RU2436856C1 - Способ очистки висмута - Google Patents

Способ очистки висмута Download PDF

Info

Publication number
RU2436856C1
RU2436856C1 RU2010131298/02A RU2010131298A RU2436856C1 RU 2436856 C1 RU2436856 C1 RU 2436856C1 RU 2010131298/02 A RU2010131298/02 A RU 2010131298/02A RU 2010131298 A RU2010131298 A RU 2010131298A RU 2436856 C1 RU2436856 C1 RU 2436856C1
Authority
RU
Russia
Prior art keywords
bismuth
polonium
lead
purification
electrolysis
Prior art date
Application number
RU2010131298/02A
Other languages
English (en)
Inventor
Валерий Алексеевич Федотов (RU)
Валерий Алексеевич Федотов
Игорь Иванович Новоселов (RU)
Игорь Иванович Новоселов
Игорь Васильевич Макаров (RU)
Игорь Васильевич Макаров
Борис Михайлович Шавинский (RU)
Борис Михайлович Шавинский
Original Assignee
Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН filed Critical Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН
Priority to RU2010131298/02A priority Critical patent/RU2436856C1/ru
Application granted granted Critical
Publication of RU2436856C1 publication Critical patent/RU2436856C1/ru

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

Изобретение относится к металлургии, в частности к глубокой очистке висмута от радиоактивного загрязнения полонием и свинцом, содержащим примесь радионуклида свинца, распад которого приводит к накоплению полония в очищаемом висмуте. Проводят электролиз в расплаве натриевой щелочи при катодной плотности тока, равной 0,3-0,7 А/см2, и перемешивании расплава для очистки от полония. Полученный после электролиза висмут подвергают последующей глубокой очистке от свинца до его содержания в очищенном висмуте, меньшего или равного 1·10-5 мас.%. Техническим результатом является повышение выхода очищенного висмута.

Description

Изобретение относится к области металлургии, а именно к способам глубокой очистки висмута от элемент-примесей, в частности к способу очистки металлического висмута от радиоактивного загрязнения полонием и свинцом, содержащим примесь радионуклида свинца, распад которого приводит к накоплению полония в очищаемом висмуте.
Для производства сцинтилляционных кристаллов ортогерманата висмута Bi4Ge3O12 (сокращенно BGO), применяемых в качестве материала BGO-детекторов для регистрации рентгеновского излучения, используется высокочистый оксид висмута с суммарным содержанием контролируемых примесей на уровне 10-4 мас.% [Ю.М.Юхин, Ю.И.Михайлов. Химия висмутовых соединений и материалов. Новосибирск, Издательство СО РАН, 2001, стр.100].
При этом в производстве оксида висмута далеко не всегда контролируется содержание радионуклидов, например полония, которые могут быть внесены металлическим висмутом в процессе синтеза его оксида и иметь естественное и/или искусственное происхождение.
[D.Grigoriev et al., Proceedings of the 1st International Workshop "Radiopure Scintillators for EURECA" (RPScint'2008), 9-10 September 2008, Kiev. Published Kiev-2009, 45;
Incidental radioactive background in BGO crystals. D.Grigoriev, G.Kuznetcov, I.Novoselov, P.Schotanus, B.Shavinski, S.Shepelev, V.Shlegel, Ya.Vasiliev. in Proceedings of the 1st International Workshop "Radiopure Scintillators for EURECA" (RPScint'2008) p.45-49. arXiv:0903.1539 [nucl-ex]; http://arxiv.org/ftp/arxiv/papers/0903.1539.pdf]. Под естественным происхождением полония следует понимать попадание полония в висмут как продукта распада эманации радия по цепочке ряда урана-радия:
226Raα1600 лет 222Rnα3,8 суток 218Poα3 мин 214Pbβ-26,8 мин 214Biβ-19,7 мин 214Poβ-1,5·10-4 сек 210Pbα22 года 210Biα5 суток 210Poα138,3 суток
[Ершова З.В., Волгин А.Г. Полоний и его применение. М., Атомиздат, 1974, рис.1. Радиоактивные семейства, стр.9].
Под искусственным - из облученного висмута, побывавшего в ядерном реакторе. Недостаточно по времени вылежавшийся металлический висмут с не распавшимся еще полонием (период полураспада 210Ро составляет 138,3 суток) может попасть на коммерческий рынок как сырье для производства оксида висмута.
Поэтому монокристаллы ортогерманата висмута, выращенные с использованием оксида висмута, загрязненного радиоактивными примесями, имеют собственную радиоактивность, что существенно ухудшает качество сцинтилляционного материала и характеристики регистрации излучений BGO-детекторами. Практика показывает, что имеют место случаи загрязнения монокристаллов BGO 210Po, что заставляет искать способы очистки от полония.
Известные способы выделения полония из висмута, в том числе промышленно освоенный метод дистилляции для производства полония [Ершова З.В., Волгин А.Г. Полоний и его применение. М., Атомиздат, 1974, 232 с.], касаются в основном выделения полония из облученного нейтронами металлического висмута, причем при высоком содержании полония как в облученном висмуте (75 мг/кг висмута), так и в висмуте после выделения полония [Ершова З.В., Волгин А.Г. Полоний и его применение. М., Атомиздат, 1974, стр.197] и не решают задачу глубокой очистки висмута от загрязнений полонием.
Таким образом, с естественным загрязнением висмута полонием следует бороться путем глубокой очистки сырья от продуктов распада Ra. С искусственным загрязнением - либо долговременной выдержкой сырья, либо специальными методами очистки.
Предлагаемый способ очистки висмута от полония пригоден и для полония искусственного происхождения.
Кроме того, глубокая очистка висмута от радиоактивных загрязнений (радионуклидов) связана также с проблемой очистки висмута от свинца. Свинецсодержащее сырье является главным промышленным источником чернового висмута, который получают из продуктов рафинирования свинца. И, если черновой висмут, выделенный из этих продуктов, обнаруживает наличие α-активного полония, то он также содержит и материнское вещество 210Pb→210Bi. Поэтому необходима очистка висмута и от элемент-примеси свинца, включающей радионуклиды свинца, например 210Pb, который является причиной генерирования полония в висмуте.
Известен способ очистки чернового висмута от полония многократной направленной кристаллизацией и зонной плавкой [А.Н.Киргинцев, В.И.Косяков, Л.А.Прохоров, А.С.Алой и И.М.Селиванов. Исследование очистки чернового висмута от полония. Радиохимия, 14, 2, 1972].
Данный способ путем пятикратной направленной кристаллизацией или однократной кристаллизацией с последующими 12 проходами зоны при зонной плавке слитка чернового висмута позволяет уменьшить α-активность получаемого висмута с 50 имп./100 сек в черновом висмуте до 1-2 имп./100 сек (до уровня фона прибора) [А.Н.Киргинцев, В.И.Косяков, Л.А.Прохоров, А.С.Алой, И.М.Селиванов. Исследование очистки чернового висмута от полония. Радиохимия, 14, 2, 1972, см. Таблица 1 и 3, стр.297, стр.301].
Основным недостатком этого способа является низкий выход очищенного от полония висмута (50-60%).
Кроме того, свинец является трудноудаляемой примесью при использовании кристаллизационных методов очистки [А.И.Беляев, Е.А.Жемчужина, Л.А.Фирсанова. Металлургия чистых металлов и элементарных полупроводников, М., Металлургия, 1969, стр.145]. Поэтому очистка висмута от свинца известным способом неэффективна.
Довольно высокое содержание примеси свинца в очищаемом черновом висмуте (1,15 вес.%) [Н.Киргинцев, В.И.Косяков, Л.А.Прохоров, А.С.Алой и И.М.Селиванов. Исследование очистки чернового висмута от полония. Радиохимия, 14, 2, 1972, см. Таблица 1, стр.297] приводит к наличию в нем 210Pb. Как отмечено выше, радионуклид свинца Pb, являясь элементом радиоактивного семейства ряда уран-радий, с периодом полураспада 22 года, через β-распад приводит к образованию 210Bi (период полураспада 5 суток) и далее к образованию α-активного изотопа 210Po с периодом полураспада 138,3 суток.
Недостаточная очистка висмута от примеси свинца, а вместе с ним и от его изотопа 210Pb известным способом, со временем вновь неизбежно приводит к самопроизвольному осуществлению цепочки радиоактивных превращений 210Pbβ-210Biβ-210Po и накоплению в висмуте полония 210Po, что, в результате, требует повторной операции его удаления из висмута.
Таким образом, удаление только радионуклидов полония из висмута известным способом не позволяет исключить самопроизвольное возобновление полония в висмуте и полностью не решает проблему очистки висмута.
Наиболее близким аналогом по совокупности существенных признаков является способ электролитического разделения висмутистого свинца, включающий электролиз расплава натриевой щелочи с жидким катодом из свинцово-висмутового сплава [Патент №701178 A SU (МПК С25С 3/34, 15.10.1984)].
Этот способ путем ведения электролиза при контролируемом катодном потенциале и пропусканием над расплавом щелочи водяного пара позволяет повысить эффективность разделения черновых свинцово-висмутовых сплавов с переносом висмута с катода на анод в виде интерметаллидных соединений висмутида натрия. При этом очистка висмута, получаемого на аноде этим способом, от элемент-примеси свинца недостаточно глубокая, так как содержание свинца в анодном висмуте составляет 1,4-4,4% [Патент на изобретение №701178 A SU (МПК С25С 3/34, 15.10.1984), Пример 3].
Кроме того, этот известный способ не решает задачу очистки висмута от полония.
Задачей предлагаемого изобретения является повышение выхода очищенного висмута с сохранением высокой степени очистки от полония путем глубокой очистки очищаемого висмута от элемент-примеси свинца и исключения процесса самопроизвольного возобновления полония в очищенном висмуте по цепочке радиоактивных превращений 210Pbβ-210Biβ-210Po.
Техническим результатом изобретения является повышение выхода очищенного от полония висмута до 98,5-99%, а также исключение процесса последующего накопления полония в очищенном висмуте благодаря глубокой очистке висмута от элемент-примеси свинца до содержания его в очищенном висмуте, меньшем или равном 10-5 мас.%.
Технический результат достигается тем, что в способе очистки висмута, включающем электролиз в расплаве натриевой щелочи, электролиз проводят при катодной плотности тока 0,3-0,7 А/см2 и перемешивании расплавов для очистки от полония, а полученный после электролиза висмут подвергают последующей глубокой очистке от свинца, до его содержания в очищенном висмуте, меньшего или равного 1·10-5 мас.%.
Отличительными от прототипа признаками являются:
электролиз проводят при катодной плотности тока 0,3-0,7 А/см2 и перемешивании расплавов для очистки от полония; полученный после электролиза висмут подвергают последующей глубокой очистке от свинца, до его содержания в очищенном висмуте, меньшего или равного 1·10-5 мас.%.
Выделение полония из расплава очищаемого висмута предлагаемым способом можно объяснить следующим образом.
При электролизе расплава натриевой щелочи с жидким висмутовым катодом на катоде выделяется натрий, который образует с висмутом интерметаллические соединения, ограниченно растворимые в висмуте и хорошо растворимые в натриевой щелочи и способные под действием электрического поля мигрировать к аноду, подобно тому, как происходит образование и удаление интерметаллических соединений висмута с натрием из жидкого свинцового катода при обезвисмутчивании свинца [Патент на изобретение №701178 A SU (МПК С25С 3/34, 15.10.1984)].
Прочные интерметаллические соединения с натрием - полониды, может образовывать и полоний. Эти соединения практически устойчивы до 700°С, причем имеют плотность в два с лишним раза меньше плотности висмута [Ершова З.В., Волгин А.Г. Полоний и его применение. М., Атомиздат, 1974, стр.139, 140; Н.Киргинцев, В.И.Косяков, Л.А.Прохоров, А.С.Алой и И.М.Селиванов. Исследование очистки чернового висмута от полония. Радиохимия, 14, 2, 1972, стр.299].
По мере накопления натрия в висмутовом катоде в процессе электролиза полоний в виде полонидов захватывается образующимися интерметаллическими соединениями висмута с натрием, всплывающими к поверхности жидкого висмутового катода, и вместе с ними увлекается под действием электрического поля в расплав щелочи. Катодному растворению примеси полония из висмута способствует и анионная форма существования полония в сильно щелочной среде - это РоО32- [Ершова З.В., Волгин А.Г. Полоний и его применение. М., Атомиздат, 1974, стр.85], благодаря чему полоний стремится мигрировать к аноду.
Перемешивание расплавленного висмутового катода выравнивает распределение выделяющегося натрия по всему объему металла и предотвращает образование слоя твердых более тугоплавких интерметаллических соединений на поверхности жидкого катода, эффективно удаляя их в расплав щелочи.
Катодная плотность тока при электролизе влияет на эффективность процесса очистки следующим образом. При катодной плотности тока больше 0,8 А/см2 увеличивается унос висмута из катода в виде интерметаллических соединений с натрием, что снижает выход очищенного от полония висмута. При катодной плотности тока меньше 0,3 А/см2 увеличивается продолжительность процесса и снижается эффективность очистки от полония. Установлено, что оптимальной является катодная плотность тока в диапазоне 0,3-0,7 А/см2.
Содержание полония в металлическом висмуте при его очистке контролировали измерением α-активности специально отлитых в виде диска образцов диаметром 23 мм и толщиной 2,4 мм. Вес образца составлял 11,5 г. Поверхность образца с торцов диска перед измерением тщательно отшлифовывалась.
Измерение α-активности проводили на альфа-спектрометре 7184 (EURISYS MESURES, Франция) с использованием низкофонового кремниевого детектора UBL 450 площадью 450 мм2 и разрешением 19 кэВ на линии 5000 кэВ. Установка размещена в камере низкого фона.
Входному анализу на α-активность подвергались разные партии товарного висмута. В отдельных партиях измеренная исходная α-активность товарного висмута обнаруживалась в диапазоне 9·10-2 - 1·10-3 импульс/сек при фоне прибора 1,5-2·10-4 импульс/сек.
Примеры осуществления предлагаемого способа.
Пример 1.
В стальной обогреваемый тигель, служащий корпусом электролизера, загружают предварительно обезвоженную гидроокись натрия и товарный металлический висмут чистотой 99,99%, с измеренной α-активностью торцов образца 2,2·10-3 импульс/сек (фон прибора при измерении активности составляет 1,5·10-4 импульс/сек), в весовом соотношении NaOH:Bi=1:2. Корпус электролизера подключают катодно, и висмут, находящийся в стальном тигле-электролизере, соответственно, является катодом. Анодом служит стальная перфорированная труба, внутри которой проходит вал перемешивающего устройства для перемешивания расплава висмута со скоростью 20-30 оборотов/мин. Включают ток и в течение 1 часа проводят электролиз расплава натриевой щелочи при напряжении 3,2 В, катодной плотности тока 0,6-0,7 А/см2, анодной плотности 0,9-1 А/см2. При этом на жидком висмутовом катоде, содержащем примесь полония, выделяется натрий, который образует с висмутом и с примесью полония интерметаллические соединения, способные мигрировать к аноду, и поэтому под действием электрического поля выделяются из висмута. На аноде происходит разряд гидроксильных анионов с образованием кислорода и окисление и разложение интерметаллических соединений. По окончании процесса электролиза металл выгружают и измеряют α-активность катодного висмута. Активность катодного висмута составляет 1,5-1,6·10-4 импульс/сек, а фон при измерении активности составляет 1,5·10-4 импульс/сек.
За время электролиза удаление висмута из висмутового катода в виде интерметаллических соединений незначительно и не превышает 1-1,5 вес.%, т.е. выход очищенного от полония висмута составляет 98,5-99,0%.
В катодном висмуте, после очистки его от полония, обнаруживается натрий в количестве 0,1-0,2 мас.%. Очистки исходного висмута от примеси свинца за время электролиза не происходит.
Далее полученный после электролиза висмут подвергают последующей глубокой очистке от свинца известными способами до его содержания в очищенном от полония висмуте, меньшего или равного 1·10-5 мас.%.
Пример 2.
Проводят в течение 1 часа процесс очистки товарного висмута от полония с той же исходной активностью и при тех же условиях, как описано в примере 1, но процесс ведут при катодной плотности тока 0,8-0,9 А/см2. Измерение активности катодного висмута по окончании процесса показывает, что она находится на уровне фона, т.е. 1,5·10-4 импульс/сек.
Удаление висмута из висмутового катода в виде интерметаллических соединений составляет 2-2,2%, что снижает выход очищенного от полония висмута до 97,8-98%.
Пример 3.
Проводят в течение 1 часа процесс очистки товарного висмута от полония с той же исходной активностью и при тех же условиях, как описано в примере 1, но процесс ведут при катодной плотности тока 0,2 А/см2. По окончании процесса и выгрузки катодного металла измеряют его α-активность. Она составляет 6,1·10-4 импульс/сек, т.е в 4 раза выше фона (1,5·10-4 импульс/сек).
Пример 4.
Проводят процесс очистки товарного висмута от полония с той же исходной активностью и при тех же условиях, как описано в примере 1, но процесс ведут при катодной плотности тока 0,2 А/см2 в течение 2 часов. По окончании процесса и выгрузки катодного металла измеряют его α-активность. Она составляет 1,5·10-4 импульс/сек, фон при измерении активности 1,5·10-4 импульс/сек. Выход очищенного от полония висмута составляет 98,5%, но увеличивается продолжительность процесса очистки.
Пример 5.
Проводят процесс очистки товарного висмута от полония с измеренной исходной α-активностью 1,5·10-2 импульс/сек (фон прибора 2·10-4 импульс/сек) при тех же условиях, как описано в примере 1, но процесс ведут при катодной плотности тока 0,3-0,4 А/см2 в течение 1 часа. По окончании процесса и выгрузки катодного висмута измеряют его α-активность. Она составляет 2,1·10-4 импульс/сек, фон прибора при измерении активности 2·10-4 импульс/сек. Выход очищенного от полония висмута составляет 98,8-99,0%. Затем полученный после электролиза висмут подвергают последующей глубокой очистке от свинца известными способами до его содержания в очищенном от полония висмуте, меньшего или равного 1·10-5 мас.%.
Если не обеспечивать глубокой очистки висмута от свинца, то примесь последнего, содержащая 210Pb с периодом полураспада 22 года, приводит к образованию 210Bi с периодом полураспада 5 дней, который является непосредственным генератором полония 210Ро, что в результате, приводит к накоплению полония в висмуте. Глубокую очистку от элемент-примеси свинца по предлагаемому способу проводят предпочтительно сразу после очистки висмута от полония для того, чтобы предотвратить установление радиоактивного равновесия цепочки 210Pb-210Bi и тем самым исключить накопление полония за счет накопления и распада 210Bi (период полураспада 5 суток). Проведение глубокой очистки висмута от свинца до удаления полония нежелательно, так как в этом случае, после очистки от свинца в висмуте остается радионуклид 210Bi, распад которого приводит к увеличению содержания полония. Операцию выделения полония из висмута по предлагаемому способу следует проводить в "голове" процесса рафинирования висмута также во избежание возможного загрязнения очищаемого висмута железом при проведении процесса электролиза.
Степень последующей глубокой очистки висмута от свинца также влияет на достижение положительного эффекта в предлагаемом способе, так как чем меньше в висмуте примеси свинца, тем, соответственно, меньше в нем и долгоживущих радионуклидов 210Pb - источника полония.
Ниже представлена экспериментально установленная динамика изменения α-активности металлических образцов товарного висмута чистотой 99,99%, содержащего 4·10-4 мac.% Pb.
Дата измерения α-активности α-активность, импульс/сек фон при измерении α-активности, импульс/сек
01.04.2008 г. 1,4·10-2 1,5·10-4
27.03.2009 г. 2,1·10-3 1,5·10-4
05.05.2009 г. 2,0·10-3 1,5·10-4
07.07.2009 г. 1,2·10-3 2,0·10-4
05.03.2010 г. 1,8·10-3 2,0·10-4
Видно, что при данном содержании примеси свинца в товарном висмуте в течение последнего года не происходит уменьшения α-активности (период полураспада 210Ро составляет 138,3 суток) и α-активность висмута 5,3 Мэв сохраняется в течение всего года. Это может указывать на недостаточную очистку висмута от примеси свинца, содержащего 210Pb с периодом полураспада 22 года, в соответствии с которым происходит накопление-распад 210Po по схеме 210Pb→210Bi→210Po.
Установлено также, что при более глубокой очистке (≤1·10-5 мас.%) очищаемого товарного висмута от примеси свинца, с измеренной исходной α-активностью 3,4·10-3 импульс/сек при фоне прибора 1,5·10-4 импульс/сек не происходит заметного накопления полония (по крайней мере по истечении 4 лет измеренная α-активность образцов висмута была на уровне фона: 1,5·10-4 импульс/сек). Полоний же, содержащийся в образцах товарного висмута изначально (α-активность 3,4·10-3 импульс/сек), при отсутствии 210Pb должен был распасться за это время практически полностью. Это свидетельствует о хорошей очистке висмута от свинца и полония.
Последующую глубокую очистку полученного после электролиза висмута от элемент-примеси свинца в предлагаемом способе проводят известным способом путем осуществления следующих последовательных стадий очистки: электрорафинирование в солянокислом электролите; сплавление полученной на катоде висмутовой губки в атмосфере, содержащей HCl; переплавка висмута при барботировании аргона через расплав [И.И.Новоселов, Шевцов Ю.В., Бызов Г.П. Способ очистки висмута. Патент RU, №2281979] и вакуумная дистилляция висмута [И.И.Новоселов, Н.И.Петрова, Д.Ю.Троицкий, Д.С.Ткачев. Рафинирование висмута вакуумной дистилляцией. / Химия и химическая технология. 2006, №8, с.40-44].
Благодаря проведению перечисленных последовательных стадий очистки содержание свинца в висмуте уменьшается более чем в 20 раз (в исходном висмуте содержание свинца - 10-3-10-4 мас.%) до уровня <5·10-6 мас.%. Одновременно висмут очищается от других сопутствующих элемент-примесей, в том числе от железа и натрия, поступающих при проведении катодной поляризации.
Обработанный данным способом висмут используют для синтеза оксида висмута и производства кристаллов BGO.
При тестировании кристаллов ортогерманата висмута на 5'' ФЭУ Photonis на наличие радиоактивного фона установлено, что кристаллы, выращенные с использованием оксида висмута, полученного из висмута, очищенного от полония предлагаемым способом, не обнаруживают γ-активность в пределах чувствительности измерений. В то же время кристаллы, выращенные с использованием оксида висмута, полученного из висмута, не прошедшего предварительной очистки от полония, γ-активны на уровне 5 Бк/кг.
Предлагаемый способ обладает следующими преимуществами:
- позволяет в 1,6-2 раза повысить выход очищенного от полония висмута;
- исключает процесс самопроизвольного накопления полония в очищенном висмуте;
- повышает качество сцинтилляционного материала ортогерманата висмута за счет использования низкофонового висмута для синтеза его оксида, идущего на выращивание кристаллов; а также увеличивает выход качественных низкофоновых кристаллов ортогерманата висмута при их производстве.

Claims (1)

  1. Способ очистки висмута, включающий электролиз в расплаве натриевой щелочи, отличающийся тем, что электролиз проводят при катодной плотности тока, равной 0,3-0,7 А/см2, и перемешивании расплава для очистки от полония, а полученный после электролиза висмут подвергают последующей глубокой очистке от свинца до его содержания в очищенном висмуте, меньшего или равного 1·10-5 мас.%.
RU2010131298/02A 2010-07-26 2010-07-26 Способ очистки висмута RU2436856C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010131298/02A RU2436856C1 (ru) 2010-07-26 2010-07-26 Способ очистки висмута

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010131298/02A RU2436856C1 (ru) 2010-07-26 2010-07-26 Способ очистки висмута

Publications (1)

Publication Number Publication Date
RU2436856C1 true RU2436856C1 (ru) 2011-12-20

Family

ID=45404351

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010131298/02A RU2436856C1 (ru) 2010-07-26 2010-07-26 Способ очистки висмута

Country Status (1)

Country Link
RU (1) RU2436856C1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185214A (ja) * 2012-03-08 2013-09-19 Jx Nippon Mining & Metals Corp α線量が少ないビスマス又はビスマス合金及びその製造方法
RU2505615C2 (ru) * 2012-04-06 2014-01-27 Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук Способ очистки висмута
WO2014069357A1 (ja) * 2012-11-02 2014-05-08 Jx日鉱日石金属株式会社 低α線ビスマスの製造方法並びに低α線ビスマス及びビスマス合金
RU2514766C2 (ru) * 2012-06-05 2014-05-10 Федеральное государственное бюджетное учреждение науки Институт неорганической химии Сибирского отделения Российской академии наук (ИНХ СО РАН) Способ очистки висмута
RU2541244C1 (ru) * 2013-09-09 2015-02-10 Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук Способ очистки висмута
WO2015098191A1 (ja) * 2013-12-24 2015-07-02 Jx日鉱日石金属株式会社 低α線ビスマス及び低α線ビスマスの製造方法
WO2015102062A1 (ja) * 2014-01-06 2015-07-09 Jx日鉱日石金属株式会社 低α線ビスマスの製造方法及び低α線ビスマス
WO2015125331A1 (ja) * 2014-02-20 2015-08-27 Jx日鉱日石金属株式会社 低α線ビスマスの製造方法及び低α線ビスマス
RU2738036C2 (ru) * 2020-04-13 2020-12-07 Виталий Евгеньевич Дьяков Способ для очистки висмута зонной плавкой, покровный флюс и аппарат для осуществления способа зонной плавки

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185214A (ja) * 2012-03-08 2013-09-19 Jx Nippon Mining & Metals Corp α線量が少ないビスマス又はビスマス合金及びその製造方法
RU2505615C2 (ru) * 2012-04-06 2014-01-27 Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук Способ очистки висмута
RU2514766C2 (ru) * 2012-06-05 2014-05-10 Федеральное государственное бюджетное учреждение науки Институт неорганической химии Сибирского отделения Российской академии наук (ИНХ СО РАН) Способ очистки висмута
JP5903497B2 (ja) * 2012-11-02 2016-04-13 Jx金属株式会社 低α線ビスマスの製造方法並びに低α線ビスマス及びビスマス合金
WO2014069357A1 (ja) * 2012-11-02 2014-05-08 Jx日鉱日石金属株式会社 低α線ビスマスの製造方法並びに低α線ビスマス及びビスマス合金
RU2541244C1 (ru) * 2013-09-09 2015-02-10 Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук Способ очистки висмута
WO2015098191A1 (ja) * 2013-12-24 2015-07-02 Jx日鉱日石金属株式会社 低α線ビスマス及び低α線ビスマスの製造方法
JP6067855B2 (ja) * 2013-12-24 2017-01-25 Jx金属株式会社 低α線ビスマス及び低α線ビスマスの製造方法
WO2015102062A1 (ja) * 2014-01-06 2015-07-09 Jx日鉱日石金属株式会社 低α線ビスマスの製造方法及び低α線ビスマス
JP5960341B2 (ja) * 2014-01-06 2016-08-02 Jx金属株式会社 低α線ビスマスの製造方法
JP5996803B2 (ja) * 2014-02-20 2016-09-21 Jx金属株式会社 低α線ビスマスの製造方法及び低α線ビスマス
WO2015125331A1 (ja) * 2014-02-20 2015-08-27 Jx日鉱日石金属株式会社 低α線ビスマスの製造方法及び低α線ビスマス
US10711358B2 (en) 2014-02-20 2020-07-14 Jx Nippon Mining & Metals Corporation Method of producing low alpha-ray emitting bismuth, and low alpha-ray emitting bismuth
RU2738036C2 (ru) * 2020-04-13 2020-12-07 Виталий Евгеньевич Дьяков Способ для очистки висмута зонной плавкой, покровный флюс и аппарат для осуществления способа зонной плавки

Similar Documents

Publication Publication Date Title
RU2436856C1 (ru) Способ очистки висмута
US3891741A (en) Recovery of fission products from acidic waste solutions thereof
US3922231A (en) Process for the recovery of fission products from waste solutions utilizing controlled cathodic potential electrolysis
JP5189229B1 (ja) 高純度ランタンの製造方法、高純度ランタン、高純度ランタンからなるスパッタリングターゲット及び高純度ランタンを主成分とするメタルゲート膜
JP4298712B2 (ja) 銅の電解精製方法
JP5217480B2 (ja) 粗インジウムの回収方法
JP6471072B2 (ja) 低α線高純度亜鉛及び低α線高純度亜鉛の製造方法
RU2478128C2 (ru) Способ очистки висмута от полония
RU2079909C1 (ru) Способ пирохимической регенерации ядерного топлива
CN111910081A (zh) 一种含241Am金属废料的分离方法
JP3024396B2 (ja) Inの回収方法
US5633423A (en) Consumable anode, electrodissolution process applied to the decontamination of slightly radioactive liquid effluents and apparatus for performing the process
RU2505615C2 (ru) Способ очистки висмута
RU2514766C2 (ru) Способ очистки висмута
JPS6396599A (ja) 金属ルテニウムの溶解法
JP6140752B2 (ja) 低α線ビスマス及びその製造方法
KR102577113B1 (ko) 지르코늄 회수 공정 및 폐 지르코늄 처리방법
Lee et al. Recovery of silver and mercury from dental amalgam waste
US3708267A (en) Method of processing nuclear fuels
Martinot An electrochemical method for the preparation of high-purity metallic neptunium from molten chlorides at 450° C
JP3910605B2 (ja) 使用済み燃料の溶融塩電解再処理方法
Schlechter et al. The preparation of UO2 by fused salt electrolysis using UO2 or UF4 as starting material
WO2015098191A1 (ja) 低α線ビスマス及び低α線ビスマスの製造方法
Obinata et al. Method of refining silicon by alloying
JP6242725B2 (ja) 金属タリウムの製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150727