RU2461425C1 - Method of producing catalyst for ortho-para conversion of protium - Google Patents

Method of producing catalyst for ortho-para conversion of protium Download PDF

Info

Publication number
RU2461425C1
RU2461425C1 RU2011129247/02A RU2011129247A RU2461425C1 RU 2461425 C1 RU2461425 C1 RU 2461425C1 RU 2011129247/02 A RU2011129247/02 A RU 2011129247/02A RU 2011129247 A RU2011129247 A RU 2011129247A RU 2461425 C1 RU2461425 C1 RU 2461425C1
Authority
RU
Russia
Prior art keywords
solution
catalyst
protium
ortho
metal salt
Prior art date
Application number
RU2011129247/02A
Other languages
Russian (ru)
Inventor
Алексей Юрьевич Антонов (RU)
Алексей Юрьевич Антонов
Михаил Олегович Сергеев (RU)
Михаил Олегович Сергеев
Михаил Андреевич Кузнецов (RU)
Михаил Андреевич Кузнецов
Александра Анатольевна Ревина (RU)
Александра Анатольевна Ревина
Ольга Анатольевна Боева (RU)
Ольга Анатольевна Боева
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) filed Critical Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева)
Priority to RU2011129247/02A priority Critical patent/RU2461425C1/en
Application granted granted Critical
Publication of RU2461425C1 publication Critical patent/RU2461425C1/en

Links

Abstract

FIELD: chemistry.
SUBSTANCE: invention relates to heterogeneous catalysis, particularly a method of producing a catalyst for ortho-para conversion of protium. Disclosed is a method of producing a catalyst for ortho-para conversion of protium. The method involves obtaining metal nanoparticles by reducing metal ions under the effect of 60Co -gamma radiation in a reverse micellar solution consisting of a metal salt solution, a surfactant which is sodium bis(2-ethylhexyl)sulphosuccinate, and a nonpolar solvent - isooctane, followed by deposition onto a Al2O3 support. The metal salt used is RhCl3 or RuOHCI3 and a reverse micellar solution of rhodium or ruthenium is prepared with molar ratio of the aqueous metal salt solution to the surfactant ranging from 1:1 to 10:1, and a water-alcohol solution in amount of 5-50 wt % and an ammonia solution in amount of 10-30 wt % are then added, followed by ultrasonic treatment, deaeration and exposure to 60Co -gamma radiation with a dose of 1-40 kGy.
EFFECT: invention enables to obtain a catalyst for operation in the 77-110 K temperature range.
2 cl, 4 tbl, 4 ex

Description

Изобретение относится к области гетерогенного катализа,The invention relates to the field of heterogeneous catalysis,

в частности к способу получения катализатора для орто-пара конверсии протия.in particular, to a method for producing a catalyst for ortho-para conversion of protium.

Известен способ получения катализатора путем ионного обмена, при котором носитель из огнеупорного оксида, содержащего катион водорода, обрабатывают раствором, содержащим катионы металлов. Непосредственно после обработки оксид промывают водой для отделения химически несвязанных металлических катионов. Далее оксид сушат, при этом часть металлических катионов восстанавливается при нагревании огнеупорного оксида до элементарного металла путем отделения от связанной воды, которая ассоциирована с металлическими катионами (пат. Германии №1542012, кл. B01Y 37/30, от 21.10.76 г.). Этот катализатор используется только для ионного обмена.A known method of producing a catalyst by ion exchange, in which a carrier of a refractory oxide containing a hydrogen cation is treated with a solution containing metal cations. Immediately after treatment, the oxide is washed with water to separate chemically unbound metal cations. Then the oxide is dried, and part of the metal cations is reduced by heating the refractory oxide to elemental metal by separation from bound water, which is associated with metal cations (German Pat. No. 1542012, class B01Y 37/30, dated October 21, 1976). This catalyst is used only for ion exchange.

Известен способ получения катализатора для изотопного обмена между водой и водородом, где катализатор включает гидрофобную пористую матрицу с диспергированной в ней платиной и, по крайней мере, другой металл, выбранный из группы хрома или титана (пат. ЕР №1486457, кл. B01D 59/00, B01Y 37/00-37/02, от 06.06.2003 г.). Однако этот катализатор используется только для изотопного обмена между водой и водородом.A known method of producing a catalyst for isotopic exchange between water and hydrogen, where the catalyst includes a hydrophobic porous matrix dispersed in it with platinum and at least another metal selected from the group of chromium or titanium (US Pat. EP No. 1486457, CL B01D 59 / 00, B01Y 37 / 00-37 / 02, dated 06/06/2003). However, this catalyst is used only for isotopic exchange between water and hydrogen.

Наиболее близким по технической сущности и достигаемому результату является способ получения катализатора Ptмиц/Al2O3 для изотопного обмена протия и дейтерия и о-п конверсии протия. Наночастицы Pt образуются при радиационно-химическом восстановлении ионов платины в обратномицеллярных системах H2[PtCl6]/H2O/ацетон/бис(2 этилгексил)сульфосукцинат натрия/изооктан. Наночастицы получены из трех различных исходных обратномицеллярных растворов, отличающихся значениями коэффициента солюбилизации ω=1,5, 3 и 5 («Перспективные материалы», стр.288-293, 2010 г.).The closest in technical essence and the achieved result is a method of producing a catalyst Pt mitz / Al 2 O 3 for isotopic exchange of protium and deuterium and op conversion of protium. Pt nanoparticles are formed during radiation-chemical reduction of platinum ions in reverse micellar systems H 2 [PtCl 6 ] / H 2 O / acetone / bis (2 ethylhexyl) sodium sulfosuccinate / isooctane. Nanoparticles were obtained from three different initial reverse micellar solutions, differing in the values of solubilization coefficient ω = 1,5, 3 and 5 (“Promising materials”, pp. 288-293, 2010).

Однако катализатор обладает невысокой каталитической активностью.However, the catalyst has a low catalytic activity.

Техническим результатом изобретения является получение катализатора для орто-пара конверсии протия, обладающего высокой каталитической активностью и предназначенного для работы в интервале температур 77÷110 К.The technical result of the invention is to obtain a catalyst for ortho-vapor conversion of protium, which has high catalytic activity and is designed to operate in the temperature range 77 ÷ 110 K.

Этот технический результат достигается получением катализатора для орто-пара конверсии протия, включающего получение наночастиц металла при восстановлении ионов металла под воздействием γ-излучения 60Со в обратномицеллярном растворе, состоящем из раствора соли металла, ПАВ, представляющего собой бис(2-этилгексил)сульфосукцинат натрия, и неполярного растворителя, изооктана, с последующим нанесением на носитель Al2O3, причем в качестве соли металла используют RhCl3 или RuOHCl3 и готовят обратномицеллярные растворы родия или рутения при отношениях мольных количеств водного раствора соли металла к мольному количеству ПАВ в диапазоне от 1:1 до 10:1, затем добавляют водно-спиртовый раствор в количестве 5-50 мас.% и аммиачный раствор в количестве 10-30 мас.% с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Со с дозой от 1 до 40 кГр.This technical result is achieved by the preparation of a catalyst for ortho-para conversion of protium, including the production of metal nanoparticles during the recovery of metal ions under the influence of γ radiation of 60 Co in a reverse micellar solution consisting of a solution of a metal salt, a surfactant, which is sodium bis (2-ethylhexyl) sulfosuccinate and a non-polar solvent, isooctane, followed by applying Al 2 O 3 to the support, wherein RhCl 3 or RuOHCl 3 is used as a metal salt and reverse-micellar solutions of rhodium or ruthenium are prepared with solutions of molar amounts of an aqueous solution of a metal salt to a molar amount of a surfactant in the range from 1: 1 to 10: 1, then a water-alcohol solution in the amount of 5-50 wt.% and an ammonia solution in the amount of 10-30 wt.% are added, followed by ultrasonic treatment, deaeration and exposure to γ-radiation of 60 Co with a dose of 1 to 40 kGy.

В качестве спирта в водно-спиртовом растворе используют изопропанол.Isopropanol is used as the alcohol in the aqueous-alcoholic solution.

Пример 1Example 1

Готовился обратномицеллярный раствор соли родия RhCl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 1:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-3 г (5 мас.%) и аммиачный раствор в количестве 2,0·10-2 г (30 мас.%) с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Со до достижения дозы 1 кГр.A reverse micellar solution of the rhodium salt RhCl 3 was prepared with a molar ratio of an aqueous solution of a metal salt to a molar amount of sodium 1: 1 bis (2-ethylhexyl) sulfosuccinate. Then add a water-alcohol solution in an amount of 3.4 · 10 -3 g (5 wt.%) And an ammonia solution in an amount of 2.0 · 10 -2 g (30 wt.%), Followed by ultrasonic treatment, deaeration and exposure to γ -radiation of 60 Co until a dose of 1 kGy is reached.

Взвешен 1 г носителя Al2O3 и помещен в 10 мл полученного обратномицеллярного раствора.Weighed 1 g of Al 2 O 3 support and placed in 10 ml of the obtained reverse micellar solution.

По убыли интенсивности пиков, соответствующих наночастицам родия в растворе с погруженным в него носителем Al2O3, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Rh/Al2O3 по отношению к реакции орто-пара конверсии протия составила 6,48·1014 молекул/(см2·с), что в ~3 раза превышает активность катализатора Ptмиц/Al2O3, выбранного в качестве прототипа. Данные по активности данного образца катализатора Rh/Al2O3, приготовленного по примеру 1, в интервале температур 77÷110 К представлены в таблице 1.The decrease in the intensity of the peaks corresponding to rhodium nanoparticles in a solution with an Al 2 O 3 carrier immersed in it was used to determine the adsorption of rhodium nanoparticles. The fact of the formation of nanostructured rhodium particles was recorded by the presence of characteristic peaks in the optical absorption spectra, as well as by atomic force microscopy. Samples of the carrier with precipitated rhodium nanoparticles were removed from the reverse micellar solution and dried in air for 24 hours. The dried samples were washed sequentially with isooctane (once), aqueous-alcoholic solution (once) and distilled water (three times). The prepared catalyst samples with precipitated rhodium nanoparticles were heated in vacuum to 550 K for four hours. At a pressure of 0.5 Torr and a temperature of 77 K, the catalytic activity of the catalyst Rh / Al 2 O 3 with respect to the reaction of ortho-para conversion of protium was 6.48 · 10 14 molecules / (cm 2 · s), which is ~ 3 times higher the activity of the catalyst Pt mitz / Al 2 O 3 selected as a prototype. Data on the activity of this sample of the catalyst Rh / Al 2 O 3 prepared according to example 1, in the temperature range 77 ÷ 110 K are presented in table 1.

Пример 2Example 2

Готовился обратномицеллярный раствор соли родия RhCl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 10:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-2 г (50 мас.%) и аммиачный раствор в количестве 6,8·10-3 г (10 мас.%) с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Со до достижения дозы 40 кГр.A reverse micellar solution of the rhodium salt RhCl 3 was prepared with a molar ratio of an aqueous solution of a metal salt to a molar amount of sodium 10: 1 bis (2-ethylhexyl) sulfosuccinate. Then add a water-alcohol solution in an amount of 3.4 · 10 -2 g (50 wt.%) And an ammonia solution in an amount of 6.8 · 10 -3 g (10 wt.%), Followed by ultrasonic treatment, deaeration and exposure to γ -60 C radiation until a dose of 40 kGy is reached.

Взвешен 1 г носителя Al2O3 и помещен в 10 мл полученного обратномицеллярного раствора.Weighed 1 g of Al 2 O 3 support and placed in 10 ml of the obtained reverse micellar solution.

По убыли интенсивности пиков, соответствующих наночастицам родия в растворе с погруженным в него носителем Al2O3, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Rh/Al2O3 по отношению к реакции орто-пара конверсии протия составила 6,12·1014 молекул/(см2·с), что в ~3 раза превышает активность катализатора Ptмиц/Al2O3, выбранного в качестве прототипа.The decrease in the intensity of the peaks corresponding to rhodium nanoparticles in a solution with an Al 2 O 3 carrier immersed in it was used to determine the adsorption of rhodium nanoparticles. The fact of the formation of nanostructured rhodium particles was recorded by the presence of characteristic peaks in the optical absorption spectra, as well as by atomic force microscopy. Samples of the carrier with precipitated rhodium nanoparticles were removed from the reverse micellar solution and dried in air for 24 hours. The dried samples were washed sequentially with isooctane (once), aqueous-alcoholic solution (once) and distilled water (three times). The prepared catalyst samples with precipitated rhodium nanoparticles were heated in vacuum to 550 K for four hours. At a pressure of 0.5 Torr and a temperature of 77 K, the catalytic activity of the catalyst Rh / Al 2 O 3 with respect to the reaction of ortho-para conversion of protium was 6.12 · 10 14 molecules / (cm 2 · s), which is ~ 3 times higher the activity of the catalyst Pt mitz / Al 2 O 3 selected as a prototype.

Данные по активности данного образца катализатора Rh/Al2O3, приготовленного по примеру 2, в интервале температур 77÷110 К представлены в таблице 2.Data on the activity of this sample of the catalyst Rh / Al 2 O 3 prepared according to example 2, in the temperature range 77 ÷ 110 K are presented in table 2.

Пример 3Example 3

Готовился обратномицеллярный раствор соли рутения RuOHCl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 1:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-3 г (5 мас.%) и аммиачный раствор в количестве 2,0·10-2 г (30 мас.%) с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Со до достижения дозы 1 кГр.A reverse micellar solution of the ruthenium salt RuOHCl 3 was prepared with a molar ratio of an aqueous solution of a metal salt to a molar amount of sodium bis (2-ethylhexyl) sulfosuccinate 1: 1. Then add a water-alcohol solution in an amount of 3.4 · 10 -3 g (5 wt.%) And an ammonia solution in an amount of 2.0 · 10 -2 g (30 wt.%), Followed by ultrasonic treatment, deaeration and exposure to γ -radiation of 60 Co until a dose of 1 kGy is reached.

Взвешен 1 г носителя Al2O3 и помещен в 10 мл полученного обратномицеллярного раствора.Weighed 1 g of Al 2 O 3 support and placed in 10 ml of the obtained reverse micellar solution.

По убыли интенсивности пиков, соответствующих наночастицам рутения в растворе с погруженным в него носителем Al2O3, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с нанесенными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ru/Al2O3 по отношению к орто-пара конверсии протия составила 6,14·1014 молекул/(см2·с), что в ~3 раза превышает активность катализатора Ptмиц/Al2O3, выбранного в качестве прототипа.The decrease in the intensity of the peaks corresponding to ruthenium nanoparticles in a solution with an Al 2 O 3 carrier immersed in it was used to determine the adsorption of rhodium nanoparticles. The fact of the formation of nanostructured rhodium particles was recorded by the presence of characteristic peaks in the optical absorption spectra, as well as by atomic force microscopy. Carrier samples coated with rhodium nanoparticles were removed from a reverse micellar solution and dried in air for 24 hours. The dried samples were washed sequentially with isooctane (once), aqueous-alcoholic solution (once) and distilled water (three times). The prepared catalyst samples with precipitated rhodium nanoparticles were heated in vacuum to 550 K for four hours. At a pressure of 0.5 Torr and a temperature of 77 K, the catalytic activity of the Ru / Al 2 O 3 catalyst with respect to the ortho-para conversion of protium was 6.14 · 10 14 molecules / (cm 2 · s), which is ~ 3 times higher than the activity catalyst Pt mitz / Al 2 O 3 selected as a prototype.

Данные по активности данного образца катализатора Ru/Al2O3, приготовленного пот примеру 3, в интервале температур 77-110 К представлены в таблице 3.Data on the activity of this sample of the catalyst Ru / Al 2 O 3 , prepared by the sweat of example 3, in the temperature range 77-110 K are presented in table 3.

Пример 4Example 4

Готовился обратномицеллярный раствор соли рутения RuOHCl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 10:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-2 г (50 мас.%) и аммиачный раствор в количестве 6,8·10-3 г (10 мас.%) с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Со до достижения дозы 40 кГр.A reverse micellar solution of the ruthenium salt RuOHCl 3 was prepared with a molar ratio of an aqueous solution of a metal salt to a molar amount of sodium bis (2-ethylhexyl) sulfosuccinate 10: 1. Then add a water-alcohol solution in an amount of 3.4 · 10 -2 g (50 wt.%) And an ammonia solution in an amount of 6.8 · 10 -3 g (10 wt.%), Followed by ultrasonic treatment, deaeration and exposure to γ -60 C radiation until a dose of 40 kGy is reached.

Взвешен 1 г носителя Al2O3 и помещен в 10 мл полученного обратномицеллярного раствора.Weighed 1 g of Al 2 O 3 support and placed in 10 ml of the obtained reverse micellar solution.

По убыли интенсивности пиков, соответствующих наночастицам рутения в растворе с погруженным в него носителем Al2O3, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с нанесенными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ru/Al2O3 по отношению к реакции орто-пара конверсии протия составила 6,51·1014 молекул/(см2·с), что в ~3 раза превышает активность катализатора Ptмиц/Al2O3, выбранного в качестве прототипа.The decrease in the intensity of the peaks corresponding to ruthenium nanoparticles in a solution with an Al 2 O 3 carrier immersed in it was used to determine the adsorption of rhodium nanoparticles. The fact of the formation of nanostructured rhodium particles was recorded by the presence of characteristic peaks in the optical absorption spectra, as well as by atomic force microscopy. Carrier samples coated with rhodium nanoparticles were removed from a reverse micellar solution and dried in air for 24 hours. The dried samples were washed sequentially with isooctane (once), aqueous-alcoholic solution (once) and distilled water (three times). The prepared catalyst samples with precipitated rhodium nanoparticles were heated in vacuum to 550 K for four hours. At a pressure of 0.5 Torr and a temperature of 77 K, the catalytic activity of the Ru / Al 2 O 3 catalyst with respect to the ortho-para reaction of protium conversion was 6.51 · 10 14 molecules / (cm 2 · s), which is ~ 3 times higher the activity of the catalyst Pt mitz / Al 2 O 3 selected as a prototype.

Результаты измерений удельной каталитической активности образца катализатора Ru/Al2O3, приготовленного по примеру 4, в интервале температур 77-110 К представлены в таблице 4.The measurement results of the specific catalytic activity of the sample of the catalyst Ru / Al 2 O 3 prepared according to example 4, in the temperature range 77-110 K are presented in table 4.

Таблица 1Table 1 Значения удельной каталитической активности Rh/Al2O3, приготовление которого рассмотрено в примере 1, в отношении реакции орто-пара конверсии протия (соотношение водного раствора RhCl3 к бис(2-этилгексил)сульфосукцинату натрия составляет 1:1)The values of the specific catalytic activity of Rh / Al 2 O 3 , the preparation of which is considered in Example 1, with respect to the reaction of ortho-para conversion of protium (the ratio of an aqueous solution of RhCl 3 to sodium bis (2-ethylhexyl) sulfosuccinate is 1: 1) Kуд·10-14 молекул/(см2·с) при Т, КK beats · 10 -14 molecules / (cm 2 · s) at T, K 7777 110110 6,486.48 6,336.33

Таблица 2table 2 Значения удельной каталитической активности Rh/Al2O3, приготовление которого рассмотрено в примере 2, в отношении реакции орто-пара конверсии протия (соотношение водного раствора RhCl3 к бис(2-этилгексил)сульфосукцинату натрия составляет 10:1)The values of the specific catalytic activity of Rh / Al 2 O 3 , the preparation of which is considered in example 2, with respect to the reaction of ortho-para conversion of protium (the ratio of an aqueous solution of RhCl 3 to sodium bis (2-ethylhexyl) sulfosuccinate is 10: 1) Kуд·10-14 молекул/(см2·с) при Т, КK beats · 10 -14 molecules / (cm 2 · s) at T, K 7777 110110 6,126.12 6,236.23

Таблица 3Table 3 Значения удельной каталитической активности Ru/Al2O3, приготовление которого рассмотрено в примере 3, в отношении реакции орто-пара конверсии протия (соотношение водно-спиртового раствора RuOHCl3 к бис(2-этилгексил)сульфосукцинату натрия составляет 1:1)The specific catalytic activity of Ru / Al 2 O 3 , the preparation of which is considered in Example 3, with respect to the reaction of ortho-para conversion of protium (the ratio of an aqueous-alcoholic solution of RuOHCl 3 to sodium bis (2-ethylhexyl) sulfosuccinate is 1: 1) Kуд·10-14 молекул/(см2·с) при Т, КK beats · 10 -14 molecules / (cm 2 · s) at T, K 7777 110110 6,146.14 6,186.18

Таблица 4Table 4 Значения удельной каталитической активности Ru/Al2O3, приготовление которого рассмотрено в примере 4, в отношении реакции орто-пара конверсии протия (соотношение водно-спиртового раствора RuOHCl3 к бис(2-этилгексил)сульфосукцинату натрия составляет 10:1)The specific catalytic activity of Ru / Al 2 O 3 , the preparation of which is considered in Example 4, with respect to the reaction of ortho-para conversion of protium (the ratio of an aqueous-alcoholic solution of RuOHCl 3 to sodium bis (2-ethylhexyl) sulfosuccinate is 10: 1) Kуд·10-14 молекул/(см2·с) при Т, КK beats · 10 -14 molecules / (cm 2 · s) at T, K 7777 110110 6,516.51 6,486.48

Представленные данные показывают отсутствие значимых различий в величинах каталитической активности при отношении мольного количества водно-спиртового раствора соли родия или рутения с добавлением аммиака к мольному количеству ПАВ в диапазоне от 1:1 до 10:1 и поглощенной дозе облучения 1-40 кГр.The presented data show the absence of significant differences in the values of catalytic activity with respect to the molar amount of an aqueous-alcoholic solution of rhodium or ruthenium salt with the addition of ammonia to the molar amount of surfactant in the range from 1: 1 to 10: 1 and the absorbed radiation dose of 1-40 kGy.

Claims (2)

1. Способ получения катализатора для орто-пара конверсии протия, включающий получение наночастиц металла при восстановлении ионов металла под воздействием γ-излучения 60Со в обратномицеллярном растворе, состоящем из раствора соли металла, ПАВ, представляющего собой бис(2-этилгексил)сульфосукцинат натрия, и неполярного растворителя - изооктана, с последующим нанесением на носитель Al2O3, отличающийся тем, что в качестве соли металла используют RhCl3 или RuOHCl3 и готовят обратномицеллярный раствор родия или рутения при отношениях мольных количеств водного раствора соли металла к мольному количеству ПАВ в диапазоне от 1:1 до 10:1, затем добавляют водно-спиртовой раствор в количестве 5-50 мас.% и аммиачный раствор в количестве 10-30 мас.% с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Со с дозой от 1 до 40 кГр.1. A method of producing a catalyst for ortho-para conversion of protium, including the production of metal nanoparticles during the recovery of metal ions under the influence of γ radiation of 60 Co in a reverse micellar solution consisting of a solution of a metal salt, a surfactant, which is sodium bis (2-ethylhexyl) sulfosuccinate, and a non-polar solvent - isooctane, followed by applying Al 2 O 3 to the carrier, characterized in that RhCl 3 or RuOHCl 3 is used as the metal salt and a richenium or ruthenium reverse micellar solution is prepared with molar ratios water solution of a metal salt to a molar amount of surfactant in the range from 1: 1 to 10: 1, then add a water-alcohol solution in an amount of 5-50 wt.% and an ammonia solution in an amount of 10-30 wt.%, followed by ultrasonic treatment, deaeration and exposure to γ radiation of 60 Co with a dose of 1 to 40 kGy. 2. Способ получения катализатора для орто-пара конверсии протия по п.1, отличающийся тем, что в качестве спирта в водно-спиртовом растворе используется изопропанол. 2. The method of producing a catalyst for ortho-para conversion of protium according to claim 1, characterized in that isopropanol is used as the alcohol in the aqueous-alcohol solution.
RU2011129247/02A 2011-07-14 2011-07-14 Method of producing catalyst for ortho-para conversion of protium RU2461425C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011129247/02A RU2461425C1 (en) 2011-07-14 2011-07-14 Method of producing catalyst for ortho-para conversion of protium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011129247/02A RU2461425C1 (en) 2011-07-14 2011-07-14 Method of producing catalyst for ortho-para conversion of protium

Publications (1)

Publication Number Publication Date
RU2461425C1 true RU2461425C1 (en) 2012-09-20

Family

ID=47077369

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011129247/02A RU2461425C1 (en) 2011-07-14 2011-07-14 Method of producing catalyst for ortho-para conversion of protium

Country Status (1)

Country Link
RU (1) RU2461425C1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730901A1 (en) * 1995-03-10 1996-09-11 Toyota Jidosha Kabushiki Kaisha Catalyst for treating automotive exhaust
EP1994982A1 (en) * 2007-03-30 2008-11-26 Fujifilm Corporation Catalyst body which uses an anodized layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730901A1 (en) * 1995-03-10 1996-09-11 Toyota Jidosha Kabushiki Kaisha Catalyst for treating automotive exhaust
EP1994982A1 (en) * 2007-03-30 2008-11-26 Fujifilm Corporation Catalyst body which uses an anodized layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БОЕВА О.А. и др. Наночастицы платины в качестве катализатора изотопного обмена в молекулярном водороде. - Перспективные материалы, 2010, с.228-293. БУХТИЯРОВ В.И. и др. Металлические наносистемы в катализе. - Успехи химии, 2001, 70(2), с.167-180. *

Similar Documents

Publication Publication Date Title
Liu et al. Flowerlike BiOCl nanospheres fabricated by an in situ self-assembly strategy for efficiently enhancing photocatalysis
Lou et al. CO oxidation on metal oxide supported single Pt atoms: The role of the support
Alexeev et al. Effects of reduction temperature and metal− support interactions on the catalytic activity of Pt/γ-Al2O3 and Pt/TiO2 for the oxidation of CO in the presence and absence of H2
Rodriguez et al. Chemistry of NO2 on oxide surfaces: formation of NO3 on TiO2 (110) and NO2↔ O vacancy interactions
US20180161760A1 (en) Porous carbon material composites and their production process, adsorbents, cosmetics, purification agents, and composite photocatalyst materials
Ghoreishian et al. γ-Radiolysis as a highly efficient green approach to the synthesis of metal nanoclusters: a review of mechanisms and applications
CN105772069A (en) Sulfur-resistant catalyst coated with micro/nano scale type core-shell molecular sieve
Yordanov et al. Elucidation of Pt clusters in the micropores of zeolite nanoparticles assembled in thin films
Harzandi et al. Efficient CO oxidation by 50-facet Cu2O nanocrystals coated with CuO nanoparticles
JP4229394B2 (en) Molecule detection method using porous material, porous material and method for producing porous material
Liu et al. β-Cyclodextrin anchoring onto pericarpium granati-derived magnetic mesoporous carbon for selective capture of lopid in human serum and pharmaceutical wastewater samples
Mishra et al. Polydopamine mediated in situ synthesis of highly dispersed Gold nanoparticles for continuous flow catalysis and environmental remediation
Thomas et al. In situ infrared molecular detection using palladium-containing zeolite films
RU2461425C1 (en) Method of producing catalyst for ortho-para conversion of protium
Lazar et al. Correlating the role of hydrophilic/hydrophobic nature of Rh (I) and Ru (II) supported organosilica/silica catalysts in organotransformation reactions
RU2464096C1 (en) Method of producing catalyst for ortho-para conversion of protium
RU2464091C1 (en) Method of producing catalyst for ortho-para conversion of protium
RU2481891C2 (en) Method of producing catalyst for ortho-conversion of protium
RU2464094C1 (en) Method of producing catalyst for protium-deuterium isotopic exchange
RU2464090C1 (en) Method of producing catalyst for ortho-para conversion of protium
RU2481155C2 (en) Method of producing catalyst for protium-deuterium isotopic exchange
RU2464095C1 (en) Method of producing catalyst for ortho-para conversion of protium
RU2464092C1 (en) Method of producing catalyst for protium-deuterium isotopic exchange
RU2477175C1 (en) Method of producing catalyst for protium-deuterium isotopic exchange
Walkowiak et al. Lights and shadows of gold introduction into Beta zeolite

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150715