и/или электродвигателя

Country Status (8)

Country Link
US (1) US8791715B2 (ru)
EP (1) EP2380028B1 (ru)
CN (1) CN102257396B (ru)
DE (1) DE102008055012A1 (ru)
ES (1) ES2420119T3 (ru)
PL (1) PL2380028T3 (ru)
RU (1) RU2520162C2 (ru)
WO (1) WO2010069722A2 (ru)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI391685B (zh) * 2009-10-16 2013-04-01 Ind Tech Res Inst 繞線製品檢測機台及其層間短路之檢測方法
CN103178494B (zh) * 2011-12-26 2017-04-19 上海大郡动力控制技术有限公司 电机短路的自检装置及其使用方法
DE112012006581T5 (de) 2012-07-20 2015-03-19 Mitsubishi Electric Corporation Steuerung
RU2542605C2 (ru) * 2012-08-23 2015-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственынй энергетчисекий университет" (ФГБОУ ВПО "КГЭУ") Способ контроля метрологических характеристик систем управления электроприводов переменного тока
US8823301B2 (en) 2012-11-05 2014-09-02 Whirlpool Corporation Method and device for detecting rotor position in a permanent magnet synchronous motor-driven washing machine
US9609997B2 (en) * 2013-07-09 2017-04-04 Haier Us Appliance Solutions, Inc. Systems and methods for detecting appliance pump cavitation or dry state
CN103592524B (zh) * 2013-11-28 2016-08-31 广州日滨科技发展有限公司 电梯同步电机uvw相序识别方法及***
US9225264B1 (en) 2014-08-26 2015-12-29 Texas Instruments Incorporated Method and apparatus for multiphase inverter control
EP3236553A1 (de) * 2016-04-20 2017-10-25 Siemens Aktiengesellschaft Verfahren und vorrichtung zur erkennung von phasenausfällen, insbesondere netzfehlern, bei einem umrichter
DE102018203739A1 (de) * 2018-03-13 2019-09-19 Robert Bosch Gmbh Verfahren zum Erkennen eines Fehlerzustands einer elektrischen Maschine
CN109782079A (zh) * 2019-03-25 2019-05-21 广东电网有限责任公司 一种教学专用的核相模拟电源装置
CN110688699B (zh) * 2019-09-25 2023-08-22 西南交通大学 长编组动车组高架桥上过分相的车网桥耦合模型构建方法
US11703544B2 (en) * 2020-06-10 2023-07-18 California Institute Of Technology Current sense multi-chip module
CN112067912B (zh) * 2020-09-10 2023-08-11 上海辛格林纳新时达电机有限公司 缺相检测的方法、电子设备及存储介质
US11588429B2 (en) 2020-10-29 2023-02-21 Insight Automation, Inc. System and method for motor control through dynamic selective coil measurement
CN113625066B (zh) * 2021-08-03 2023-11-21 国网北京市电力公司 配电变压器相位不平衡检测方法、***、装置及存储介质
CN115933606B (zh) * 2022-12-22 2023-11-14 芜湖特益智能科技有限公司 一种多功能洗地机控制器及仪表的检测装置
CN116755428B (zh) * 2023-08-11 2023-10-20 苏州中科科仪技术发展有限公司 一种磁悬浮控制板可靠性检测***及检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU573836A1 (ru) * 1975-10-03 1977-09-25 Предприятие П/Я В-2141 Устройство дл защиты трехфазной сети от обрыва фазы
US5350988A (en) * 1990-07-10 1994-09-27 Alliedsignal, Inc. Digital motor controller
US20030222612A1 (en) * 2002-05-28 2003-12-04 Mitsubishi Denki Kabushiki Kaisha Motor abnormality detection apparatus and electric power steering control system
US6822416B1 (en) * 1999-08-07 2004-11-23 Robert Bosch Gmbh Device for monitoring the measuring system of an electric drive
JP2005094912A (ja) * 2003-09-17 2005-04-07 Suzuki Motor Corp 電流センサの故障検出装置
US20050099743A1 (en) * 2003-11-11 2005-05-12 Lg Industrial Systems Co., Ltd. Ground fault detection system and method for inverter
JP2005312201A (ja) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd インバータ制御装置およびそれを用いた空気調和機
JP2007089261A (ja) * 2005-09-20 2007-04-05 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2008263692A (ja) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd モータ駆動装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3041608A1 (de) * 1980-11-01 1982-06-09 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Einrichtung zur realisierung eines zweiphasigen flussmodells einer drehfeldmaschine
JP2557636B2 (ja) 1987-02-16 1996-11-27 三洋電機株式会社 回転制御装置
DE4229554C2 (de) * 1992-09-04 1994-12-08 Friedhelm Prof Dr Ing Milde Meßverfahren zur Erfassung des Drehmoments von Asynchronmotoren mit elektrischen Meßgrößen
DE10236377A1 (de) * 2002-08-02 2004-02-12 Dr. Johannes Heidenhain Gmbh Verfahren zur Fehlererkennung bei einer Antriebseinrichtung
ITVI20020205A1 (it) * 2002-09-26 2004-03-27 E E I Equipaggiamenti Elettronici Ind Srl Metodo di rilevamento e controllo della coppia di un motore trifase e dispositivo atto a realizzare tale metodo.
GB2404100A (en) 2003-07-17 2005-01-19 Bombardier Transp Model-based monitoring an operation of a converter
US8091679B2 (en) * 2004-04-28 2012-01-10 Nsk Ltd. Electric power steering device
JP2006184160A (ja) * 2004-12-28 2006-07-13 Nissan Motor Co Ltd 故障検出機能付き三相交流電動機の電流検出装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU573836A1 (ru) * 1975-10-03 1977-09-25 Предприятие П/Я В-2141 Устройство дл защиты трехфазной сети от обрыва фазы
US5350988A (en) * 1990-07-10 1994-09-27 Alliedsignal, Inc. Digital motor controller
US6822416B1 (en) * 1999-08-07 2004-11-23 Robert Bosch Gmbh Device for monitoring the measuring system of an electric drive
US20030222612A1 (en) * 2002-05-28 2003-12-04 Mitsubishi Denki Kabushiki Kaisha Motor abnormality detection apparatus and electric power steering control system
JP2005094912A (ja) * 2003-09-17 2005-04-07 Suzuki Motor Corp 電流センサの故障検出装置
US20050099743A1 (en) * 2003-11-11 2005-05-12 Lg Industrial Systems Co., Ltd. Ground fault detection system and method for inverter
JP2005312201A (ja) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd インバータ制御装置およびそれを用いた空気調和機
JP2007089261A (ja) * 2005-09-20 2007-04-05 Toshiba Mitsubishi-Electric Industrial System Corp 電力変換装置
JP2008263692A (ja) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd モータ駆動装置

Also Published As

Publication number Publication date
PL2380028T3 (pl) 2013-11-29
ES2420119T3 (es) 2013-08-22
CN102257396B (zh) 2016-03-23
WO2010069722A2 (de) 2010-06-24
EP2380028B1 (de) 2013-06-26
DE102008055012A1 (de) 2010-06-24
US20110241723A1 (en) 2011-10-06
RU2011126660A (ru) 2013-01-27
CN102257396A (zh) 2011-11-23
US8791715B2 (en) 2014-07-29
EP2380028A2 (de) 2011-10-26
WO2010069722A3 (de) 2010-08-12

Similar Documents

Publication Publication Date Title
RU2520162C2 (ru) Способ мониторинга контроллера трехфазного электродвигателя и/или электродвигателя
US9784772B2 (en) Sensorless rotor angle detection circuit and method for a permanent magnet synchronous machine
EP2302785B1 (en) Control of sinusoidally driven brushless DC (BLDC) motors
RU2529652C2 (ru) Способ определения степени загрузки насоса
EP1972053B1 (en) Electric motor control
EP3540933B1 (en) Method for driving sensorless motor
US11050370B2 (en) Method for detecting magnetic field location in electric motor
KR101904366B1 (ko) 전기 구동 유닛
US20110050209A1 (en) Method and apparatus for unambiguous determination of the rotor position of an electrical machine
US11183955B2 (en) Method for correcting magnetic field position error in electric motor
US11463033B2 (en) Apparatus, system, and method for controlling motor
JP4472083B2 (ja) 切換えリラクタンスマシンにおけるロータ位置検出
US20040124806A1 (en) System and method for inductance based position encoding sensorless srm drives
Darba et al. Sensorless commutation and speed control of Brushless DC-machine drives based on the back-EMF symmetric threshold-tracking
CN116438735A (zh) 一种确定无刷永磁电机的转子的位置的方法
US6201367B1 (en) Method for restarting a synchronous permanent magnet motor still rotating
KR20070073876A (ko) 모터 구동장치
JP4051833B2 (ja) 永久磁石式同期電動機のベクトル制御装置
EP3588768A1 (en) Position detector
JP4127000B2 (ja) モータ制御装置
Darba et al. FPGA-based implementation of the back-EMF symmetric-threshold-tracking sensorless commutation method for Brushless DC-machines
RU2773000C1 (ru) Способ регулирования многофазной электрической машины и система многофазной электрической машины для такого способа
JP4123877B2 (ja) モータ制御装置
Sovicka et al. Development of HF Injection Based Sensorless Method for SRM Usin an Advanced Simulation
JP2003009576A (ja) ロータ位置検知装置

Legal Events

Date Code Title Description
HE9A Changing address for correspondence with an applicant
PD4A Correction of name of patent owner