RU2452894C2 - Осветительный прибор - Google Patents

Осветительный прибор Download PDF

Info

Publication number
RU2452894C2
RU2452894C2 RU2009139239/28A RU2009139239A RU2452894C2 RU 2452894 C2 RU2452894 C2 RU 2452894C2 RU 2009139239/28 A RU2009139239/28 A RU 2009139239/28A RU 2009139239 A RU2009139239 A RU 2009139239A RU 2452894 C2 RU2452894 C2 RU 2452894C2
Authority
RU
Russia
Prior art keywords
cooling
heat sink
lighting device
light source
fluid
Prior art date
Application number
RU2009139239/28A
Other languages
English (en)
Other versions
RU2009139239A (ru
Inventor
Антониус А. М. МАРИНУС (NL)
Антониус А. М. МАРИНУС
Теодор К. ТРЕРНИТ (NL)
Теодор К. ТРЕРНИТ
АС Марко ВАН (NL)
АС Марко ВАН
Марк Й. А. ВЕРХУВЕН (NL)
Марк Й. А. ВЕРХУВЕН
ВЕМЕ Беренд Й. В. ТЕР (NL)
ВЕМЕ Беренд Й. В. ТЕР
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2009139239A publication Critical patent/RU2009139239A/ru
Application granted granted Critical
Publication of RU2452894C2 publication Critical patent/RU2452894C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D33/00Non-positive-displacement pumps with other than pure rotation, e.g. of oscillating type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F7/00Pumps displacing fluids by using inertia thereof, e.g. by generating vibrations therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/60Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
    • F21V29/63Cooling arrangements characterised by the use of a forced flow of gas, e.g. air using electrically-powered vibrating means; using ionic wind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Replacing, Conveying, And Pick-Finding For Filamentary Materials (AREA)
  • Polarising Elements (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

Изобретение относится к осветительным приборам. Устройство содержит источник света (31), установленный на теплоотвод (32), имеющий наружный контур (34), охлаждающее устройство (35) для динамического охлаждения источника света путем охлаждения теплоотвода при помощи текучей среды, протекающей вдоль контура теплоотвода, а также один или множество проходов для охлаждения (36, 43). Охлаждающее устройство представляет собой систему охлаждения с вибрирующей мембраной для создания последовательности импульсов (39) текучей среды. Система охлаждения имеет камеру для вибрирующей мембраны, к которой присоединен каждый проход для охлаждения при помощи соответствующего проводника импульсов текучей среды. Технический результат - уменьшение производимого шума, уменьшение потребляемой энергии и занимаемого устройством пространства. 14 з.п. ф-лы, 13 ил.

Description

Настоящее изобретение относится к осветительному прибору.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Подобный осветительный прибор известен из GB 2420172 A. Известный осветительный прибор содержит источник света, установленный на теплоотводе. Теплоотвод имеет контур. Он также имеет охлаждающее устройство, представляющее собой электрический вентилятор, для динамического охлаждения источника света путем охлаждения теплоотвода посредством потока газа. Известный осветительный прибор обладает недостатком, заключающимся в том, что использование вентилятора в целях охлаждения имеет ряд ограничений. Например, большая часть циркулирующего газа, например воздуха, обходит теплоотвод и не перемешивается как следует с тепловым пограничным слоем, образующимся на охлаждающих ребрах теплоотвода. Вентилятор, расположенный непосредственно напротив или над вышеуказанным теплоотводом, имеет «мертвые зоны», где его силовые блоки блокируют поток воздуха, вызывая, например, турбулентный поток газа. Более того, вентилятор потребляет достаточно много энергии, создает слышимый шум и занимает относительно много пространства.
ЗАДАЧИ И СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Задачей настоящего изобретения является обеспечение осветительного прибора типа, описанного во вводном абзаце, в котором указанные недостатки устранены. С этой целью осветительный прибор содержит:
по меньшей мере один источник света, установленный на теплоотвод, имеющий контур,
охлаждающее устройство для динамического охлаждения источника света путем охлаждения теплоотвода при помощи текучей среды, протекающей вдоль теплоотвода, при этом охлаждающее устройство имеет по меньшей мере один проход для охлаждения, охлаждающее устройство представляет собой систему охлаждения с вибрирующей мембраной для создания последовательности импульсов текучей среды, при этом осветительный прибор отличается тем, что система охлаждения имеет камеру для вибрирующей мембраны, с которой соединен каждый проход для охлаждения при помощи соответствующего проводника импульсов текучей среды.
Эксперименты показали, что такой режим охлаждения существенно более эффективней, чем традиционный режим охлаждения при помощи электрического вентилятора. На практике система охлаждения с вибрирующей мембраной показала в два или три раза более эффективное охлаждение при потреблении энергии на две трети меньше традиционного вентилятора. Такая система еще более эффективна, когда система охлаждения с вибрирующей мембраной выполнена как резонансная система охлаждения. Система охлаждения с вибрирующей мембраной является простой и не имеет каких-либо трущихся частей, подверженных износу, в то время как синтетический струйный модуль (= система охлаждения с вибрирующей мембраной) напоминает маленький стереофонический громкоговоритель, в котором диафрагма установлена внутрь полости (= камеры вибрирующей мембраны), которая имеет одно или более отверстий (= проходов для охлаждения). Система охлаждения может содержать один или несколько синтетических струйных модулей и теплоотводов, при этом модули могут быть расположены над, под или рядом с источником света. Система охлаждения может быть использована для охлаждения как источника света, так и других частей осветительного прибора, например средств привода (= электрического контура). До тех пор, пока импульс текучей среды находится внутри проводника импульсов текучей среды, он стабилен, т.е. текучая среда не выделяется и не всасывается из окружающей среды, и турбулентности не возникает. Как только импульс текучей среды выходит из прохода для охлаждения, он оказывает влияние на окружающую атмосферу и выделяет или всасывает текучую среду из непосредственного окружения, что приводит к тому, что импульс текучей среды становится нестабильным и вызывает или становится турбулентным потоком текучей среды.
Одно воплощение осветительного прибора отличается тем, что по меньшей мере один проход для охлаждения имеет по меньшей мере два, а предпочтительно четыре отверстия, и тем, что вышеуказанные отверстия для охлаждения расположены вдоль контура теплоотвода. Охлаждающее устройство, таким образом, создает рисунок охлаждения, имеющий форму, подобную контуру теплоотвода, в результате чего теплоотвод обтекается потоком текучей среды. Большая часть, например более 50%, а предпочтительно более 70% и наиболее предпочтительно более 85% контура теплоотвода, который может представлять собой внутренний контур, наружный контур или как внутренний, так и наружный контур, подвержено воздействию потока текучей среды, создаваемого охлаждающим устройством. Чем больше контур открыт, тем лучше охлаждение. Текучая среда может представлять собой газ или жидкость. Если текучая среда представляет собой газ, то это, предпочтительно, воздух. Четыре прохода, или отверстия, позволяют создать трехмерное расположение отверстий, и, таким образом, эффективное охлаждение трехмерного теплоотвода, например, путем обеспечения двух проходов для охлаждения в его наружной стороне, так, чтобы обтекать наружный контур, и два других прохода для охлаждения в его внутренней стороне, с тем, чтобы омывать внутренний контур. Если контур усложнен изогнутой поверхностью/плоскостью, также можно по существу полностью обтекать, например, наружную сторону теплоотвода протекающей текучей средой при помощи трехмерного расположения проходов для охлаждения.
Дополнительное воплощение осветительного прибора отличается тем, что источник света содержит оптические средства для коллимирования и направления света, испускаемого источником света в ходе работы, при этом контур теплоотвода имеет форму, подобную форме оптических средств. Таким образом, осуществляется то, что теплоотвод занимает относительно небольшое пространство по сравнению с известными, традиционными осветительными приборами, содержащими теплоотвод. Несмотря на сложную, трехмерную форму теплоотвода, тем не менее возможно по существу полностью обтекать теплоотвод потоком текучей среды из резонансной системы охлаждения, при возможности прохождения импульсов текучей среды. Проводник импульсов текучей среды, предпочтительно, имеет длину, в N раз превышающую половину длины волны λ (лямбда) последовательности импульсов текучей среды, создаваемой вибрирующей мембраной в ходе работы, предпочтительно еще в состоянии резонирования. Система охлаждения с вибрирующей мембраной, таким образом, способна работать наиболее эффективно, при относительно малых потерях энергии.
Эксперименты дополнительно доказали, что трубчатые проводники, в частности, могут быть использованы в качестве проводников импульсов текучей среды. Эластичная трубка предпочтительно используется благодаря точному, желаемому размещению проходов для охлаждения относительно теплоотвода, что может быть, таким образом, легко достижимо.
Для дополнительного усиления по существу полного омовения теплоотвода потоком текучей среды, осветительный прибор отличается тем, что по меньшей мере один из охлаждающих проходов имеет форму душевой головки. Обтекание, а следовательно, охлаждение теплоотвода (и, в результате, охлаждение источника света), таким образом, дополнительно усиливается.
Другое воплощение осветительного прибора отличается тем, что камера для вибрирующей мембраны отдалена от источника света, предпочтительно на расстояние, в три раза, а предпочтительно в семь раз, превышающее наибольший размер теплоотвода. Возможность передачи последовательности импульсов текучей среды на относительно большие расстояния без существенных потерь энергии позволяет располагать камеру для вибрирующей мембраны на относительно большом расстоянии от теплоотвода. Поскольку возможно еще некоторый шум может создаваться вибрирующей мембраной в ходе работы осветительного прибора, возможность передачи последовательности импульсов текучей среды позволяет спрятать камеру для вибрирующей мембраны, например, за ложный потолок, при этом источник света подвешен и вышеуказанному потолку при помощи проводника импульса текучей среды.
Дополнительное воплощение осветительного прибора отличается тем, что он оборудован схемой управления для управления охлаждающим устройством. Таким образом, можно просто регулировать или адаптироваться к изменяющимся термическим требованиям, предъявляемым к осветительному прибору. С этой целью контур может быть оборудован датчиком, который измеряет температуру теплоотвода, сравнивает ее с установленными значениями и подает управляющие сигналы к охлаждающему устройству. Охлаждающее устройство может иметь такое строение, что оно охлаждает как источник света, так и схему управления.
Дополнительное воплощение осветительного прибора отличается тем, что источник света представляет собой по меньшей мере один светоизлучающий диод (LED). Осветительные приборы, содержащие светодиоды, как известно, подвержены проблемам с регулированием теплоты, в частности, из-за того, что охлаждающие устройства занимают относительно большое пространство по сравнению с относительно небольшими светодиодами. Система охлаждения с вибрирующей мембраной, в частности, подходит для охлаждения светодиодов, благодаря своей компактности и высокой эффективности. Светодиоды могут обладать белым (W), красным (R), зеленым (G), синим (В) или желтым (А) спектром излучения. Их комбинация приводит к любому желаемому спектру света, в пределах цветового пространства, состоящего из цветовых координат, начинающихся со светодиодов спектров W, R, G, В и А. Светодиоды могут быть применены в комбинации со вторичными преобразующими светоизлучающими элементами, расположенными непосредственно на светодиодах или отдельно от них, например с удаленными люминесцентными лампами или люминофорами.
Другое воплощение осветительного прибора отличается тем, что теплоотвод выполнен как множество кольцевых охлаждающих ребер, расположенных концентрично вокруг оси теплоотвода, и разнесенных кольцевыми прорезями. Таким образом, можно располагать по кругу небольшие источники света, например светодиоды, для установки на теплоотвод, при одновременно эффективном охлаждении каждого источника света. В случае по существу кольцевого расположения источников света, в частности подходящими являются теплоотводы круглой, треугольной, прямоугольной, квадратной, шестиугольной или восьмиугольной формы в плоскости, перпендикулярной оси теплоотвода. Альтернативно можно оборудовать множество теплоотводов для охлаждения одной или нескольких групп разных источников света, конечно, в зависимости от количества используемых источников света, или альтернативно возможно, чтобы одна система охлаждения охлаждала множество источников света. Для увеличения эффективности охлаждения, предпочтительно, чтобы проходы для охлаждения были расположены в соответствующих прорезях поглотителя или теплоотводов, или противоположно им. Осветительный прибор в соответствии с изобретением может быть использован в качестве отдельного блока, или может образовывать часть сети, содержащей другие электроприборы.
В документе WO 2004095593 А1 описан осветительный прибор в соответствии с вводной частью пункта 1.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Настоящее изобретение будет описано далее со ссылкой на чертежи, на которых:
Фиг.1а и 1b изображают схематичные виды охлаждающих устройств, используемых в осветительных приборах предшествующего уровня техники;
Фиг.2 изображает схематичный вид охлаждающего устройства, используемого в осветительных приборах в соответствии с изобретением;
Фиг.3 изображает схематичный вид первого воплощения осветительного прибора в соответствии с изобретением;
Фиг.4 изображает схематичный вид второго воплощения осветительного прибора в соответствии с изобретением;
Фиг.5 изображает схематичный вид третьего воплощения осветительного прибора в соответствии с изобретением;
Фиг.6 изображает вид сбоку четвертого воплощения осветительного прибора в соответствии с изобретением;
Фиг.7 изображает вид в перспективе множества осветительных приборов, показанных на Фиг.6;
Фиг.8 изображает вид снизу осветительного прибора, показанного на Фиг.7;
Фиг.9а-9с изображают схематичные представления единственного осветительного прибора, показанного на Фиг.6, также некоторые структуры из множества осветительных приборов, показанных на Фиг.6;
Фиг.10 изображает проектные чертежи (не в масштабе) осветительного прибора, показанного на Фиг.6.
ОПИСАНИЕ ВОПЛОЩЕНИЙ
На Фиг.1а и b схематично показаны две основные формы электрического вентилятора 10 в качестве охлаждающего устройства. Каждый вентилятор содержит корпус 14 и пропеллер 11, вращающийся в вышеуказанном корпусе вокруг оси 12 вентилятора. При работе создается поток воздуха; входящий поток 13 входит в корпус через впускное отверстие 15 и выходит из корпуса в качестве выходящего потока 16 через выпускное отверстие или проход 17 для охлаждения. На Фиг.1 впускное и выпускное отверстия расположены напротив друг друга, в результате чего получается осевой поток. На Фиг.1b впускное и выпускное отверстия расположены под углом 90° относительно друг друга, при этом входящий поток протекает вдоль оси вентилятора, а выходящий поток перпендикулярен оси 12 вентилятора. На практике оказалось, что вентилятор работает очень неэффективно, когда выпускные отверстия выполнены в более чем одном направлении.
На Фиг.2 схематично изображена вибрирующая мембрана охлаждающего устройства 20. Охлаждающее устройство с вибрирующей мембраной содержит камеру 21 со стенкой 24. Камера оборудована мембраной 27, которая вибрирует, предпочтительно резонирует, вдоль оси вибрации 26, и создает последовательность импульсов 22 текучей среды в ходе работы, при этом указанные импульсы выходят из камеры через проходы для охлаждения, или отверстия, 23, оборудованные в стенке 24. Как показано, некоторые отверстия оборудованы по существу в самой стенке 24, в то время как другие отверстия, например 23а, оборудованы на некотором расстоянии от стенки 24 и соединены с камерой посредством трубчатого проводника 25 импульсов. Для эффективности охлаждающего устройства с вибрирующей мембраной, не важно, выполнены ли проходы на одной стороне, или на разных сторонах камеры, и имеют ли они различную ориентацию относительно оси вибрации.
Фиг.3 изображает схематичный вид первого воплощения осветительного прибора 30 в соответствии с изобретением. Осветительный прибор содержит источник света 31, на фигуре - компактную ртутную лампу высокого давления, например лампу UHP. Источник света установлен на теплоотвод 32, и дополнительно содержит оптические средства 33, на фигуре - параболический отражатель 33. Теплоотвод, по существу, имеет форму, подобную наружному контуру 34 отражателя. Охлаждающее устройство 34 с вибрирующей мембраной, на фигуре - резонансная охлаждающая система, аналогичная показанной на Фиг.2, оборудована вблизи теплоотвода. Устройство 35 имеет шесть отверстий 36, через которые теплоотвод обтекается последовательностью импульсов 39 текучей среды, которые, при выходе из отверстия, становятся турбулентным потоком текучей среды, со стороны как внутреннего 37, так и наружного 38 контуров. Более того, теплоотвод содержит каналы 100, в которые подаются импульсы 39 текучей среды через соответствующие проходы 36 для воздуха. В результате общего охлаждения теплоотвода источник света охлаждается очень эффективно.
Фиг.4 изображает схематичный вид второго воплощения осветительного прибора 30 в соответствии с изобретением. В данном воплощении источник света, на фигуре - часть 42 содержит белый светодиод 31, оптические средства 33, и теплоотвод удален от камеры 40, формирующей часть охлаждающего устройства 35 с вибрирующей мембраной. Последовательность импульсов текучей среды, на фигуре текучей средой является воздух, который создается в камере и транспортируется через проводник 41 воздушных импульсов к теплоотводу, который, таким образом, эффективно охлаждается. В данном воплощении камера имеет лишь одно отверстие 43. В альтернативной конструкции (не показано) удаленная часть 42 подвешена при помощи проводника воздушных импульсов к (ложному) потолку, и камера спрятана в потолке или за ложным потолком.
Фиг.5 изображает схематичный вид третьего воплощения осветительного прибора в соответствии с изобретением, в котором камера 40 расположена внутри теплоотвода 32. Это обеспечивает преимущество, заключающееся в том, что осветительный прибор занимает еще меньше пространства и обеспечивает эстетичный дизайн. В данном воплощении выполнено три отверстия/охлаждающих прохода 43.
Фиг.6 изображает схематичный вид сбоку четвертого воплощения осветительного прибора 50 в соответствии с изобретением. Оборудован теплоотвод 51, имеющий ряд кольцевых охлаждающих ребер 52, расположенных концентрично вокруг оси 53 теплоотвода, чья ось, в настоящем воплощении, совпадает с оптической осью 58 оптического отражателя 59 для коллимирования и направления света, излучаемого источником света (см. Фиг.7) в ходе работы. Каждая пара смежных концентричных ребер разделена соответствующими прорезями 54. Соответствующее отверстие/охлаждающий проход 56 резонансного охлаждающего устройства 57 оборудован в первой концевой части 55 каждой прорези, при этом охлаждающие проходы совместно формируют душевую головку.
Фиг.7 изображает вид в перспективе осветительной системы, состоящей из семи осветительных приборов, как показано на Фиг.6. Каждый осветительный прибор имеет соответствующий источник света 61, и каждый светодиод имеет соответствующие оптические средства 59 и установлен на соответствующий теплоотвод 51 при помощи теплопроводящих трубок 63. Теплоотводы охлаждаются при помощи общего резонансного охлаждающего устройства 57. Семь светодиодов расположены так, что шесть светодиодов расположены в шестиугольной конфигурации, т.е. два красных R, два зеленых G и два синих D светодиода окружают центральный белый светодиод W. Каждый отражатель расширяется вдоль его соответствующей оптической оси 58 от соответствующего источника света 61 к соответствующему окну 62, излучающему свет. Резонансное охлаждающее устройство 57 оборудовано на стороне отражателя, обращенной вдаль от окна, излучающего свет. Осветительная система дополнительно содержит средства управления (см. Фиг.8) для управления охлаждающим устройством.
Фиг.8 изображает вид снизу осветительного прибора, показанного на Фиг.7, в котором концентричные, кольцевые шестиугольные структурные ребра 52 теплоотвода 51 ясно видны. Охлаждающие ребра разделены прорезями 54. Схема управления 64 оборудована на оси 53 теплоотвода и окружена самым центральным охлаждающим ребром 52.
Фиг.9а изображает схематичное представление одного осветительного прибора 50, как показано на Фиг.6, в то время как Фиг.9b и 9с изображают схематичные представления трех и семи осветительных приборов, расположенных в треугольной и шестиугольной конфигурациях соответственно. Показанные конфигурации являются лишь примерами, и допустимо множество альтернативных форм, например цепная или круглая конфигурация (шестиугольная конфигурация без осветительного прибора по центру), не нарушая концепции изобретения.
Фиг.10 изображает проектные чертежи (не в масштабе) осветительного прибора с Фиг.6 на виде в перспективе PV, вид сбоку SV, виде сверху TV и виде снизу BV соответственно. Теплоотвод имеет охлаждающие ребра, выполненные как кольцевые концентричные ребра.

Claims (15)

1. Осветительный прибор, содержащий:
по меньшей мере один источник света, установленный на теплоотводе, имеющем контур;
охлаждающее устройство для динамического охлаждения источника света путем охлаждения теплоотвода при помощи текучей среды, протекающей вдоль теплоотвода, при этом охлаждающее устройство имеет по меньшей мере один проход для охлаждения, при этом охлаждающее устройство представляет собой систему охлаждения с вибрирующей мембраной для создания последовательности импульсов текучей среды, отличающийся тем, что система охлаждения имеет камеру для вибрирующей мембраны, к которой присоединен каждый проход для охлаждения при помощи соответствующего проводника импульсов текучей среды.
2. Осветительный прибор по п.1, отличающийся тем, что по меньшей мере один проход для охлаждения имеет по меньшей мере два, а предпочтительно четыре отверстия, и тем, что отверстия для охлаждения расположены вдоль контура теплоотвода.
3. Осветительный прибор по п.1, отличающийся тем, что контур соответствует изогнутой поверхности/плоскости.
4. Осветительный прибор по п.1, отличающийся тем, что источник света содержит оптические средства для коллимирования и направления света, излучаемого источником света, в ходе работы, при этом контур теплоотвода имеет форму, подобную форме оптических средств.
5. Осветительный прибор по п.1, отличающийся тем, что проводник импульсов текучей среды имеет длину, в N раз превышающую половину длины волны λ (лямбда), создаваемой резонатором в ходе работы.
6. Осветительный прибор по п.1, отличающийся тем, что проводник импульсов текучей среды представляет собой трубку, предпочтительно эластичную трубку.
7. Осветительный прибор по п.1, отличающийся тем, что по меньшей мере один из проходов для охлаждения имеет форму душевой головки.
8. Осветительный прибор по п.1, отличающийся тем, что камера для вибрирующей мембраны удалена от источника света предпочтительно на расстояние, которое по меньшей мере в три раза, а предпочтительно в семь раз больше наибольшего размера теплоотвода.
9. Осветительный прибор по п.1, отличающийся тем, что он оборудован схемой управления для управления охлаждающим устройством.
10. Осветительный прибор по п.1, отличающийся тем, что источник света представляет собой по меньшей мере один светоизлучающий диод (LED).
11. Осветительный прибор по п.10, отличающийся тем, что соответствующий светодиод обладает белым, красным, зеленым, синим или желтым спектром излучения или их комбинацией.
12. Осветительный прибор по п.1, отличающийся тем, что теплоотвод оборудован множеством кольцевых охлаждающих ребер, расположенных концентрично вокруг оси теплоотвода и разнесенных кольцевыми прорезями.
13. Осветительный прибор по п.12, отличающийся тем, что теплоотвод имеет круглую, треугольную, прямоугольную, квадратную, шестиугольную или восьмиугольную форму в плоскости, перпендикулярной оси теплоотвода.
14. Осветительный прибор по п.12, отличающийся тем, что проходы для охлаждения расположены в соответствующих прорезях теплоотвода или напротив них.
15. Осветительный прибор по п.1, отличающийся тем, что он содержит множество теплоотводов.
RU2009139239/28A 2007-03-26 2008-03-19 Осветительный прибор RU2452894C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07104906A EP1975505A1 (en) 2007-03-26 2007-03-26 Lighting device
EP07104906.8 2007-03-26

Publications (2)

Publication Number Publication Date
RU2009139239A RU2009139239A (ru) 2011-05-10
RU2452894C2 true RU2452894C2 (ru) 2012-06-10

Family

ID=38432852

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009139239/28A RU2452894C2 (ru) 2007-03-26 2008-03-19 Осветительный прибор

Country Status (9)

Country Link
US (1) US8491161B2 (ru)
EP (2) EP1975505A1 (ru)
JP (1) JP5362698B2 (ru)
CN (2) CN104776409B (ru)
AT (1) ATE486246T1 (ru)
DE (1) DE602008003202D1 (ru)
ES (1) ES2353933T3 (ru)
RU (1) RU2452894C2 (ru)
WO (1) WO2008117211A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2619912C2 (ru) * 2014-12-31 2017-05-19 Айспайп Корпорейшн Светодиодный осветительный прибор

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412926B2 (en) 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
US8242595B2 (en) * 2007-08-10 2012-08-14 Panasonic Electric Works SUNX Co., Ltd. Heatsink and semiconductor device with heatsink
JP5480154B2 (ja) * 2007-12-07 2014-04-23 コーニンクレッカ フィリップス エヌ ヴェ 内部合成噴流を用いる冷却装置
WO2010004469A1 (en) * 2008-07-10 2010-01-14 Philips Intellectual Property & Standards Gmbh Remote cooling by combining heat pipe and resonator for synthetic jet cooling
RU2011119607A (ru) * 2008-10-17 2012-11-27 Конинклейке Филипс Электроникс Н.В. Охлаждающее устройство
KR101060758B1 (ko) 2008-11-19 2011-08-31 삼성엘이디 주식회사 진동발생장치의 발광소자 패키지의 냉각장치 및 진동발생장치의 헤드램프
DE102009014486A1 (de) * 2009-03-23 2010-09-30 Zumtobel Lighting Gmbh Anordnung zur Lichtabgabe mit Leuchtelementen
TWM369635U (en) * 2009-05-14 2009-11-21 Hannstar Display Corp Electronic equipment having heat-dissipating device
TWI372223B (en) * 2009-09-29 2012-09-11 Kinpo Elect Inc Illuminating device having a speaker
CN101694552B (zh) * 2009-10-21 2011-04-13 友达光电股份有限公司 液晶显示装置
US9131557B2 (en) * 2009-12-03 2015-09-08 Led Net Ltd. Efficient illumination system for legacy street lighting systems
US8466611B2 (en) 2009-12-14 2013-06-18 Cree, Inc. Lighting device with shaped remote phosphor
JP4991834B2 (ja) 2009-12-17 2012-08-01 シャープ株式会社 車両用前照灯
JP5232815B2 (ja) * 2010-02-10 2013-07-10 シャープ株式会社 車両用前照灯
US8882284B2 (en) 2010-03-03 2014-11-11 Cree, Inc. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties
US9062830B2 (en) * 2010-03-03 2015-06-23 Cree, Inc. High efficiency solid state lamp and bulb
US9024517B2 (en) 2010-03-03 2015-05-05 Cree, Inc. LED lamp with remote phosphor and diffuser configuration utilizing red emitters
US8632196B2 (en) 2010-03-03 2014-01-21 Cree, Inc. LED lamp incorporating remote phosphor and diffuser with heat dissipation features
US8931933B2 (en) 2010-03-03 2015-01-13 Cree, Inc. LED lamp with active cooling element
US8562161B2 (en) 2010-03-03 2013-10-22 Cree, Inc. LED based pedestal-type lighting structure
US9625105B2 (en) 2010-03-03 2017-04-18 Cree, Inc. LED lamp with active cooling element
US10359151B2 (en) 2010-03-03 2019-07-23 Ideal Industries Lighting Llc Solid state lamp with thermal spreading elements and light directing optics
US20110227102A1 (en) * 2010-03-03 2011-09-22 Cree, Inc. High efficacy led lamp with remote phosphor and diffuser configuration
US9500325B2 (en) 2010-03-03 2016-11-22 Cree, Inc. LED lamp incorporating remote phosphor with heat dissipation features
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US9316361B2 (en) 2010-03-03 2016-04-19 Cree, Inc. LED lamp with remote phosphor and diffuser configuration
US9057511B2 (en) 2010-03-03 2015-06-16 Cree, Inc. High efficiency solid state lamp and bulb
US9310030B2 (en) 2010-03-03 2016-04-12 Cree, Inc. Non-uniform diffuser to scatter light into uniform emission pattern
RU2555820C2 (ru) * 2010-03-22 2015-07-10 Конинклейке Филипс Электроникс Н.В. Осветительная система с охлаждающей установкой
US8733996B2 (en) 2010-05-17 2014-05-27 Sharp Kabushiki Kaisha Light emitting device, illuminating device, and vehicle headlamp
JP5053415B2 (ja) * 2010-05-17 2012-10-17 シャープ株式会社 発光装置、照明装置および車両用前照灯
US20130155680A1 (en) * 2010-06-16 2013-06-20 Nuventix, Inc. Low Form Factor Synthetic Jet Thermal Management System
US10451251B2 (en) 2010-08-02 2019-10-22 Ideal Industries Lighting, LLC Solid state lamp with light directing optics and diffuser
DE102010042599A1 (de) * 2010-10-19 2012-04-19 Osram Ag Leuchtvorrichtung und Verfahren zum Kühlen einer Halbleiterlichtquelle
US8602607B2 (en) 2010-10-21 2013-12-10 General Electric Company Lighting system with thermal management system having point contact synthetic jets
US8529097B2 (en) 2010-10-21 2013-09-10 General Electric Company Lighting system with heat distribution face plate
US9816677B2 (en) 2010-10-29 2017-11-14 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
US9234655B2 (en) 2011-02-07 2016-01-12 Cree, Inc. Lamp with remote LED light source and heat dissipating elements
US9068701B2 (en) 2012-01-26 2015-06-30 Cree, Inc. Lamp structure with remote LED light source
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
US10578294B2 (en) * 2011-04-19 2020-03-03 Illumination Machines Llc Reflector lamp with improved heat dissipation and reduced weight
EP2721345A2 (en) * 2011-06-20 2014-04-23 Koninklijke Philips N.V. Active cooling device with electro-statically moving electrode and method of active cooling with electro-statically moving electrode
US10874003B2 (en) 2011-07-26 2020-12-22 Hunter Industries, Inc. Systems and methods for providing power and data to devices
US9609720B2 (en) 2011-07-26 2017-03-28 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
US9521725B2 (en) 2011-07-26 2016-12-13 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
US20150237700A1 (en) 2011-07-26 2015-08-20 Hunter Industries, Inc. Systems and methods to control color and brightness of lighting devices
US11917740B2 (en) 2011-07-26 2024-02-27 Hunter Industries, Inc. Systems and methods for providing power and data to devices
US8710770B2 (en) 2011-07-26 2014-04-29 Hunter Industries, Inc. Systems and methods for providing power and data to lighting devices
US9488359B2 (en) 2012-03-26 2016-11-08 Cree, Inc. Passive phase change radiators for LED lamps and fixtures
KR101592649B1 (ko) * 2013-12-24 2016-02-12 현대자동차주식회사 헤드램프용 레이저 광학계
US9360188B2 (en) 2014-02-20 2016-06-07 Cree, Inc. Remote phosphor element filled with transparent material and method for forming multisection optical elements
US10228711B2 (en) 2015-05-26 2019-03-12 Hunter Industries, Inc. Decoder systems and methods for irrigation control
US10918030B2 (en) 2015-05-26 2021-02-16 Hunter Industries, Inc. Decoder systems and methods for irrigation control
US9629233B2 (en) * 2015-06-08 2017-04-18 Qualcomm Incorporated Techniques for implementing a synthetic jet to cool a device
EP3153771B1 (en) * 2015-10-05 2018-06-13 Vestel Elektronik Sanayi ve Ticaret A.S. Cooling device and cooling method for lighting modules
US10801714B1 (en) 2019-10-03 2020-10-13 CarJamz, Inc. Lighting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU962684A1 (ru) * 1980-12-16 1982-09-30 Предприятие П/Я М-5394 Устройство дл отвода тепла от источника света
US4967329A (en) * 1990-03-22 1990-10-30 Eaton Corporation Lens mounting and seal for illuminated apparatus
WO2004095593A1 (en) * 2003-03-31 2004-11-04 Gelcore Llc Led light assembly with active cooling

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303555A (en) * 1992-10-29 1994-04-19 International Business Machines Corp. Electronics package with improved thermal management by thermoacoustic heat pumping
JP3734333B2 (ja) * 1996-07-31 2006-01-11 株式会社カイジョー 超音波励振装置及びこれを具備した超音波洗浄装置
EP1467414A4 (en) * 2001-12-29 2007-07-11 Hangzhou Fuyang Xinying Dianzi LED AND LED LAMP
US7258464B2 (en) * 2002-12-18 2007-08-21 General Electric Company Integral ballast lamp thermal management method and apparatus
US7556406B2 (en) * 2003-03-31 2009-07-07 Lumination Llc Led light with active cooling
WO2005008348A2 (en) * 2003-07-07 2005-01-27 Georgia Tech Research Corporation System and method for thermal management using distributed synthetic jet actuators
JP2005078029A (ja) * 2003-09-03 2005-03-24 Seiko Epson Corp 照明装置及び投射型表示装置
US7144135B2 (en) 2003-11-26 2006-12-05 Philips Lumileds Lighting Company, Llc LED lamp heat sink
JP4096896B2 (ja) * 2004-03-10 2008-06-04 セイコーエプソン株式会社 プロジェクタ
GB0424892D0 (en) 2004-11-11 2004-12-15 Fowler James A Lighting device
US7144140B2 (en) * 2005-02-25 2006-12-05 Tsung-Ting Sun Heat dissipating apparatus for lighting utility
JP2006252962A (ja) * 2005-03-10 2006-09-21 Sony Corp バックライト装置及び液晶表示装置
JP4747657B2 (ja) * 2005-04-21 2011-08-17 ソニー株式会社 噴流発生装置及び電子機器
JP4600137B2 (ja) * 2005-04-27 2010-12-15 ソニー株式会社 バックライト装置及び液晶表示装置
JP3125101U (ja) * 2006-06-27 2006-09-07 一正 荒木 Ledランプ
US20090084866A1 (en) * 2007-10-01 2009-04-02 Nuventix Inc. Vibration balanced synthetic jet ejector
US8066410B2 (en) * 2007-10-24 2011-11-29 Nuventix, Inc. Light fixture with multiple LEDs and synthetic jet thermal management system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU962684A1 (ru) * 1980-12-16 1982-09-30 Предприятие П/Я М-5394 Устройство дл отвода тепла от источника света
US4967329A (en) * 1990-03-22 1990-10-30 Eaton Corporation Lens mounting and seal for illuminated apparatus
WO2004095593A1 (en) * 2003-03-31 2004-11-04 Gelcore Llc Led light assembly with active cooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2619912C2 (ru) * 2014-12-31 2017-05-19 Айспайп Корпорейшн Светодиодный осветительный прибор

Also Published As

Publication number Publication date
ES2353933T3 (es) 2011-03-08
ATE486246T1 (de) 2010-11-15
US8491161B2 (en) 2013-07-23
EP1975505A1 (en) 2008-10-01
CN104776409A (zh) 2015-07-15
WO2008117211A1 (en) 2008-10-02
CN101641549A (zh) 2010-02-03
EP2126463B1 (en) 2010-10-27
RU2009139239A (ru) 2011-05-10
US20100096967A1 (en) 2010-04-22
EP2126463A1 (en) 2009-12-02
JP5362698B2 (ja) 2013-12-11
CN104776409B (zh) 2018-11-23
DE602008003202D1 (de) 2010-12-09
JP2010522959A (ja) 2010-07-08

Similar Documents

Publication Publication Date Title
RU2452894C2 (ru) Осветительный прибор
RU2479786C1 (ru) Осветительное устройство
KR102096110B1 (ko) 축 방향 및 반경 방향의 공기 구멍을 구비한 방열 장치 및 이 방열 장치를 적용한 장치
KR101253821B1 (ko) 히트싱크와 히트싱크를 포함하는 조명장치
JP6199970B2 (ja) 分割されたチムニー構造を有する熱放散構造
US20130170212A1 (en) Underwater LED Lights
TW201348646A (zh) 發光二極體燈具
RU2613156C2 (ru) Светодиодное осветительное устройство с оптическим компонентом для смешения выходных световых излучений от множества светодиодов
RU2577679C1 (ru) Мощная светодиодная лампа с принудительным охлаждением
TWM448605U (zh) 舞台燈結構
RU2662691C2 (ru) Осветительное устройство и светильник
JP2014038866A (ja) 光半導体照明装置
KR101645154B1 (ko) Led 터널등기구
JP2011009210A (ja) 照明装置
RU2521612C1 (ru) Мощная светодиодная лампа
KR20140029577A (ko) 측면 및 하부 공기 유입형 led 냉각장치를 이용한 led 조명등
JP2012252891A (ja) 照明装置
WO2017219772A1 (zh) 照明装置
RU2595258C1 (ru) Светодиодная лампа с системой принудительного охлаждения
KR20150009436A (ko) 높은 열 방출 램프
KR101012308B1 (ko) 방열장치 및 이를 이용한 전구형 led 조명장치
WO2008031275A1 (fr) Procédé d'échange de chaleur d'un accessoire de lampe et sa structure
KR20110138485A (ko) 조명램프의 냉각구조
KR101360114B1 (ko) 공기순환 냉각형 삼각방열기 엘이디 램프
KR20190000635U (ko) 방열기능이 향상된 엘이디 조명등기구

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20170315

PD4A Correction of name of patent owner