RU2470980C2 - Легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния, способ его производства и преобразующее излучение устройство, содержащее такой люминофор - Google Patents

Легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния, способ его производства и преобразующее излучение устройство, содержащее такой люминофор Download PDF

Info

Publication number
RU2470980C2
RU2470980C2 RU2010119299/05A RU2010119299A RU2470980C2 RU 2470980 C2 RU2470980 C2 RU 2470980C2 RU 2010119299/05 A RU2010119299/05 A RU 2010119299/05A RU 2010119299 A RU2010119299 A RU 2010119299A RU 2470980 C2 RU2470980 C2 RU 2470980C2
Authority
RU
Russia
Prior art keywords
earth element
silicon nitride
phosphor
alkaline earth
compounds
Prior art date
Application number
RU2010119299/05A
Other languages
English (en)
Other versions
RU2010119299A (ru
Inventor
Ченг-Джун ДУАН
Хубертус Терезия ХИНТЦЕН
Зильке РЕСЛЕР
Детлеф ШТАРИК
Свен РЕСЛЕР
Анна Шарлотта Ануанетта ДЕЛСИНГ
Original Assignee
Лейхтштоффверк Брайтунген Гмбх
Ледон Лайтинг Йеннерсдорф Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP07118436A external-priority patent/EP2058382B1/en
Application filed by Лейхтштоффверк Брайтунген Гмбх, Ледон Лайтинг Йеннерсдорф Гмбх filed Critical Лейхтштоффверк Брайтунген Гмбх
Publication of RU2010119299A publication Critical patent/RU2010119299A/ru
Application granted granted Critical
Publication of RU2470980C2 publication Critical patent/RU2470980C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/773Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

Изобретение может быть использовано при изготовлении источников света для светоизлучающих диодов и дисплеев со сканирующим лучом. Соединения, каждое из которых содержит, по меньшей мере, один элемент из группы, содержащей редкоземельные элементы, щелочноземельные элементы, кремний и азот, реагируют при повышенной температуре, при которой намеренно или ненамеренно добавляется небольшое количество кислорода. Полученный люминофор имеет общую формулу AE2Si5N8-2xCxOx:RE, где АЕ - щелочноземельный элемент, RE - редкоземельный элемент, x меньше чем 1. Люминофор имеет стабильные оптические свойства, высокую долговечность и эффективность. 4 н. и 5 з.п. ф-лы, 1 ил., 3 пр.

Description

ОБЛАСТЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Изобретение относится к способу производства легированного редкоземельным элементом люминофора на основе щелочноземельного элемента и нитрида кремния. Названный способ содержит этап отбора одного или более соединений, каждое из которых содержит, по меньшей мере, один элемент из группы, содержащей редкоземельные элементы (RE), щелочноземельные элементы (АЕ), кремний (Si) и азот (N), и вместе содержат необходимые элементы, чтобы образовать легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния (AE2Si5N8:RE). Другим этапом способа является приведение соединений при повышенной температуре к реакции образования легированного редкоземельным элементом люминофора (AE2Si5N8:RE) на основе щелочноземельного элемента и нитрида кремния, при которой намеренно или не намеренно добавляется небольшое количество кислорода, который вводится в образовавшийся легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния (AE2Si5N8:RE). Такие основанные на нитриде кремния люминофоры образуют люминофоры с улучшенным химическим составом и оптическими свойствами. Такие основанные на легированном редкоземельным элементом нитриде кремния материалы сильно поглощают УФ-синий свет и эффективно преобразуют его в желто-оранжево-красный свет. Поэтому они могут использоваться в качестве люминофора для источников света и дисплеев, особенно для светоизлучающих диодов (LED) и дисплеев со сканирующим лучом (как описано, например, в международной заявке WO 2007/131195), работающих с лазером УФ- и фиолетового излучения как источником излучения, а также преобразователей излучения в других устройствах. Изобретение далее относится к люминофору, получаемому таким способом, и к преобразующему излучение устройству, содержащему такой люминофор.
УРОВЕНЬ ТЕХНИКИ
Способ такого рода, упомянутый во вступительном абзаце, известен из европейской заявки на патент ЕР 1104799 А1. В ней описано, как таким путем, например, производится Еu2+-легированный M2Si5N8 (М=Са, Sr, Ba), который сильно поглощает УФ-синее излучение и эффективно преобразует это поглощенное излучение в красный свет.
Недостаток известного способа состоит в том, что эффективность преобразования люминофором, полученным названным способом, не является удовлетворительной. Более того, эффективность преобразования падает в результате деградации люминофора.
Международная заявка WO 2006/126567 А1 описывает нитридные и оксинитридные люминофоры, в которых щелочноземельный элемент замещен элементом, имеющим более низкую валентность. Кроме того, ионы азота могут быть замещены ионами кислорода. Вариант воплощения этого люминофора представлен формулой Sr2AlqSi5-qN8-qOq:Eu.
В заявке США US 2007/0114548 А1 показан люминофор общей формулы Ca1-g-h-iCeg(Li,Na)hEu1Al1+g-hSi1-g+hN3. Включение одновалентных ионов Li+, Nа+ связано с включением ионов Се3+ которые заменили ионы Са2+ и/или с включением ионов Si4+ которые заменили ионы Al3+.
В заявке США US 2005/083037 А1 показан люминофор общей формулы (Sr1-x-yBaxCay)2-zSi5-aAlaN8-aOa:Euz.
В заявке США US 2004/055910 А1 показан люминофор общей формулы (Sr1-x-yBaxCay)2-zSi5-aAlaN8-aOa:Euz, где 0<а<5.
ЗАДАЧА И КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
По этой причине настоящее изобретение имеет целью обеспечение способа производства, обеспечивающего люминофор, кроме того, с более высокой эффективностью преобразования и превосходной долговечностью.
Согласно изобретению эта цель достигается в способе по п.1 Формулы изобретения.
Изобретение основано на заключении, что неудовлетворительные свойства вышеупомянутых известных люминофоров возникают в результате образования дефектов за счет формирования нестехиометрического содержания кислорода в люминофоре. Кроме того, этапы, упомянутые во вступительном абзаце способа согласно изобретению, характеризуются тем, что образование дефектов за счет формирования нестехиометрического содержания кислорода в люминофоре, по меньшей мере, частично предотвращается частичным замещением ионов (АЕ, Si, N) люминофора на основе щелочноземельного металла и нитрида кремния (AE2Si5N8) подходящими добавочными элементами Периодической системы, посредством чего создаются вакансии, заполненные или аннигилированные, приводящие к формированию модифицированного люминофора на основе щелочноземельного металла и нитрида кремния (AE2Si5N8), имеющего (более) стехиометрический состав. Таким образом, модифицированный люминофор получается с превосходными оптическими люминесцентными свойствами, подобными спектральному распределению преобразованного излучения, но, в особенности, с очень высокой эффективностью преобразования и очень умеренной деградацией.
Настоящее изобретение основано на следующих удивительных фактах. Прежде всего, изобретатель понимает, что небольшие количества кислорода, намеренно или ненамеренно добавляются к исходным материалам или во время производственного процесса. Примером первого является добавление небольших количеств оксида европия (Еu2О3) к соединениям, используемым для образования люминофора. Хотя обжиг названных соединений для получения люминофора обычно выполняется в восстанавливающей среде, например в смеси азота и водорода, изобретатель понимает, что не весь добавленный оксид до такой степени удаляется. Кроме того, может происходить ненамеренное добавление кислорода, поскольку чистые исходные материалы могут содержать примеси оксидов, которые не полностью или даже вообще не удаляются во время производства. Примером такой примеси является диоксид кремния (SiO2), который может присутствовать в различных количествах в исходном материале, таком как нитрид кремния (Si3N4). Второй факт состоит в том, что присутствие кислорода может приводить к формированию нестехиометрического соединения на кристаллической решетке люминофора нитридосиликатного типа, содержащей тетраэдры с разделяющим углы SiN4, и имеющей различные кристаллические структуры, такие как моноклинические или орторомбические структуры. Это может быть показано следующей формулой:
AE2Si5N8-xO3/2*x
Это уравнение показывает, что если фракция x ионов азота замещается ионами кислорода, то полученное соединение должно содержать 3/2*х атомов кислорода, для того чтобы получить нейтральность зарядов. Поскольку только фракция x доступна для позиционирования ионов О на центрах N, оставшиеся 1/2*х атомы О должны быть позиционированы где-нибудь еще. Это может быть, например, в форме промежуточного (1/2) кислородного атома. Такой дефект будет влиять на эффективность преобразования негативным образом и также может увеличить деградацию люминофора.
Создание вакансии в кристаллической решетке люминофора может быть использовано по изобретению, чтобы избежать формирования такого дефекта внедренного кислорода способом, который будет обсуждаться ниже.
Более вероятно, однако, что, по меньшей мере, часть избыточных кислородных атомов позиционируется на позиции иона N в дополнительной элементарной ячейке. Однако по причинам нейтральности зарядов этот дефект внедренного аниона эквивалентен созданию катионной вакансии на катионной подрешетке, которая также имеет показанные выше негативные влияния на свойства люминофора.
Кроме того, изобретение основано на знании, что путем замещения подходящими элементами периодической системы ионов, формирующих (легированный редкоземельным элементом) люминофор на основе щелочноземельного элемента и нитрида кремния, названные дефекты можно избежать путем создания, заполнения и аннигиляции вакансий. Более того, по способу настоящего изобретения сегрегация люминофора на два или более соединений по существу предотвращается. Такая сегрегация также является вредной для эффективности преобразования и способствует деградации люминофора. Таким образом, при использовании способа по изобретению получается люминофор с очень высокой эффективностью, поскольку число дефектов, таких как дефекты внедрения и вакансии, которые действуют как центры для безызлучательных рекомбинаций, и возможность сегрегации снижаются (см. чертеж). В то же самое время снижается деградация люминофора.
В предпочтительном варианте выполнения подходящие элементы формируют анионы для замены анионов азота, при этом они имеют больший отрицательный заряд, чем ионы азота, которые они заменяют. В этом способе также создаются вакансии, которые могут аннигилировать катионные вакансии, сформированные избыточным кислородом на азотной подрешетке. Подобным образом, формирование дефекта внедренного кислорода можно будет избежать, поскольку созданная анионная вакансия может быть занята атомом кислорода, который иначе мог бы формировать внедрение. Пример этого создания анионной вакансии сформирован путем замены части ионов азота (N) ионами углерода (С).
Предпочтительно создание вакансий по существу полностью предотвращается путем введения соответствующих количеств добавочных элементов в люминофор. По этой причине преимущественная модификация характеризуется тем, что для определения подходящего количества добавочных элементов определяются содержание кислорода в исходных соединениях и/или количество кислорода, вводимого во время реакционного процесса.
В предпочтительной модификации количество кислорода в люминофоре по изобретению может быть минимизировано посредством устранения нитратов, карбонатов, оксалатов, ацетатов или подобных как исходных материалов. В получающемся в результате люминофоре будет присутствовать только остаточный кислород, например, в технически пригодных нитридах.
В другой модификации для композиций выбираются твердые соединения, которые перемалываются, смешиваются и нагреваются в печи в окружающей среде, которая свободна или, по меньшей мере, по существу свободна от кислорода. Кроме среды, свободной (по существу) от кислорода, такая окружающая среда может быть даже восстанавливающей, как среда, содержащая смесь азота и водорода. Несмотря на использование других способов производства, таких как MOVPE или MOVPD (=газофазная с применением металлоорганических соединений эпитаксия/осаждение) или так называемая Золь-Гель технология, варианты выполнения способом твердотельного синтеза дают несколько важных преимуществ. Для указанного выше способа твердотельного синтеза нагревание может осуществляться, например, при температуре в пределах от 1200 до 1700 градусов Цельсия, предпочтительно от 1300 до 1600 градусов Цельсия.
В предпочтительной модификации для соединений, используемых в формировании люминофора, выбираются только те соединения, которые не содержат намеренно добавленный кислород. Таким образом, содержание кислородного соединения в модифицированном люминофоре является насколько возможно низким. Соединение модифицированного люминофора в этом случае имеет формулу, которая близка, по возможности, например, к AE2Si5N8:RE.
Изобретение, кроме того, содержит модифицированный легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния (AE2Si5N8:RE), полученный способом по изобретению. В предпочтительном варианте выполнения композиция люминофора представлена как AE2-xAKxSi5N8-xOx:RE, где x меньше чем 1, предпочтительно, существенно меньше чем 1, хотя больше чем ноль. Очень подходящие значения для доли x кислорода в молях представляют меньше чем 0.25, и наиболее предпочтительный диапазон для содержания кислорода находится между 0 и 0.1.
Другой привлекательный люминофор соответствует AE2Si5-xN8-xTExOx:RE, где x, предпочтительно, меньше чем 1, предпочтительно, меньше чем 0.25, более предпочтительно находится между 0 и 0.1.
Другая предпочтительная композиция соответствует AE2Si5N8-2xCxOx:RE, в которой снова x меньше чем 1, более предпочтительно, меньше чем 0.25, более предпочтительно находится между 0 и 0.1. Символы АЕ, АК, RE и ТЕ имеют такие же значения, как указано выше. Следует отметить, что также можно получить люминофоры, которые являются смесью показанных выше смешанных кристаллов. Таким образом, замещение может одновременно происходить как на подрешетке АЕ, так и на решетке кремния и на подрешетке азота.
В случае замещения ионов азота в анионной подрешетке отрицательно заряженными ионами углерода следует рассмотреть другой аспект. Кроме эффекта компенсации вакансий, введение ионов углерода (С4-) в подрешетку нитридных анионов может оказывать дополнительные положительные влияния на свойства люминофора, например на устойчивость люминофора к деградации. Эти дополнительные влияния обусловлены более сильной ковалентной связью Si-C по сравнению со связью Si-N. Введение С в нитридную решетку и образование Si-C связи уже известно для карбидонитридокремниевых соединений, таких как Re2Si4N6C. Поэтому добавление большего количества SiC может быть благоприятным, так как это необходимо для компенсации определенного и рассчитанного количества кислорода. В этом случае добавочные компенсирующие заряженные элементы, такие как (1-) заряженные анионы Х (например, ионы галогенов, такие как F-), (3+) заряженные катионы М (например, La3+, Sc3+, Y3+ или другие (3+) заряженные ионы редкоземельных элементов) и/или (5+) заряженные катионы (например, Р5+, Та5+, V5+ должны быть введены посредством замещения анионов N3-, щелочноземельных ионов и ионов кремния, что соответственно приводит к получению композиций люминофора, которые удовлетворяют, например, формулам
AE2Si5N8-3zC2zFz или
AE2Si5N8-2x-3zOxCx+2zFz, AE2Si5-zPzN8-zCz и Sr2-zLazSi5N8-zCz или Sr2-zLazSi5N8-2x-zOxCx+z.
Наконец, изобретение содержит устройство, преобразующее излучение для трансформации УФ, фиолетового и синего излучения в желто-оранжево-красный свет, содержащее модифицированный легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния (AE2Si5N8:RE), получаемый способом по изобретению. Например, могут быть рассмотрены соответствующие технические устройства, лампы дневного света, светоизлучающие диоды цветного и белого света (LED), дисплеи, со специальным сканирующим лучом на основе лазерного излучения УФ или фиолетового света, а также фотоэлементы, кроме того, оранжерейные пленки и стекла. Однако изобретение не ограничивается этими примерами.
Здесь следует заметить, что выражение, выбранное для обозначения легирования редкоземельным элементом, то есть "формула: RE", выбрано по причине простоты и для выражения того, что элемент RE образует легирующий элемент и может присутствовать в относительно небольшом количестве. Впрочем, в настоящем изобретении кислород и подходящие замещающие элементы также присутствуют в относительно низких концентрациях в смешанном кристаллическом соединении люминофора. Таким образом, выражение "формула", в которой представлен и используется элемент RE, является обоснованной также и с другими составляющими (АЕ, Si, N, О) соединения люминофора. В действительности, элемент RE может присутствовать также в большом количестве по отношению к элементу АЕ, вплоть даже до 100% замещения элемента АЕ элементом RE.
ОПИСАНИЕ ВАРИАНТОВ ВЫПОЛНЕНИЯ ИЗОБРЕТЕНИЯ
Далее следует заметить, что материалы на основе нитрида кремния могут быть получены различными путями, например твердотельным синтезом, начиная от нитридов, нитрированием основных исходных материалов или карботермическим восстановлением и нитрированием оксидов исходных материалов. Аммонолиз оксидов исходных основных материалов, включающий нагревание в атмосфере, содержащей NH3, также является возможным способом. Способ твердотельного синтеза применяется обычно для получения M2Si5N8:Eu люминофорного материала, начиная от (нитрированного) Еu и М (щелочноземельных) металлов вместе с Si3N4.
Например, получение M2Si5N8 (M=Ba, SR, Са), легированного Еu2+, может быть следующим. Сдвоенные нитридные предшественники SrNa (а≈0.6-0.66), BaNb (b≈0.6-0.66) и EuNc (c≈0.94) могут быть получены предварительно посредством реакции технически чистых металлов стронция, бария и Еu в потоке высушенного азота при температуре 800, 550 и 800°С соответственно, в течение 8-16 часов. Дополнительно порошок нитрида кальция Са3N2 и порошок α-Si3N4 могут быть использованы как сырьевые материалы непосредственно после получения. Поликристаллические M2-yEuySi5N8 (0≤у≤0.2 для М=Са, 0≤y≤2.0 для М=Sr, Ва) порошки могут быть приготовлены способом твердотельного синтеза при умеренно высокой температуре. Порошки Са3N2, SrNa, BaNb и EuNc, а также α-Si3N4, развешиваются в соответствующих количествах и затем смешиваются и вместе размалываются в агатовой ступке. Смеси порошков затем переносятся в молибденовые тигли. Все процессы выполняются в очищенной и заполненной азотом манипуляционной ручной камере. Затем эти смеси порошков дважды обжигаются (с промежуточным дроблением) в горизонтальной трубчатой печи при 1300-1400°С в течение 12 и 16 часов, соответственно, в потоке газа 90% N2 - 10% H2.
Описание дано для способа твердотельного синтеза материала, основанного на нитриде кремния, начиная с Si3N4 как исходного материала. Различные варианты компенсации присутствия кислорода в исходном материале Si3N4 (это означает, что присутствует SiO2), например для Sr2Si5N8:Eu, представляют собой:
Использование С4- (например, посредством добавления SiC)
Благодаря замене пары (ОС)6- равно заряженной парой (N2)6-, общая стехиометрия кристаллической решетки-хозяина сохраняется, и никаких дефектов (подобных вакансиям или внедрениям), не образуется. Это может достигаться путем добавления SiC к реакционной смеси в количестве, которое требуется, чтобы израсходовать кислород, присутствующий в исходном Si3N4 материале (в виде SiO2), согласно уравнению реакции SiO2+2SiC→Si3С2O2. В результате получается соединение с такой стехиометрией, как в "идеальном" материале Si3N4 (без кислорода). Пример полученного люминофора представляет собой (Sr,Eu)2Si5N8-2xOxCx.
Предложенная идея не только может быть использована для компенсации присутствия кислорода в Si3N4, но также в исходных материалах, содержащих Sr и Eu. Предложенная идея делает возможным использование относительно небольших количеств (дешевле и более удобно) исходных оксидных материалов, таких как SrO (SrСО3) и Еu2O3.
Условия синтеза, касающиеся процедуры смешивания, температуры обжига и атмосферы, а также других свойств, аспектов и преимуществ изобретения, более подробно будут обсуждаться ниже со ссылкой на три примера с различным содержанием кислорода. Исходные материалы представляют собой Si3N4 (либо α либо β), SrNa (или нитридный Sr) и/или небольшие количества SrO (или SrСО3) и EuNc (или нитридный Eu) и/или небольшие количества Еu2O3. В то же время для компенсации заряда остаточных количеств кислорода (например, присутствующего в Si3N4) или намеренно добавленных количеств кислорода (например, как SrO или Еu2О3) добавляются AlN или SiC.
Пример 1:
230 г α-Si3N4 (содержание кислорода 0.6 масс. %), 3.64 г SiC, 6.08 г Eu (который нитрировали в атмосфере N2 при 800°С) и 172 г Sr (который нитрировали в атмосфере N2 при 800°С) последовательно смешивали в атмосфере сухого азота. Эту смесь загружали в термически и химические устойчивые тигли и обжигали в атмосфере N2/H2 при 1350-1600°С в течение 8-24 часов. Полученный люминофор может быть представлен следующей формулой:
Sr2-yEuySi5N8-2xOxCx, где x = 0.086 и y = 0.04.
Пример 2:
Смесь 225 г α-Si3N4 (содержание кислорода 1.5 масс.%), 8.66 г AlN, 6.08 г Eu (который снова нитрировали в атмосфере N2 при 800°С) и 172 г Sr (который также нитрировали в атмосфере N2 при 800°С) готовили и обжигали таким же образом, как описано в примере 1. Полученный люминофор может быть представлен следующей формулой:
Sr2-yEuySi5-xAlxN8-xOx, где x = 0.211 и y = 0.04.
Пример 3:
Смесь 218 г α-Si3N4 (содержание кислорода 1.0 масс.%), 15.05 г SiC, 26.39 г Еu2O3 и 162 г Sr (который нитрировали в атмосфере N2 при 800°С) готовили и обжигали таким же образом, как описано в примере 1. Полученный люминофор может быть представлен следующей формулой:
Sr2-yEuySi5N8-2xOxCx, где x = 0.361 и y = 0.15.
Изобретение было описано выше со ссылкой на предпочтительные варианты выполнения. Специалисты в данной области техники примут во внимание, что можно применять многочисленные модификации, не выходя за рамки формулы изобретения. Согласно этому описание следует рассматривать как иллюстративное, а не ограничительное, и никакие ограничения не должны подразумеваться, кроме тех которые установлены формулой изобретения.
Хотя изобретение особенно подходит для люминофора, изготовленного посредством дробления и нагревания, оно может применяться также для других способов производства, таких как способы, упомянутые выше, например, MOVPE. В способе могут применяться флюсы или добавки для влияния на размер частиц и/или морфологию частиц.
Вместо легирования одним ионом редкоземельного элемента, может быть рассмотрено легирование более чем одним из таких ионов, например Eu и Се. Также возможно совместное легирование или совместная активация ионами переходных металлов.
Дополнительно следует заметить, что в примерах Sr может быть частично или полностью заменен Mg, или Са, или Ва, или подобными, или комбинацией таких элементов. В этом отношении следует заметить, что щелочноземельные элементы частично могут быть заменены другими подходящими ионами металлов с зарядом 2+, в частности такими как ион Zn.
Хотя изобретение, в частности, имеет целью производство модифицированного люминофора на основе щелочноземельного элемента и нитрида кремния с композицией, близкой к AE2Si5N8:RE, оно также может быть применено для изготовления других модифицированных соединений щелочноземельного элемента и нитрида кремния с композицией, близкой к другим известным соединениям элементов АЕ, Si и N. Примерами последних являются AESi7N10 или AESiN2. Изобретение равным образом имеет дело с полученными соответствующим способом соединениями фосфора, в которых выполняются соответствующие замещения, и с преобразующим излучение устройством, содержащим эти соединения.
Могут применяться другие способы возбуждения, кроме одного, упомянутого, например, возбуждения электронным лучом или рентгеновскими лучами, электролюминесценция и др. Кроме порошков могут применяться другие формы для соединений, используемых в способе по изобретению, например монокристаллы, тонкие пленки, керамические материалы (спекаемый порошок) и совместное покрытие, в котором соединение покрывается другим материалом.
Наконец, следует отметить, что хотя способ по изобретению, предпочтительно, подразумевает образование желаемого соединения люминофора, применяя синтез, основанный на двух или более соединениях, он также содержит способ, в котором одно соединение, которое уже изготовлено согласно композиции желаемого люминофора, обрабатывается одним (или более) другим соединением. Это производится для того, чтобы устранить дефекты и/или сегрегацию в люминофоре посредством образования модифицированного соединения, в котором дефекты удалены посредством создания, заполнения или аннигиляции вакансий.

Claims (9)

1. Способ производства легированного редкоземельным элементом люминофора на основе щелочноземельного элемента и нитрида кремния, при этом названный способ содержит этапы:
- отбор одного или более соединений, каждое из которых содержит, по меньшей мере, один элемент из группы, содержащей редкоземельные элементы, щелочноземельные элементы, кремний и азот, и вместе содержат необходимые элементы для образования легированного редкоземельным элементом люминофора на основе щелочноземельного элемента и нитрида кремния;
- приведение соединений к реакции при повышенной температуре для образования легированного редкоземельным элементом люминофора на основе щелочноземельного элемента и нитрида кремния, при которой намеренно или ненамеренно добавляется небольшое количество кислорода, который вводится в образовавшийся таким образом легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния, при этом полученный легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния характеризуется общей формулой:
AE2Si5N8-2xCxOx:RE,
где АЕ представляет собой щелочноземельный элемент;
RE представляет собой редкоземельный элемент,
и где x меньше чем 1.
2. Способ по п.1, отличающийся тем, что образование дефектов, по существу, полностью предотвращается путем введения углерода в люминофор.
3. Способ по п.2, отличающийся тем, что для определения подходящего количества углерода определяется содержание кислорода в исходных соединениях и/или количество кислорода, вводимого во время реакционного процесса.
4. Способ по п.1, отличающийся тем, что для соединений выбираются твердые соединения, которые перемалываются, и смешиваются, и нагреваются в печи при восстанавливающей атмосфере.
5. Способ по любому из предшествующих пунктов, отличающийся тем, что для соединений выбираются только соединения, которые не содержат намеренно добавленного кислорода.
6. Модифицированный легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния, получаемый способом по любому из предыдущих пунктов.
7. Модифицированный легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния по п.6, отличающийся тем, что x меньше чем 0,25, и более предпочтительно меньше чем 0,1.
8. Излучающее устройство, содержащее модифицированный легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния по п.6 или 7.
9. Преобразующее излучение устройство, содержащее модифицированный легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния по п.6 или 7.
RU2010119299/05A 2007-10-15 2008-10-14 Легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния, способ его производства и преобразующее излучение устройство, содержащее такой люминофор RU2470980C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07118436.0 2007-10-15
EP07118436A EP2058382B1 (en) 2007-10-15 2007-10-15 Method of manufacturing a rare-earth doped alkaline-earth silicon nitride phosphor, rare-earth doped alkaline-earth silicon nitride phosphor obtainable by such a method and radiation-emitting device comprising such a rare-earth doped alkaline-earth silicon nitride phosphor
PCT/EP2008/063810 WO2009050171A2 (en) 2007-10-15 2008-10-14 Rare-earth doped alkaline-earth silicon nitride phosphor, method for producing and radiation converting device comprising such a phosphor

Publications (2)

Publication Number Publication Date
RU2010119299A RU2010119299A (ru) 2011-11-27
RU2470980C2 true RU2470980C2 (ru) 2012-12-27

Family

ID=50280682

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010119299/05A RU2470980C2 (ru) 2007-10-15 2008-10-14 Легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния, способ его производства и преобразующее излучение устройство, содержащее такой люминофор

Country Status (6)

Country Link
US (1) US8551360B2 (ru)
EP (1) EP2212400B9 (ru)
CN (1) CN101842461B (ru)
RU (1) RU2470980C2 (ru)
TW (1) TWI464239B (ru)
WO (1) WO2009050171A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2644465C1 (ru) * 2017-03-14 2018-02-12 Общество с ограниченной ответственностью "Монокристалл Пасты" Способ получения мелкодисперсного красного люминесцентного материала для создания результирующего белого света в светодиодах

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691113B2 (en) * 2008-07-02 2014-04-08 Dexerials Corporation Red phosphor, method for producing red phosphor, white light source, illuminating device, and liquid crystal display device
CN101798510A (zh) * 2010-03-15 2010-08-11 彩虹集团公司 一种氮化物荧光粉材料及其制备方法
KR101444085B1 (ko) 2010-05-14 2014-09-26 라이트스케이프 머티어리얼스, 인코포레이티드 카바이도나이트라이드계 형광체들 및 이를 이용한 발광 소자들
CN102939355B (zh) * 2010-05-14 2016-10-26 渲染材料公司 氧碳氮化物磷光体和使用该材料的发光器件
KR100984273B1 (ko) * 2010-05-25 2010-10-01 충남대학교산학협력단 질화물 형광체, 이의 제조방법 및 상기 형광체를 포함하는 발광 소자
SG187896A1 (en) * 2010-09-10 2013-04-30 Lightscape Materials Inc Silicon carbidonitride based phosphors and lighting devices using the same
JP5695968B2 (ja) * 2010-12-28 2015-04-08 デクセリアルズ株式会社 赤色蛍光体、赤色蛍光体の製造方法、白色光源、照明装置、および液晶表示装置
JP2012153873A (ja) * 2011-01-04 2012-08-16 Sony Chemical & Information Device Corp 赤色蛍光体、赤色蛍光体の製造方法、白色光源、照明装置、および液晶表示装置
JP6084320B2 (ja) * 2011-01-04 2017-02-22 デクセリアルズ株式会社 赤色蛍光体、赤色蛍光体の製造方法、白色光源、照明装置、および液晶表示装置
JP6034557B2 (ja) * 2011-05-14 2016-11-30 デクセリアルズ株式会社 赤色蛍光体の製造方法
CN102391861B (zh) * 2011-09-29 2014-08-27 北京宇极科技发展有限公司 一种氮化合物发光材料及其制法以及由其制成的照明光源
JP5854051B2 (ja) 2011-10-12 2016-02-09 宇部興産株式会社 酸窒化物蛍光体粉末及びその製造方法
US9017574B2 (en) 2011-12-19 2015-04-28 Lightscape Materials, Inc. Carbidonitride phosphors and LED lighting devices using the same
EP2797838A4 (en) 2011-12-30 2015-07-01 Intematix Corp LUMINESCENT NITRIDE COMPOUNDS COMPRISING INTERSTITIAL CATIONS FOR ION BALANCE SHEET
US8663502B2 (en) 2011-12-30 2014-03-04 Intematix Corporation Red-emitting nitride-based phosphors
JP5727955B2 (ja) * 2012-03-08 2015-06-03 株式会社東芝 蛍光体およびその製造方法
CN102766458B (zh) * 2012-06-30 2013-10-16 江苏博睿光电有限公司 一种高亮度氮化物红色荧光粉及其制造方法
US8597545B1 (en) 2012-07-18 2013-12-03 Intematix Corporation Red-emitting nitride-based calcium-stabilized phosphors
US8815121B2 (en) 2012-08-31 2014-08-26 Lightscape Materials, Inc. Halogenated oxycarbidonitride phosphor and devices using same
TW201428087A (zh) * 2013-01-11 2014-07-16 kai-xiong Cai 發光裝置及其耐溫碳化物螢光材料
CN103137720B (zh) * 2013-02-06 2016-01-06 内蒙古大学 一种掺杂稀土元素的光伏薄膜材料
KR101496559B1 (ko) 2013-07-31 2015-02-27 주식회사 효성 향상된 결정 구조의 나이트라이드 형광체, 그의 제조방법, 및 이를 포함하는 백색 발광 소자
WO2015072766A1 (ko) 2013-11-13 2015-05-21 엘지이노텍(주) 청녹색 형광체, 이를 포함하는 발광 소자 패키지 및 조명 장치
US9200199B1 (en) 2014-08-28 2015-12-01 Lightscape Materials, Inc. Inorganic red phosphor and lighting devices comprising same
US9315725B2 (en) 2014-08-28 2016-04-19 Lightscape Materials, Inc. Method of making EU2+ activated inorganic red phosphor
US9200198B1 (en) 2014-08-28 2015-12-01 Lightscape Materials, Inc. Inorganic phosphor and light emitting devices comprising same
KR102357584B1 (ko) 2014-12-17 2022-02-04 삼성전자주식회사 질화물 형광체, 백색 발광장치, 디스플레이 장치 및 조명장치
CN109075235B (zh) * 2016-02-23 2021-11-12 亮锐控股有限公司 用于发光器件的波长转换材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1039951A1 (ru) * 1981-12-18 1983-09-07 Ленинградский Ордена Ленина Политехнический Институт Им.М.И.Калинина Люминесцирующий состав
EP1433831A1 (en) * 2002-03-22 2004-06-30 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
EP1560274A1 (en) * 2002-11-08 2005-08-03 Nichia Corporation Light emitting device, phosphor and method for preparing phosphor
WO2005083037A1 (en) * 2004-02-20 2005-09-09 Philips Intellectual Property & Standards Gmbh Illumination system comprising a radiation source and a fluorescent material
US20060017041A1 (en) * 2004-06-25 2006-01-26 Sarnoff Corporation Nitride phosphors and devices
WO2006126567A1 (ja) * 2005-05-24 2006-11-30 Mitsubishi Chemical Corporation 蛍光体及びその利用
US20070114548A1 (en) * 2005-11-22 2007-05-24 Gelcore, Llc Charge compensated nitride phosphors for use in lighting applications

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1104799A1 (en) * 1999-11-30 2001-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Red emitting luminescent material
GB0229191D0 (en) 2002-12-14 2003-01-22 Plastic Logic Ltd Embossing of polymer devices
JP4805829B2 (ja) * 2003-09-24 2011-11-02 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング 定義された色温度を有する白色発光led
TWI359187B (en) * 2003-11-19 2012-03-01 Panasonic Corp Method for preparing nitridosilicate-based compoun
JP2006213910A (ja) * 2005-01-06 2006-08-17 Matsushita Electric Ind Co Ltd 酸窒化物蛍光体及び発光装置
NL2000033C1 (nl) * 2006-03-20 2007-09-21 Univ Eindhoven Tech Inrichting voor het omzetten van elektromagnetische stralingsenergie in elektrische energie en werkwijze ter vervaardiging van een dergelijke inrichting.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1039951A1 (ru) * 1981-12-18 1983-09-07 Ленинградский Ордена Ленина Политехнический Институт Им.М.И.Калинина Люминесцирующий состав
EP1433831A1 (en) * 2002-03-22 2004-06-30 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
EP1560274A1 (en) * 2002-11-08 2005-08-03 Nichia Corporation Light emitting device, phosphor and method for preparing phosphor
WO2005083037A1 (en) * 2004-02-20 2005-09-09 Philips Intellectual Property & Standards Gmbh Illumination system comprising a radiation source and a fluorescent material
US20060017041A1 (en) * 2004-06-25 2006-01-26 Sarnoff Corporation Nitride phosphors and devices
WO2006126567A1 (ja) * 2005-05-24 2006-11-30 Mitsubishi Chemical Corporation 蛍光体及びその利用
US20070114548A1 (en) * 2005-11-22 2007-05-24 Gelcore, Llc Charge compensated nitride phosphors for use in lighting applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МАРКОВСКИЙ Л.Я. и др. Люминофоры. - М.-Л.: Химия, 1966, с.26, 27, 35. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2644465C1 (ru) * 2017-03-14 2018-02-12 Общество с ограниченной ответственностью "Монокристалл Пасты" Способ получения мелкодисперсного красного люминесцентного материала для создания результирующего белого света в светодиодах

Also Published As

Publication number Publication date
RU2010119299A (ru) 2011-11-27
TWI464239B (zh) 2014-12-11
EP2212400B1 (en) 2012-12-26
CN101842461A (zh) 2010-09-22
EP2212400A2 (en) 2010-08-04
WO2009050171A2 (en) 2009-04-23
US20100288972A1 (en) 2010-11-18
WO2009050171A4 (en) 2009-07-16
TW200932878A (en) 2009-08-01
WO2009050171A3 (en) 2009-06-04
CN101842461B (zh) 2015-09-16
US8551360B2 (en) 2013-10-08
EP2212400B9 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
RU2470980C2 (ru) Легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния, способ его производства и преобразующее излучение устройство, содержащее такой люминофор
US7815817B2 (en) Phosphor and process for producing the same
JP5779651B2 (ja) ケイ素カルビドニトリドベースの蛍光体およびこれを使用する発光素子
KR102352032B1 (ko) 고체-상태 조명을 위한 슈퍼사면체 인광체
US8440106B2 (en) Strontium oxyorthosilicate phosphors having improved stability under a radiation load and resistance to atmospheric humidity
KR101244620B1 (ko) 산질화물 형광체 및 이를 이용한 발광장치
JP5565046B2 (ja) Li含有α−サイアロン系蛍光体の製造方法
JP2016507605A (ja) 蛍光体
EP2058382B1 (en) Method of manufacturing a rare-earth doped alkaline-earth silicon nitride phosphor, rare-earth doped alkaline-earth silicon nitride phosphor obtainable by such a method and radiation-emitting device comprising such a rare-earth doped alkaline-earth silicon nitride phosphor
KR100733009B1 (ko) 스트론튬-바륨 알루미네이트계 형광체 제조
KR20140029331A (ko) 할로겐화 옥시카비도니트라이드 형광체 및 이를 사용한 디바이스
JP2017043764A (ja) 蛍光体
US8686626B2 (en) Oxynitride-based phosphor and light emitting device including the same
US8986574B2 (en) Oxynitride-based phosphor and light emitting device including the same
JP2012162634A (ja) 蛍光体、その製造方法及び発光装置
CN115353880B (zh) 无机碳氮化物或碳化物荧光材料、其制造方法和包含该荧光材料的发光装置
JP5690159B2 (ja) 蛍光体、その製造方法及び発光装置
PL238800B1 (pl) Dwu-fazowy tlenoazotkowy luminofor o wzmocnionej i wydłużonej luminescencji oraz sposób jego wytwarzania
Kim et al. Synthesis and luminescent characteristics of BaGa2S4: Eu2+ Phosphor by solid‐state method

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181015