RU2431640C2 - Полипропиленовые пластмассы, полученные методом выдувной экструзии, пропиленовое волокно и нетканый материал из него же, а также методы их получения - Google Patents

Полипропиленовые пластмассы, полученные методом выдувной экструзии, пропиленовое волокно и нетканый материал из него же, а также методы их получения Download PDF

Info

Publication number
RU2431640C2
RU2431640C2 RU2008135438A RU2008135438A RU2431640C2 RU 2431640 C2 RU2431640 C2 RU 2431640C2 RU 2008135438 A RU2008135438 A RU 2008135438A RU 2008135438 A RU2008135438 A RU 2008135438A RU 2431640 C2 RU2431640 C2 RU 2431640C2
Authority
RU
Russia
Prior art keywords
melt
propylene homopolymer
polymers
melt blown
extrusion
Prior art date
Application number
RU2008135438A
Other languages
English (en)
Other versions
RU2008135438A (ru
Inventor
Даниэль БУГАДА (US)
Даниэль БУГАДА
Хее Дзу ЙОО (US)
Хее Дзу ЙОО
Original Assignee
Базелль Полиолефине Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Базелль Полиолефине Гмбх filed Critical Базелль Полиолефине Гмбх
Publication of RU2008135438A publication Critical patent/RU2008135438A/ru
Application granted granted Critical
Publication of RU2431640C2 publication Critical patent/RU2431640C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • D01F6/06Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins from polypropylene
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Nonwoven Fabrics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

Изобретение относится к полимерам пропилена с высокой скоростью течения расплава и точкой плавления. Описан гомополимер пропилена, способный к экструзии с раздувом из расплава. Скорость течения расплава от 300 до 2500 г/10 мин при 230°С. Индекс полидисперсии от 1,3 до 2,9. Температура плавления 160°С. Описан также способ получения волокна из гомополимера пропилена, включающий взаимодействие соединения металлоцена (I), необязательно алюмоорганического соединения и мономера пропилена
Figure 00000014
Описано также волокно, нетканый материал и многослойный нетканый материал из гомополимера пропилена. Технический результат - получение полимера с более высокой скоростью течения расплава и более узким интервалом молекулярно-массового распределения, а также высокой температурой плавления и более низким содержанием побочных продуктов расплава. 5 н. и 7 з.п. ф-лы, 5 ил., 4 табл.

Description

Настоящее изобретение относится к полимерам полипропилена, точнее к полимерам полипропилена с высокой скоростью течения расплава и точкой плавления. Переработка таких полипропиленов, способных к экструзии с раздувом из расплава, более рациональна и экономически эффективна, и их можно использовать в производстве товаров высокого качества. Более того, эти составы можно использовать для производства пропиленовых волокон, обладающих превосходными механическими и физическими характеристиками.
Нетканые материалы, полученные методом выдувной экструзии из расплава, бесспорно, являются наиболее востребованными и высокотехнологичными конечными продуктами переработки полимеров, способных к выдувной экструзии из расплава. В частности, гомополимер полипропилена, способный к экструзии с раздувом из расплава, является одним из наиболее широкоиспользуемых, так как открывает путь к большому и разнообразному спектру конечных продуктов, таких как цельные тяжелые сорбенты масел, детские пеленки и легкие многослойные и многоматериальные ткани, применяемые для личной гигиены, в медицине и фильтрах.
Одно из более ценных применений полимеров, способных к выдувной экструзии из расплава, - производство тонких волокон для нетканых материалов, которые используются как фильтры или барьеры. Обычно чем тоньше волокна полимера, тем меньше поры нетканого материала, и в результате - тем эффективнее барьерный или фильтрующий прибор. Поэтому неудивительно, что производители полимеров постоянно пытаются улучшить полимеры, способные к экструзии с раздувом из расплава, уменьшая вязкость полимера, что увеличивает скорость потока расплава для того, чтобы получать все более тонкий продукт. Кроме того, производство все более тонкого волокна, уменьшение вязкости полимера позволяет также улучшить экономические характеристики переработки.
Изначально, переработчики волокон покупали стандартный полипропилен и добавляли органические пероксиды на этапе экструзии для химической деградации полипропилена для того, чтобы увеличить скорость течения расплава и сузить молекулярно-массовое распределение (то есть индекс полидисперсии) полимера. Этот процесс называется легким химическим крекингом. В общем, такой процесс работал, но отсутствовал контроль качества и устойчивость, что приводило к конечному продукту сомнительного качества и ограниченным возможностям его конечного применения.
В целях преодоления указанных недостатков производители вводили в процесс выдувной экструзии из расплава полипропилен, покрытый пероксидной пленкой. Такие полимеры позволили значительно повысить достижимую скорость течения расплава и температуру плавления, а также улучшили качество конечных продуктов, производимых из полимеров. В частности, улучшились нетканые материалы. Кроме того, покрытый пероксидной пленкой полипропилен расширил возможности использования более тонких волокон для производства конечных продуктов, таких как нетканые волокна. Однако перепады условий в процессе экструзии все еще приводят к неоднородности нетканого материала, производимого из полипропилена, покрытого пероксидной пленкой. Более того, легкий химический крекинг неизбежно приводит к образованию побочных продуктов распада в полимере, которые переносятся и в конечный продукт. Безусловно, эти побочные продукты ограничивают использование конечного продукта, что также в целом ограничивает использование полипропилена, покрытого пероксидной пленкой в процессах выдувной экструзии из расплава.
Кроме продуктов распада, присутствующих в конечном продукте, произведенном из пропилена, обработанного пероксидом или покрытого пероксидной пленкой, ранее полимеры, способные к выдувной экструзии из расплава, приводили к образованию дыма при прядении, когда полимеры перерабатывали в волокна. Прядильный дым является результатом испарения фракций с низкой температурой плавления, летучих веществ и других нежелательных побочных продуктов, присутствующих в полимере, способном к выдувной экструзии из расплава. Чем больше прядильного дыма выделяется полимером, способным к выдувной экструзии из расплава, тем больше количество выбросов на заводе, производящем волокна из такого полимера.
Более того, кроме большего количества выбросов прядильный дым может оказывать коррозийное воздействие на матрицы, используемые для производства волокон из полимера, способного к выдувной экструзии из расплава. Коррозийные свойства прядильного дыма приводят к более короткому периоду использования матрицы, результатом чего являются более высокие производственные издержки. Помимо этого, принимая во внимание коррозийные свойства прядильного дыма, должны быть приняты соответствующие меры предосторожности в обеспечении безопасности при переработке известных ранее полимеров, способных к выдувной экструзии из расплава, включая полимеры, обработанные пероксидом или покрытые пероксидной пленкой.
Соответственно полипропилен, способный к выдувной экструзии из расплава, характеризующийся высокой скоростью течения расплава и не подвергавшийся легкому химическому крекингу, был до сих пор неизвестен в отрасли. Кроме того, многие из используемых ранее полимеров, способных к выдувной экструзии из расплава, не позволяли получить полимер с более высокой скоростью течения расплава и более узким интервалом молекулярно-массового распределения (то есть более низким индексом полидисперсии), а также высокой температурой плавления и более низким содержанием побочных продуктов распада.
Так как представленные полимеры, способные к выдувной экструзии из расплава, характеризуются более высокой скоростью течения расплава, более высокой точкой плавления, более низким индексом полидисперсиии, уменьшенным содержанием побочных продуктов, пропускная способность и производительность перерабатывающего завода, выпускающего полимерные волокна, полученные методом выдувной экструзии из расплава, из представленных полимеров может быть увеличена. Помимо этого из представленных полимеров, способных к выдувной экструзии из расплава, получают более тонкие полимерные волокна, полученные методом выдувной экструзии из расплава, из которых в свою очередь получают более мягкие и удобные конечные продукты, с лучшими фильтрующими характеристиками. Более высокие фильтрующие характеристики являются результатом того, что производится более тонкое волокно, а также неожиданного увеличения свойств по удерживанию статического заряда волокнами.
Более того, представленные полимеры, способные к выдувной экструзии из расплава, могут использоваться для получения нетканого материала с улучшенными тканевыми свойствами, такими как гидростатическое давление и воздухопроницаемость. Кроме того, представленные полимеры, способные к выдувной экструзии из расплава, могут использоваться для производства продуктов, отличающихся большей гомогенностью и прочностью, уменьшая, таким образом, количество производимого брака, что улучшает показатели использования сырья. Настоящие полимеры, способные к выдувной экструзии из расплава, также могут использоваться для производства нетканого материала с меньшим размером пор, чем сравнимые нетканые материалы, производимые из ранее использовавшихся полимеров, способных к соэкструзии.
Кроме лучших показателей использования сырья настоящие полимеры, способные к выдувной экструзии из расплава, позволяют экономить на электричестве и сырье благодаря более низким температурам переработки и меньшему объему воздуха, необходимого для переработки полимеров в волокна и нетканые материалы. Помимо этого представленные полимеры, способные к выдувной экструзии из расплава, характеризуются меньшим количеством побочных продуктов и летучих веществ, что приводит к меньшему объему прядильного дыма и заводских выбросов, а также большему промежутку между очисткой и заменами матрицы при переработке полимера.
По указанным причинам отрасль по-прежнему нуждается в полимерах, способных к выдувной экструзии из расплава, настоящего описания, которые характеризуются высокой скоростью течения расплава, точкой плавления и низким индексом полидисперсии.
Настоящее описание относится к полипропилену, точнее полипропилену с высокой скоростью течения расплава и точкой плавления.
В данном случае предпочтительное воплощение предмета изобретения относится к гомополимеру полипропилена, способного к экструзии с раздувом из расплава, характеризующемуся скоростью течения расплава от примерно 300 до примерно 2500 г/10 мин при 230°С, индексом полидисперсии от примерно 1,3 до примерно 2,9 и температурой плавления по меньшей мере 160°С.
Другое предпочтительное воплощение предмета изобретения относится к волокну из гомополимера полипропилена, способного к экструзии с раздувом из расплава, включающему гомополимер полипропилена, способный к экструзии с раздувом из расплава, характеризующемуся скоростью течения расплава от примерно 300 до примерно 2500 г/10 мин при 230°С, индексом полидисперсии от примерно 1,3 до примерно 2,9 и температурой плавления по меньшей мере 160°С.
Кроме того, другое предпочтительное воплощение предмета изобретения относится к нетканому материалу, включающему волокно из гомополимера полипропилена, способного к экструзии с раздувом из расплава, который состоит из гомополимера полипропилена, способного к выдувной экструзии из расплава, характеризующемуся скоростью течения расплава от примерно 300 до примерно 2500 г/10 мин при 230°С, индексом полидисперсии от примерно 1,3 до примерно 2,9 и температурой плавления по меньшей мере 160°С.
Помимо того другое предпочтительное воплощение предмета изобретения относится к многослойному нетканому материалу, включающему волокно из гомополимера полипропилена, способного к экструзии с раздувом из расплава, который состоит из гомополимера полипропилена, способного к выдувной экструзии из расплава, характеризующемуся скоростью течения расплава от примерно 300 до примерно 2500 г/10 мин при 230°С, индексом полидисперсии от примерно 1,3 до примерно 2,9 и температурой плавления по меньшей мере 160°С.
Еще одно предпочтительное воплощение представленного изобретения относится к способу получения гомополимера полипропилена, способного к экструзии с раздувом из расплава, включающему взаимодействие
- соединения металлоцена формулы (I)
Figure 00000001
где
М представляет переходный металл 3, 4, 5 или 6 группы либо лантаноид или актиноид Периодической системы элементов;
Х представляет водород, галоген или R, OR, OSO2CF3, OCOR, SR, NR2, PR2 и их комбинации, также Х может образовывать замещенный или незамещенный бутадиенильный радикал или OR'O;
R представляет линейный или разветвленный, циклический или ациклический, C1-C40 алкил, C2-C40 алкенил, C2-C40 алкинил, C6-C40 арил, C7-C40 алкиларил или C7-C40 арилалкил и их комбинации, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов;
R' представляет бивалентный радикал, выбранный из C1-C40 алкилидена, C6-C40 арилидена, C7-C40 алкиларилидена или C7-C40 арилалкилидена;
L представляет бивалентный C1-C40 углеводородный радикал, необязательно содержащий гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, или бивалентный силилиденовый радикал, содержащий до 5 атомов кремния;
R1 и R5 представляют C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R1 и R5 могут быть как одинаковыми, так и различными;
R2, R3 и R4 представляют атомы водорода или C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R2, R3 и R4 могут быть как одинаковыми, так и различными;
R6, R7, R8, R9 и R10 представляют атомы водорода или C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R6, R7, R8, R9 и R10 могут быть как одинаковыми, так и различными при условии, что по меньшей мере один из группы, состоящей из R6, R7, R8, R9 и R10, не является водородом;
- по меньшей мере одного алюмоксана или соединения, способного образовать катион алкил-металлоцен;
- необязательно алюмоорганического соединения; и
- мономера пропилена,
причем указанный мономер пропилена полимеризуется с образованием гомополимера полипропилена, способного к экструзии с раздувом из расплава, характеризующегося скоростью течения расплава от примерно 300 до примерно 2500 г/10 мин при 230°С, индексом полидисперсии от примерно 1,3 до примерно 2,9 и температурой плавления по меньшей мере 160°С.
Более того, другое предпочтительное воплощение представленного изобретения относится к способу получения гомополимера полипропилена, способного к экструзии с раздувом из расплава, включающему взаимодействие:
- соединения металлоцена формулы (I)
Figure 00000002
где
М представляет переходный металл 3, 4, 5 или 6 группы либо лантаноид или актиноид Периодической системы элементов;
Х представляет водород, галоген или R, OR, OSO2CF3, OCOR, SR, NR2, PR2 и их комбинации, также Х может образовывать замещенный или незамещенный бутадиенильный радикал или OR'O;
R представляет линейный или разветвленный, циклический или ациклический, C1-C40 алкил, C2-C40 алкенил, C2-C40 алкинил, C6-C40 арил, C7-C40 алкиларил или C7-C40 арилалкил и их комбинации, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов;
R' представляет бивалентный радикал, выбранный из C1-C40 алкилидена, C6-C40 арилидена, C7-C40 алкиларилидена или C7-C40 арилалкилидена;
L представляет бивалентный C1-C40 углеводородный радикал, необязательно содержащий гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, или бивалентный силилиденовый радикал, содержащий до 5 атомов кремния;
R1 и R5 представляют C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R1 и R5 могут быть как одинаковыми, так и различными;
R2, R3 и R4 представляют атомы водорода или C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R2, R3 и R4 могут быть как одинаковыми, так и различными;
R6, R7, R8, R9 и R10 представляют атомы водорода или C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R6, R7, R8, R9 и R10 могут быть как одинаковыми, так и различными при условии, что по меньшей мере один из группы, состоящей из R6, R7, R8, R9 и R10, не является водородом;
- по меньшей мере одного алюмоксана или соединения, способного образовать катион алкил-металлоцен;
- необязательно алюмоорганического соединения; и
- мономера пропилена,
причем указанный мономер пропилена полимеризуется с образованием гомополимера полипропилена, способного к экструзии с раздувом из расплава, характеризующегося скоростью течения расплава от примерно 300 до примерно 2500 г/10 мин при 230°С, индексом полидисперсии от примерно 1,3 до примерно 2,9 (значения измерения?) и температурой плавления по меньшей мере 160°С; указанный гомополимер полипропилена перерабатывается в экструдере с образованием указанного волокна из гомополимера полипропилена, способного к экструзии с раздувом из расплава.
Краткое описание фигур
Фиг.1: Гидростатическое давление материала, полученного методом выдувной экструзии из расплава 20 г/м2, полученного при 0,6 грамм/отверстие/мин.
Фиг.2: Гидростатическое давление материала, полученного методом выдувной экструзии 20 г/м2, полученного при 0,8 грамм/отверстие/мин.
Фиг.3: Воздухопроницаемость материала, полученного методом выдувной экструзии 20 г/м2, произведенного при 0,6 грамм/отверстие/мин.
Фиг.4: Воздухопроницаемость материала, полученного методом выдувной экструзии 20 г/м2, произведенного при 0,8 грамм/отверстие/мин.
Фиг.5: Различия в переработке полипропилена, полученного с использованием катализатора Циглера-Натта, со скоростью течения расплава 1100 г/10 мин и полипропилена, полученного с использованием металлоценового катализа, со скоростью течения расплава 1200 г/10 мин.
Используемый здесь термин «температура плавления» относится к конечной точке плавления полимера, когда бóльшая часть полимера расплавлена, причем конечная точка плавления отличается от характерной температуры плавления и начальной точки плавления.
Используемый здесь термин «характерная температура плавления» относится к температуре, при которой плавится бóльшая часть полимера.
Используемый здесь термин «начальная точка плавления» относится к температуре, при которой полимер начинает плавиться.
Используемый здесь термин «тонкость» относится к толщине или диаметру производимых волокон.
Каталитические системы
В общем, для получения полимеров, способных к выдувной экструзии из расплава, существует множество каталитических систем. Системы катализаторов Циглера-Натта использовались и все еще используются для получения обычных полимеров, способных к выдувной экструзии из расплава. Однако полимеры, полученные с использованием каталитических систем Циглера-Натта, проявляют худшие механические и физические свойства. В частности, использование известных каталитических систем Циглера-Натта не позволяет получать способные к выдувной экструзии из расплава полимеры, характеризующиеся более высокой скоростью течения расплава и более высокой температурой плавления, как полимеры, способные к экструзии с раздувом из расплава настоящего изобретения. Кроме того, что полимеры, способные к выдувной экструзии из расплава, обладают более низкой скоростью течения расплава и температурой плавления, чем представленные полимеры, способные к экструзии с раздувом из расплава, они имеют более высокий индекс полидисперсии (то есть молекулярно-массовое распределение) и обладают бóльшим количеством летучих веществ, что приводит к большему количеству прядильного дыма при переработке полимеров. Как обсуждалось выше, большее количество прядильного дыма при переработке полимеров, способных к выдувной экструзии из расплава, приводит к большему количеству выбросов и уменьшению промежутка времени между чисткой и заменой матрицы.
Соответственно полимеры, способные к экструзии с раздувом из расплава, настоящего изобретения снимают эти проблемы. В предпочтительном варианте осуществления представленные полимеры могут быть получены с использованием металлоценовой каталитической системы. Кроме того, в предпочтительном варианте металлоценовый катализатор состоит из соединения металлоцена формулы (I)
Figure 00000003
где
М представляет переходный металл 3, 4, 5 или 6 группы либо лантаноид или актиноид Периодической системы элементов;
Х представляет водород, галоген или R, OR, OSO2CF3, OCOR, SR, NR2, PR2 и их комбинации, также Х может образовывать замещенный или незамещенный бутадиенильный радикал или OR'O;
R представляет линейный или разветвленный, циклический или ациклический, C1-C40 алкил, C2-C40 алкенил, C2-C40 алкинил, C6-C40 арил, C7-C40 алкиларил или C7-C40 арилалкил и их комбинации, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов;
R' представляет бивалентный радикал, выбранный из C1-C40 алкилидена, C6-C40 арилидена, C7-C40 алкиларилидена или C7-C40 арилалкилидена;
L представляет бивалентный C1-C40 углеводородный радикал, необязательно содержащий гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, или бивалентный силилиденовый радикал, содержащий до 5 атомов кремния;
R1 и R5 представляют C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R1 и R5 могут быть как одинаковыми, так и различными;
R2, R3 и R4 представляют атомы водорода или C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R2, R3 и R4 могут быть как одинаковыми, так и различными;
R6, R7, R8, R9 и R10 представляют атомы водорода или C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R6, R7, R8, R9 и R10 могут быть как одинаковыми, так и различными при условии, что по меньшей мере один из группы, состоящей из R6, R7, R8, R9 и R10, не является водородом.
В предпочтительном варианте осуществления настоящего изобретения металлоценовая каталитическая система получена включением металлоценового соединения (I)
Figure 00000003
где
М представляет переходный металл 3, 4, 5 или 6 группы либо лантаноид или актиноид Периодической системы элементов;
Х представляет водород, галоген или R, OR, OSO2CF3, OCOR, SR, NR2, PR2 и их комбинации, также Х может образовывать замещенный или незамещенный бутадиенильный радикал или OR'O;
R представляет линейный или разветвленный, циклический или ациклический, C1-C40 алкил, C2-C40 алкенил, C2-C40 алкинил, C6-C40 арил, C7-C40 алкиларил или C7-C40 арилалкил и их комбинации, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов;
R' представляет бивалентный радикал, выбранный из C1-C40 алкилидена, C6-C40 арилидена, C7-C40 алкиларилидена или C7-C40 арилалкилидена;
L представляет бивалентный C1-C40 углеводородный радикал, необязательно содержащий гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, или бивалентный силилиденовый радикал, содержащий до 5 атомов кремния;
R1 и R5 представляют C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R1 и R5 могут быть как одинаковыми, так и различными;
R2, R3 и R4 представляют атомы водорода или C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R2, R3 и R4 могут быть как одинаковыми, так и различными;
R6, R7, R8, R9 и R10 представляют атомы водорода или C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R6, R7, R8, R9 и R10 могут быть как одинаковыми, так и различными при условии, что по меньшей мере один из группы, состоящей из R6, R7, R8, R9 и R10, не является водородом.
В другом предпочтительном варианте осуществления настоящего изобретения система металлоценового катализатора содержит титан, цирконий или гафний в качестве М соединения металлоцена формулы (I). В другом предпочтительном варианте осуществления настоящего изобретения R представляет линейный или разветвленный С120 алкильный радикал. Еще в одном предпочтительном варианте осуществления настоящего изобретения Х является атомом водорода, галогена или R. Еще в одном предпочтительном варианте осуществления настоящего изобретения Х представляет хлор или С110 алкильный радикал. Еще в одном предпочтительном варианте осуществления Х представляет метил, этил или их комбинации.
Более того, в предпочтительном варианте осуществления настоящего изобретения L представляет бивалентную мостиковую группу из числа силильного радикала, содержащего до 5 атомов кремния, C1-C40 алкилиден, C3-C40 циклоалкелиден, C6-C40 арилиден, C7-C40 алкиларилиден или C7-C40 арилалкилиден, необязательно содержащий гетероатомы, относящиеся к 13-17 группам Периодической системы элементов в металлоценовом соединении формулы (I). Еще в одном предпочтительном варианте осуществления настоящего изобретения L представляет SiMe2 или SiPh2. Еще в одном предпочтительном варианте осуществления настоящего изобретения L представляет (Z(R'')2)n, где Z представляет атом углерода или кремния, n равно 1 или 2, и R'' представляет С120 углеводородный радикал, необязательно содержащий гетероатомы, относящиеся к 13-17 группам Периодической системы элементов. Еще в одном предпочтительном варианте осуществления настоящего изобретения R'' представляет линейный или разветвленный, циклический или ациклический C1-C20 алкил, C2-C20 алкенил, C2-C20 алкинил, C6-C20 арил, C7-C20 алкиларил или C7-C20 арилалкил и их комбинации, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов.
Более того, в предпочтительном варианте осуществления настоящего изобретения L представляет Si(CH3)2, SiPh2, SiPhMe, SiMe(SiMe3), CH2, (CH2)2 или C(CH3)2 в металлоценовом соединении формулы (I). Еще в одном предпочтительном варианте осуществления настоящего изобретения R1 и R5 представляют линейный или разветвленный, циклический или ациклический C1-C40 алкил, C2-C40 алкенил, C2-C40 алкинил, C6-C40 арил, C7-C40 алкиларил или C7-C40 арилалкил, необязательно содержащий гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, где R1 и R5 могут быть одинаковыми или разными. Еще в одном предпочтительном варианте осуществления R1 и R5 представляют линейный или разветвленный, насыщенный или ненасыщенный, C1-C20 алкильный радикал.
Кроме того, в предпочтительном варианте осуществления настоящего изобретения R2, R3 и R4 представляют атом водорода либо линейный или разветвленный, циклический или ациклический, C1-C40 алкил, C2-C40 алкенил, C2-C40 алкинил, C6-C40 арил, C7-C40 алкиларил или C7-C40 арилалкил, необязательно содержащий гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, где R2, R3 и R4 могут быть одинаковыми или разными в металлоценовом соединении формулы (I). Еще в одном предпочтительном варианте осуществления настоящего изобретения R2, R3 и R4 представляют атом водорода либо C1-C40 алкил. Еще в одном предпочтительном варианте осуществления настоящего изобретения R8 представляет C1-C40 алкил. Еще в одном предпочтительном варианте осуществления настоящего изобретения R8 представляет C1-C40 алкил, содержащий вторичный или третичный атом углерода в альфа-положении с образованием изопропильного или трет-бутильного радикала.
В особенно предпочтительном варианте осуществления настоящего изобретения L представляет (Si)Me2, M представляет Zr, X представляет Cl, R1 представляет трет-пропил, R2, R3 и R4 представляют атомы водорода, R5 представляет метил, R6, R7, R9 и R10 представляют атомы водорода, а R8 представляет трет-бутил в металлоценовом соединении формулы (I).
Кроме металлоценового соединения формулы (I), в соответствии с настоящим изобретением в каталитической системе можно использовать алюмоксаны. Алюмоксаны можно получить взаимодействием воды с алюмоорганическими соединениями формулы (II) или (III)
Figure 00000004
где U представляет водород, галоген, C1-C20 алкил, C3-C20 циклоалкил, C6-C20 арил, C7-C20 алкиларил или C7-C20 арилалкил, необязательно содержащий атомы кремния или германия, причем U может быть как одинаковым, так и разным при условии, что по меньшей мере один U не является галогеном, а j находится в интервале от 0 до 1, причем j может быть нецелым числом. В этой реакции мольное отношение Al/вода находится в промежутке от 1:1 до 100:1.
Алюмоксаны, которые в соответствии с настоящим изобретением могут быть использованы в каталитической системе, могут быть линейными, разветвленными или циклическими соединениями, содержащими по меньшей мере одну группу формулы (IV)
Figure 00000005
где значения U определены выше.
В частности, в случае линейных соединений могут использоваться алюмоксаны формулы (V)
Figure 00000006
где n1 равно 0 или целому числу от 1 до 40, а значения U определены выше.
Кроме того, могут использоваться алюмоксаны формулы (VI)
Figure 00000007
где n2 равно целому числу от 2 до 40, а значения U определены выше.
В соответствии с настоящим изобретением неограничивающими примерами предпочтительных алюмоксанов, подходящих для использования, являются метилалюмоксан (МОА), тетра(изобутил)алюмоксан (TIBAO), тетра(2,4,4-триметилпентил)алюмоксан (TIOAO), тетра(2,3-диметилбутил)алюмоксан (TDMBAO) и тетра(2,3,3-триметилбутил)алюмоксан (TTMBAO).
Особенно интересны сокатализаторы, описанные в WO 99/21899 и WO 01/21674, в которых алкильные и арильные группы имеют специфические разветвленные структуры.
Неограничивающие примеры соединений алюминия, которые могут взаимодействовать с водой, образуя подходящие алюмоксаны, описаны в WO 99/21899 и WO 01/21674 и включают:
трис(2,3,3-триметилбутил)алюминий, трис(2,3-диметилгексил)алюминий, трис(2,3-диметилбутил)алюминий, трис(2,3-диметилпентил)алюминий, трис(2,3-диметилгептил)алюминий, трис(2-метил-3-этилпентил)алюминий, трис(2-метил-3-этилгексил)алюминий, трис(2-метил-3-этилгептил)алюминий, трис(2-метил-3-пропилгексил)алюминий, трис(2-этил-3-метилбутил)алюминий, трис(2-этил-3-метилпентил)алюминий, трис(2,3-диэтилпентил)алюминий, трис(2-пропил-3-метилбутил)алюминий, трис(2-изопропил-3-метилбутил)алюминий, трис(2-изобутил-3-метилпентил)алюминий, трис(2,3,3-триметилпентил)алюминий, трис(2,3,3-триметилгексил)алюминий, трис(2-этил-3,3-диметилбутил)алюминий, трис(2-этил-3,3-диметилпентил)алюминий, трис(2-изопропил-3,3-диметилбутил)алюминий, трис(2-триметилсилилпропил)алюминий, трис(2-метил-3-фенилбутил)алюминий, трис(2-этил-3-фенилбутил)алюминий, трис(2,3-диметил-3-фенилбутил)алюминий, трис(2-фенилпропил)алюминий, трис[2-(4-фторфенил)пропил]алюминий, трис[2-(4-хлорфенил)пропил]алюминий, трис[2-(3-изопропилфенил)пропил]алюминий, трис(2-фенилбутил)алюминий, трис(3-метил-2-фенилбутил)алюминий, трис(2-фенилпентил)алюминий, трис[2-(пентафторфенил)пропил]алюминий, трис[2,2-дифенилэтил]алюминий и трис[2-фенил-2-метилпропил]алюминий, и их комбинации. В настоящем изобретении также можно использовать вещества, соответствующие указанным выше, где одна из углеводородных групп замещена атомом водорода, и где одна или две углеводородные группы замещаются изобутильной группой.
Неограничивающие примеры предпочтительных алюмоксанов, пригодных для использования в настоящем предмете изобретения, включают триметилалюминий (ТМА), триизобутилалюминий (TIBA), трис(2,4,4-триметилпентил)алюминий (TIOA), трис(2,3-диметилбутил)алюминий (TDMBA), трис(2,3,3-триметилбутил)алюминий (TTMBA) и их комбинации.
Неограничивающими примерами соединений, пригодных для использования в настоящем предмете изобретения, для образования алкил-металлоценового катиона являются соединения формулы (VII)
Figure 00000008
где D+ представляет кислоту Бренстеда, способную давать протон и необратимо взаимодействовать с заместителем Х металлоценового соединения формулы (I), а Е- представляет соответствующий анион, способный стабилизировать активную катионную частицу, которая получается в результате взаимодействия D+ и металлоценового соединения формулы (I), и который достаточно лабилен, чтобы его мог захватить олефиновый мономер. В предпочтительном варианте осуществления настоящего предмета изобретения анион Е- включает один или несколько атомов бора. В более предпочтительном варианте изобретения анион Е- представляет анион формулы BAr4(-), где Ar является арильным радикалом, например фенил-, пентафторфенил-, бис(трифторметил)фенил- и их комбинации. В соответствии с описанием в WO 91/02012 особенно предпочтительным соединением является тетракис-пентафторфенилборат.
Более того, соединения формулы (VIII)
Figure 00000009
могут использоваться в настоящем предмете изобретения для образования соединения Е- формулы (VII). Соединения этого типа описаны, в частности, в Международной патентной заявке WO 92/00333. Другим примером соединений, способных к образованию алкил-металлоценового катиона, являются соединения формулы (VIIII)
Figure 00000010
где Р представляет замещенный или незамещенный пиррольный радикал. Эти соединения описываются в WO 01/62764. Борсодержащие соединения также могут быть с успехом использованы в соответствии с описаниями DE-A-19962814 и DE-A-19962910. Соединения формул VII-VIIII, содержащие по меньшей мере один атом бора, могут использоваться в молярном отношении от примерно 1:1 до примерно 10:1, предпочтительно от примерно 1:1 до примерно 2:1 и более предпочтительно примерно 1:1, где коэффициенты пропорции определяются отношением атома бора к М металлоценового соединения формулы (I).
Кроме того, неограничивающие примеры соединений формулы D+E- (VII), пригодные для использования в настоящем предмете изобретения, включают:
триэтиламмонийтетра(фенил)борат,
трибутиламмонийтетра(фенил)борат,
триметиламмонийтетра(толил)борат,
трибутиламмонийтетра(толил)борат,
трибутиламмонийтетра(пентафторфенил)борат,
трибутиламмонийтетра(пентафторфенил)алюминат,
трипропиламмонийтетра(диметилфенил)борат,
трибутиламмонийтетра(трифторметилфенил)борат,
трибутиламмонийтетра(4-фторфенил)борат,
N,N-диметилбензиламмоний-тетракиспентафторфенилборат,
N,N-диметилгексиламмоний-тетракиспентафторфенилборат,
N,N-диметиланилинтетра(фенил)борат,
N,N-диэтиланилинтетра(фенил)борат,
N,N-диметиланилинтетракис(пентафторфенил)борат,
N,N-диметиланилинтетракис(пентафторфенил)алюминат,
N,N-диметилбензиламмоний-тетракиспентафторфенилборат,
N,N-диметилгексиламмоний-тетракиспентафторфенилборат,
ди(пропил)аммонийтетракис(пентафторфенил)борат,
ди(циклогексил)аммонийтетракис(пентафторфенил)борат,
трифенилфосфонийтетракис(фенил)борат,
триэтилфосфонийтетракис(фенил)борат,
дифенилфосфонийтетракис(фенил)борат,
три(метилфенил)фосфонийтетракис(фенил)борат,
три(диметилфенил)фосфонийтетракис(фенил)борат,
трифенилкарбентетракис(пентафторфенил)борат,
трифенилкарбентетракис(пентафторфенил)алюминат,
трифенилкарбентетракис(фенил)алюминат,
ферроцентетракис(пентафторфенил)борат,
ферроцентетракис(пентафторфенил)алюминат,
трифенилкарбентетракис(пентафторфенил)борат и
N,N-диметиланилинтетракис(пентафторфенил)борат.
Дополнительные примеры соединений формулы D+E- (VII), которые могут использоваться в соответствии с настоящим предметом изобретения, описаны в WO 04/005360, WO 02/102811 и WO 01/62764.
Кроме того, описанная здесь каталитическая система может быть закреплена на инертном носителе. Это достигается осаждением металлоценового соединения формулы (I), или продукта реакции металлоценового соединения формулы (I) и алюмоксана, или продукта реакции металлоценового соединения формулы (I) и соединения, которое может образовывать алкил-металлоценовый катион на инертной подложке. Неограничивающие примеры инертных подложек включают диоксид кремния, оксид алюминия, смешанные оксиды Al-Si, Al-Mg, галогениды магния, сополимеры стирола и дивинилбензола, полиэтилена, полипропилена и их комбинации.
Более того, каталитическая система может быть закреплена на инертной подложке осаждением алюмоксана или соединения, способного образовывать алкилметаллоценовый катион, и металлоценового соединения формулы (I) на инертной подложке. Процесс осаждения каталитической системы на инертной подложке проводится в инертном растворителе при температурах от 0°С до 100°С. Предпочтительно процесс осуществляется при комнатной температуре. Неограничивающие примеры инертных растворителей включают углеводороды, как, например, толуол, гексан, пентан, пропан и их смеси.
Подходящий класс инертных подложек, который может быть использован, включает пористые органические подложки, функционализированные группами с активным атомом водорода. Особенно подходящие инертные подложки включают те, в которых инертные подложки включают частично поперечно-сшитые полимеры стирола. Инертные подложки такого типа описаны в Европейской заявке EP-633272.
Другой класс инертных подложек, особенно полезных для настоящего предмета изобретения, включают полиолефиновые пористые полимеры. В предпочтительном аспекте настоящего предмета изобретения полиолефиновые пористые преполимеры, включающие полиэтилен, полипропилен и их комбинации, особенно полезны.
Кроме того, в соответствии с настоящим предметом изобретения другие полезные инертные подложки включают пористые галогениды магния, такие, как описанные в Международной заявке WO 95/32995.
Полимеры, способные к экструзии с раздувом из расплава
Полимеры, полученные методом выдувной экструзии настоящего предмета изобретения, в целом относятся к полипропилену, способному к выдувной экструзии из расплава. Полипропилен настоящего предмета изобретения может состоять из гомополимера полипропилена и сополимеров полипропилена, где сополимер получается из мономера формулы (Х)
Figure 00000011
где R11 представляет водород или С110 углеводород.
В предпочтительном варианте настоящий предмет изобретения относится к различным гомополимерам полипропилена, способным к экструзии с раздувом из расплава. В этом отношении настоящий предмет изобретения предпочтительно относится к гомополимеру полипропилена, способному к экструзии с раздувом из расплава, характеризующегося скоростью течения расплава от примерно 300 до примерно 2500 г/10 мин при 230°С, индексом полидисперсии от примерно 1,3 до примерно 2,9 и температурой плавления по меньшей мере 160°С.
Ранее известные полимеры, способные к выдувной экструзии из расплава, не обладают скоростью течения расплава свыше примерно 500 г/10 мин при 230°С, температурой плавления по меньшей мере 160°С и индексом полидисперсии от примерно 1,3 до примерно 2,9. В частности, ранее известные полимеры не обладают подобным сочетанием всех вышеуказанных свойств.
Кроме того, как описано выше, ранее известные полимеры, способные к выдувной экструзии из расплава, методом выдувной экструзии приводят к получению волокон худшего качества. Это связано с тем, что ранее известные полимеры не обладают скоростью течения расплава свыше примерно 500 г/10 мин при 230°С, температурой плавления по меньшей мере 160°С и индексом полидисперсии от примерно 1,3 до примерно 2,9.
Соответственно настоящий полипропилен, способный к экструзии с раздувом из расплава, уникален в том отношении, что он сочетает высокую скорость течения расплава, высокую температуру плавления и более низкий индекс полидисперсии. В предпочтительном аспекте настоящего предмета изобретения указанный полипропилен обладает скоростью течения расплава от примерно 500 г/10 мин до примерно 2000 г/10 мин при 230°С. Еще в одном предпочтительном аспекте предмета изобретения полипропилен, способный к экструзии с раздувом из расплава, обладает скоростью течения расплава от примерно 1200 г/10 мин до примерно 1800 г/10 мин при 230°С. Еще в одном предпочтительном аспекте изобретения указанный полипропилен характеризуется температурой плавления по меньшей мере 163°С.
Кроме того, что полимеры согласно настоящему предмету изобретения обладают более высокой скоростью течения расплава и температурой плавления, они характеризуются более низким индексом полидисперсии, чем ранее известные полимеры, способные к выдувной экструзии из расплава. Это особенно касается ранее известных полимеров, способных к выдувной экструзии из расплава с использованием каталитических систем Циглера-Натта. Более низкий индекс полидисперсии полимеров согласно настоящему предмету изобретения, который зависит от молекулярно-массового распределения полимера, приводит к тому, что полимеры, способные к экструзии с раздувом из расплава, характеризуются более низким индексом полидисперсии (то есть более узким молекулярно-массовым распределением) по сравнению с ранее известными полимерами, способными к выдувной экструзии из расплава. Это особенно касается ранее известных полимеров, полученных с использованием каталитических систем Циглера-Натта. Кроме того, полимеры настоящего предмета изобретения, характеризующиеся более низким индексом полидисперсии, обладают лучшими перерабатывающими свойствами в сравнении с ранее известными полимерами, способными к выдувной экструзии из расплава, которые обладают более высоким индексом полидисперсии (то есть более широким молекулярно-массовым распределением). В частности, представленный полипропилен, способный к экструзии с раздувом из расплава, приводит к образованию меньшего количества прядильного дыма при переработке, что является результатом более низкого индекса полидисперсии от примерно 1,3 до примерно 2,9. Еще в одном предпочтительном объекте настоящего предмета изобретения указанный полипропилен характеризуется индексом полидисперсии от примерно 1,4 до примерно 2,0. Еще в одном предпочтительном объекте настоящего предмета изобретения полипропилен характеризуется индексом полидисперсии от примерно 1,4 до примерно 1,8.
Еще в одном предпочтительном объекте настоящего предмета изобретения полипропилен, способный к экструзии с раздувом из расплава, характеризуется изотактичностью больше примерно 90%. Еще в одном предпочтительном объекте настоящего предмета изобретения указанный полипропилен характеризуется изотактичностью больше примерно 94%. Еще в одном предпочтительном объекте настоящего предмета изобретения полипропилен характеризуется изотактичностью больше примерно 96%.
Кроме того, как описано ранее, были сделаны попытки увеличить скорость течения расплава полипропилена легким химическим крекингом. В процессе легкого химического крекинга полипропилена, способного к выдувной экструзии из расплава, скорость течения расплава увеличивается за счет понижения молекулярной массы полипропиленовых полимерных цепочек в полимере путем химической реакции с активными веществами, как, например, радикальные реакции, инициируемые пероксидами. Полимеры, способные к выдувной экструзии из расплава, и продукты, полученные из этих полимеров, которые получают методом легкого химического крекинга, имеют много недостатков, включая высокий индекс пожелтения, высокую склонность к деградации и повышенное количество побочных продуктов в полимере. По этой причине полипропиленовые полимеры, способные к экструзии с раздувом из расплава, настоящего предмета изобретения не подвергаются легкому химическому крекингу и соответственно не содержат остатков пероксидных соединений от процесса легкого химического крекинга.
Кроме того, для регулирования механических и физических свойств полимеров настоящего предмета изобретения обычно добавляются стабилизаторы. Неограничивающие примеры предпочтительных стабилизаторов включают антиоксиданты, как, например, стерически затрудненные фенолы и стерически затрудненные амины, УФ стабилизаторы, стабилизаторы переработки, например фосфиты или фосфониты, поглотители кислот, например стеарат кальция, стеарат цинка или дигидротальцит, а также кальциевые, цинковые и натриевые соли каприловой кислоты. В общем, полипропиленовые полимеры, способные к экструзии с раздувом из расплава, настоящего предмета изобретения содержат один или несколько стабилизаторов в весовом количестве до примерно 5%.
Более того, к настоящим полипропиленовым полимерам, способным к экструзии с раздувом из расплава, могут добавляться смазывающее вещество или смазки для пресс-формы. Неограничивающие примеры смазывающих веществ и смазок для пресс-формы включают жирные кислоты и их соли, включая кальциевые, натриевые и цинковые, амиды эфирных кислот и их соли или низкомолекулярные полиолефиновые воски. В общем, полипропиленовые полимеры, способные к экструзии с раздувом из расплава, настоящего предмета изобретения содержат один или несколько смазывающих веществ и смазок для пресс-формы в весовом количестве до примерно 5%.
Более того, к настоящим полипропиленовым полимерам, способным к экструзии с раздувом из расплава, могут быть добавлены наполнители. Неограничивающие примеры наполнителей включают тальк, карбонат кальция, мел и стекловолокно. В общем, указанные полипропиленовые полимеры настоящего предмета изобретения могут содержать один или несколько наполнителей в весовом количестве до примерно 5%. Предпочтительно полипропиленовые полимеры настоящего предмета изобретения могут содержать один или несколько наполнителей в весовом количестве до примерно 25%. В другом предпочтительном аспекте изобретения полипропиленовые полимеры настоящего предмета изобретения могут содержать один или несколько наполнителей в весовом количестве до примерно 10%.
В полипропиленовых полимерах, способных к экструзии с раздувом из расплава, настоящего предмета изобретения могут также содержаться зародышеобразовательные вещества. Неограничивающие примеры пригодных зародышеобразовательных веществ включают неорганические добавки, такие как оксид кремния или каолин, соли монокарбоновых и поликарбоновых кислот, например бензоат натрия, трет-бутилбензоат алюминия и дибензилиденсорбит, или С18 алкилзамещенные производные дибензилиденсорбита, например метилдибензилиденсорбит, этилдибензилиденсорбит, диметилдибензилиденсорбит, и соли диэфиров фосфорной кислоты, например 2,2'-метиленбис(4,6-ди-трет-бутилфенил)фосфат натрия. Предпочтительно указанные полипропиленовые полимеры настоящего предмета изобретения могут содержать один или несколько зародышеобразовательных веществ в количестве до примерно 5% веса.
Такие добавки, как правило, коммерчески доступны и описываются, например, в книге Gächter/Müller, Plastics Additives Handbook, 4th Edition, Hansa Publishers, Munich, 1993.
В общем, представленные полипропиленовые полимеры, способные к экструзии с раздувом из расплава, могут быть получены при взаимодействии с металлоценовым соединением формулы (I)
Figure 00000012
где
М представляет переходный металл 3, 4, 5 или 6 группы либо лантаноид или актиноид Периодической системы элементов;
Х представляет водород, галоген или R, OR, OSO2CF3, OCOR, SR, NR2, PR2 и их комбинации, также Х может образовывать замещенный или незамещенный бутадиенильный радикал или OR'O;
R представляет линейный или разветвленный, циклический или ациклический, C1-C40 алкил, C2-C40 алкенил, C2-C40 алкинил, C6-C40 арил, C7-C40 алкиларил или C7-C40 арилалкил и их комбинации, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов;
R' представляет бивалентный радикал, выбранный из C1-C40 алкилидена, C6-C40 арилидена, C7-C40 алкиларилидена или C7-C40 арилалкилидена;
L представляет бивалентный C1-C40 углеводородный радикал, необязательно содержащий гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, или бивалентный силилиденовый радикал, содержащий до 5 атомов кремния;
R1 и R5 представляют C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R1 и R5 могут быть как одинаковыми, так и различными;
R2, R3 и R4 представляют атомы водорода или C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R2, R3 и R4 могут быть как одинаковыми, так и различными;
R6, R7, R8, R9 и R10 представляют атомы водорода или C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R6, R7, R8, R9 и R10 могут быть как одинаковыми, так и различными при условии, что по меньшей мере один из группы, состоящей из R6, R7, R8, R9 и R10, не является водородом, с по меньшей мере одним алюмоксаном или соединением, способным образовать катион алкил-металлоцен, необязательно с алюмоорганическим соединением и мономером пропилена в реакционных условиях.
Кроме того, к полимерам, способным к экструзии с раздувом из расплава, настоящего предмета изобретения могут добавляться стабилизаторы, смазывающие вещества, смазки для пресс-формы, зародешеобразовательные вещества и другие добавки путем общеизвестных способов.
Полимерные волокна, получаемые методом выдувной экструзии из расплава
Полимерные волокна, полученные методом выдувной экструзии из расплава, настоящего предмета изобретения в целом относятся к полипропиленовым полимерным волокнам, полученным методом выдувной экструзии из расплава и имеющим улучшенные механические и физические свойства. В этом отношении настоящий предмет изобретения в основном относится к полимерным волокнам гомополимера полипропилена, полученным методом выдувной экструзии из расплава и состоящим из гомополимера полипропилена, способного к экструзии с раздувом из расплава со скоростью течения расплава от примерно 300 до примерно 2500 г/10 мин при 230°С, индексом полидисперсии от примерно 1,3 до примерно 2,9 и температурой плавления по меньшей мере 160°С.
Ранее известные полимерные волокна, получаемые методом выдувной экструзии из расплава, из полимеров, способных к выдувной экструзии из расплава, уступают представленным полимерным волокнам, получаемым методом выдувной экструзии из расплава, из представленных полимеров, способных к экструзии с раздувом из расплава, по ряду причин. Как описано выше, ранее известные полимерные волокна, полученные методом выдувной экструзии из расплава, не обладают скоростью тока расплава свыше примерно 500 г/10 мин при 230°С, температурой плавления по меньшей мере 160°С и индексом полидисперсии от примерно 1,3 до примерно 2,9. Соответственно волокна, получаемые из ранее известных полимеров, будут слипаться и приставать друг у другу после переработки экструзией. В частности, ранее известные полимеры, получаемые методом выдувной экструзии из расплава, не обладают подобным сочетанием всех вышеуказанных свойств. Кроме того, волокна, получаемые из ранее известных полимеров, полученных методом выдувной экструзии из расплава, имеют меньший коэффициент затухания волокна. То есть волокна, получаемые из ранее известных полимеров, не такие тонкие, как волокна, получаемые из представленных полимеров, произведенных методом выдувной экструзии из расплава. Так как волокна, получаемые из ранее известных полимеров, полученные методом выдувной экструзии, будут слипаться и приставать друг у другу после переработки экструзией, различия и распределение толщины нити волокон очень значительно. Это отрицательно сказывается на товарах, произведенных из этих волокон.
Соответственно в предпочтительном аспекте настоящего предмета изобретения полимерные волокна, полученные методом выдувной экструзии из расплава, имеют диаметр от примерно 0,1 до примерно 10 мкм. В другом предпочтительном аспекте настоящего предмета изобретения полимерные волокна, полученные методом выдувной экструзии из расплава, имеют диаметр от примерно 1 до примерно 6 мкм.
Кроме тонкости нити производимых волокон представленные полимерные волокна, полученные методом выдувной экструзии из расплава, характеризуются неожиданно большими коэффициентами удерживания статического заряда, чем ранее известные полимерные волокна, полученные методом выдувной экструзии из расплава. В частности, представленные полимерные волокна, полученные методом выдувной экструзии из расплава, могут проявлять такие же или бóльшие коэффициенты удержания статического заряда, чем коммерчески доступные на данный момент полимеры, способные к выдувной экструзии из расплава. В частности, немодифицированные полимеры настоящего предмета изобретения, способные к экструзии с раздувом из расплава, могут проявлять такие же или бóльшие коэффициенты удержания статического заряда, чем коммерчески доступные модифицированные полимеры, способные к выдувной экструзии из расплава.
Более того, как обсуждалось выше, представленные полимерные волокна, полученные методом выдувной экструзии из расплава, производят меньшее количество прядильного дыма при переработке, так как полимер, способный к экструзии с раздувом из расплава, содержит меньше летучих веществ, что отражается в более низком индексе полидисперсии представленных полимерных волокон, полученных методом выдувной экструзии из расплава.
Нетканые материалы
Нетканые материалы настоящего предмета изобретения в целом относятся к нетканым материалам, состоящим из полипропиленовых полимерных волокон, полученных методом выдувной экструзии из расплава. В этом отношении настоящий предмет изобретения в основном относится к нетканым материалам, состоящим из полученных методом выдувной экструзии из расплава полимерных волокон гомополимера полипропилена и состоящих из гомополимера полипропилена, способного к экструзии с раздувом из расплава со скоростью течения расплава от примерно 300 до примерно 2500 г/10 мин при 230°С, индексом полидисперсии от примерно 1,3 до примерно 2,9 и температурой плавления по меньшей мере 160°С. Кроме того, нетканые материалы настоящего предмета изобретения могут представлять однослойную или многослойную структуру. Многослойная структура может состоять из одного или нескольких слоев полимерных волокон, полученных методом выдувной экструзии из расплава, настоящего предмета изобретения.
Нетканые материалы настоящего предмета изобретения в целом проявляют лучшие механические и физические свойства, такие как фильтрационные и барьерные свойства, чем ранее известные нетканые материалы, состоящие из ранее известных полимерных волокон, полученных методом выдувной экструзии из расплава. В частности, представленные нетканые материалы проявляют превосходящие коэффициенты удержания электростатического заряда и фильтрационные эффективности, что позволяет использовать представленные нетканые материалы в качестве фильтров и барьеров столь же или более эффективно, чем ранее известные нетканые материалы, содержащие ранее известные полимеры, способные к выдувной экструзии из расплава. Это возможно благодаря уникальным свойствам полученных методом выдувной экструзии из расплава полимерных волокон, полученных из представленных полимеров, способных к экструзии с раздувом из расплава, с использованием представленной каталитической системы.
ПРИМЕРЫ
Следующие примеры иллюстрируют предпочтительные полимеры, способные к экструзии с раздувом из расплава, волокна, получаемые методом выдувной экструзии из расплава, и нетканые материалы, состоящие из указанных волокон, получаемых методом выдувной экструзии из расплава, и не рассматриваются как ограничивающие объем заявленного изобретения. Все молекулярные массы полимеров являются среднечисловыми молекулярными массами. Все процентные отношения соотношения основаны на проценте от массы конечного полимера, волокна, нетканого материала или продукта, если не указано иначе, все суммарные значения равняются 100% от массы.
Следующие примеры иллюстрируют предпочтительные аспекты настоящего предмета изобретения.
Пример I
Получение полипропиленовых полимеров
Каталитическую систему получают согласно описанию PCT/EP2004/007061 с использованием рацемического диметилсилилен(2-метил-4-(4'-трет-бутилфенил)инденил)(2-изопропил-4-(4'-трет-бутилфенил)инденил)цирконий дихлорида, полученного, как описано в US 2003/0149199, вместо рацемического диметилсилилбис(2-метил-4,5-бензоинденил)цирконий дихлорида.
Полимеризация пропилена
Каталитическая система в виде раствора катализатора, полученного, как описано в PCT/EP2004/007061, помещается в предконтактный сосуд, где он разбавляется примерно 5 (кг/ч) пропаном. Из предконтактного сосуда каталитическая система поступает в предполимеризационную ячейку, куда в соответствии с данными, представленными в таблице 1, одновременно поступает пропилен. Время, которое катализатор остается в предполимеризационной ячейке, составляет 8 минут. Предполимеризованный катализатор, полученный в предполимеризационной ячейке, затем непрерывно поступает в первую ячейку реактора, в которую поступает пропилен, в соответствии с таблицей 1. Полимер удаляют из первой ячейки реактора, отделяют от не вступившего во взаимодействие мономера и высушивают. Условия реакции представлены в таблице 1. Скорость течения расплава продукта контролируется подачей водорода.
Таблица 1
Пример Предполимеризация
Температура (°С) С3 (кг/ч) H2 (промилле(моль)) Температура (°С)
1 45 328 525 70
2 45 333 738 70
3 45 339 900 70
Пример II
Методы исследования
Скорость течения расплава (СТР) определяли ASTM D1238, (230°С; 2,16 кг), размерность дг/мин.
Молекулярно-массовое распределение (Mw/Mn) определялось измерением Mw и Mn с использованием гель-проникающей хроматографии. Измерения проводились с использованием прибора Waters GPCV 2000 Alliance Waters styragel HMW 6E толуольной, колонки смешанных слоев длиной 300 мм. Температура измерения составляла 150°С. В качестве растворителя использовался 1,2,4-трихлорбензол. Для измерений образцы концентрацией 70 мг/72 г (0,097% от общей массы) отбираются в количестве 209,5 мкл. Значения Mw и Mn вычисляются с использованием калибровочной кривой с использованием полистирольного стандарта.
Растворимые и нерастворимые фракции в ксилоле при 25°С определялись растворением 2,5 г полимера в 250 мл ксилола при 135°С в условиях возбуждения. Через 20 минут раствор остужали до 25°С, все еще при возбуждении, а затем оставляли стоять на 30 минут. Осадок отфильтровывали на фильтровальной бумаге, раствор упаривали в токе азота, а остаток сушили в вакууме при 80°С до достижения постоянной массы. Таким образом, вычисляют массовый процент растворимого и нерастворимого в ксилоле полимера при температуре окружающей среды.
Индекс полидисперсии (ИП) определяли измерением молекулярно-массового распределения в полимере. Для определения ИП полимера определяли коэффициент разделения при низком значении нижнего модуля, например 500 Па, при температуре 200°С с использованием модели реометра с параллельными пластинами, поставляемой Rheometrics (США), с частотой вращения, которая увеличивается от 0,01 радиан/сек до 100 радиан/сек. При известном значении коэффициента разделения ИП можно вычислить с использованием следующего уравнения:
ИП=54,6×(коэффициент разделения)-1,76,
где коэффициент разделения (КР) определяется как:
КР=(частота при G'=500 Па)/(частота при G''=500 Па),
где G' представляет модуль накопления, а G'' представляет нижний модуль.
Плотность измеряется ASTM D1505.
Температура плавления определяется ASTM D2117.
Гидростатическое давление (то есть давление водяного столба) определялось стандартным методом INDA IST 80.6.
Воздухопроницаемость определяется ASTM D737.
Результаты исследований
Как обсуждалось выше, представленные полимеры, полученные методом выдувной экструзии, проявляют превосходящие механические и физические свойства, что в свою очередь приводит к продуктам лучшего качества, таким как полимерные волокна, полученные методом выдувной экструзии из расплава, и нетканые материалы. В таблице 2 представлены шесть образцов полимеров, способных к экструзии с раздувом из расплава, которые исследовались. Примеры для сравнения 1-3 показывают три различных полимера, способных к выдувной экструзии из расплава, с использованием каталитических систем, отличных от каталитической системы настоящего предмета изобретения. В частности, примеры для сравнения 1-3, которые представляют собой соответственно полимеры HH661, HH662H и PRO17, распространяемые фирмой Basell, были получены с использованием ранее известных каталитических систем Циглера-Натта. Кроме того, примеры для сравнения 2 и 3 подвергались легкому химическому крекингу (то есть химической обработке пероксидом).
Примеры 1-3 показывают три полимера, способных к выдувной экструзии из расплава, с использованием каталитических систем настоящего предмета изобретения. В частности, примеры 1-3 были получены с использованием настоящих каталитических систем и не подвергались легкому химическому крекингу (то есть химической обработке пероксидом). Соответственно примеры 1-3 обладают одновременно большей скоростью течения расплава, большей температурой плавления и меньшим индексом полидисперсии, чем примеры для сравнения 1-3.
Таблица 2
Пример для сравнения 1 Пример для сравнения 2 Пример для сравнения 3 Пример 1 Пример 2 Пример 3
Скорость течения расплава (СТР), дг/мин 440 440 440 500 1200 1800
Скорость течения расплава после легкого химического крекинга, дг/мин 440 1100 2000 н/о н/о н/о
Растворимость в гексане (%) 2,84 2,84 2,84 0,60 0,47 0,86
Растворимость в ксилоле (%) 3,4 3,4 3,4 1,03 1,09 1,34
Температура плавления (°С) 164,4 164,5 164,2
Плотность, г/см3 - - - 0,9099 0,9096 0,9107
Общее количество летучих веществ (промилле) 7053 7053 7053 н/o 690 1651
Мn - 22000 - - 33000 32000
Mw - 121000 - - 88000 81000
Mz - 410000 - - 156000 147000
Mw/Mn - 5,5 - - 2,65 2,53
Mz/Mw - 3,4, - - 1,77 1,82
Индекс полидисперсии (ИП) 4,0 3,3 3,2 1,7 1,6 1,5
Tm 162 162 162 154 154 154
Tc - 121,3 - 104 104 100
Пример III
Способ получения волокон методом выдувной экструзии из расплава и нетканого материала, получаемого из волокон, полученных методом выдувной экструзии из расплава
Производство волокон, получаемых методом выдувной экструзии из расплава, и материалов из расплава, получаемых методом выдувной экструзии, начинается с плавления и экструзии (или соэкструзии с использованием множественных экструдеров) полимера или полимеров, способных к экструзии с раздувом из расплава. Экструзия полимера может осуществляться при повышенных температурах с использованием как одинарного, так и двойного шнекового экструдера (вращающихся как в одном, так и в противоположных направлениях) с различным отношением длины червяка к диаметру цилиндра экструдера и различной конструкцией шнека с тем, чтобы оптимизировать гомогенность полимерного расплава. Непрерывное поступление расплава полимера в матрицу осуществляется посредством дозировочного насоса, который обеспечивает непрерывный доступ полимера на матрицу или фильеру при постоянном давлении и характеристиках течения.
С тем, чтобы соответствовать низкой вязкости полимера и, следовательно, возможности образования более тонких волокон, и лучшим барьерным свойствам, процесс выдувной экструзии из расплава можно осуществлять при очень высоких температурах, намного превышающих температуру плавления полимера или полимеров, подвергаемых экструзии. Более того, в процессе выдувной экструзии используется горячий сжатый воздух (то есть горячий технологический или проточный воздух), проходящий рядом (сталкивающийся или параллельный потоку полимера) с потоком полимера с тем, чтобы образовывать более тонкие волокна меньшего диаметра, обычно в интервале 1-10 мкм. Горячий технологический или проточный воздух может быть выше или той же температуры, что и температура полимера, или полимеров, повергаемых экструзии.
Для формования волокон, получаемых методом выдувной экструзии из расплава, из полимеров, способных к экструзии с раздувом из расплава, в процессе прядения может быть использован большой набор матриц или фильер для выдувной экструзии. Расплавленный полимер, способный к выдувной экструзии из расплава, может проходить через специально сконструированную насадку или отверстие в матрице, скважину или фильеру с очень большой скоростью. Большинство приборов, обычно используемых для получения волокон методом выдувной экструзии из расплава, попадают в одну из двух категорий, причем в обоих используется горячий и обычно сжатый воздух для процесса выдувной экструзии из расплава. В частности, могут использоваться матрицы с одним рядом отверстий, охлаждаемых воздухом. В этом случае матрица содержит один ряд небольших насадок или отверстий по наружной поверхности матрицы, скважин или фильер. Такой тип конструкции матрицы, скважины или фильеры подходит для производства всех типов нетканых материалов методом выдувной экструзии из расплава и может быть соединен с несколькими другими матрицами таким образом, что последовательно нетканый материал производится на нескольких приборах и образует нетканый материал или пленку с многослойной структурой. Эта многослойная структура может содержать другие полимеры, способные к выдувной экструзии из расплава, полимеры, экструдируемые без раздува из расплава (например, спанбонд), и/или по меньшей мере один слой пленки или слоистого пластика. Такой тип конструкции матрицы с охлаждением воздуха больше всего подходит для материалов с очень низкой, низкой или средней массой основы.
Кроме матриц с одним рядом отверстий и охлаждением воздухом можно использовать матрицы с несколькими рядами отверстий и охлаждением водой. В системе с охлаждением водой матрица содержит несколько, обычно от 5 до 12 рядов, небольших насадок по внешней поверхности матрицы, скважины или фильеры. Эта система характеризуется большей производительностью, более низкими температурными требованиями и меньшей степенью деградации полимера. Кроме того, она больше подходит для материалов с большей основной массой.
На выходе из матрицы, скважины или фильеры получившийся горячий экструдат охлаждается воздухом или водой, как описано выше, и принимает форму отдельных волокон или нитей. Они характеризуются исключительно малым диаметром и содержат относительно низкий уровень ориентации.
Поток волокон или нитей затем охлаждается и распределяется по движущемуся экрану или ремню. Нетканая сеть обладает значительным количеством остаточного тепла, таким, что присутствует тенденция к самосшиванию. Сочетание самосшивания и механического спутывания нитей создает целостный и структурно прочный материал, которому возможно не требуется термического сшивания каландером. Однако каландеры можно использовать, причем сеть пропускается между нагретыми выпуклыми роликами, что обычно для производства материалов фильерным способом.
Наконец, нетканая сеть наматывается на катушку.
Особое оборудование, которое можно использовать для нетканых материалов
Двухкомпонентные волокна, полученные методом выдувной экструзии из расплава, производятся на линии выдувной экструзии Reifenhäuser REICOFIL 500 мм. В двухкомпонентной линии задействованы одновременно два 50-мм экструдера. Линия может производить нетканые материалы из полимеров, способных к выдувной экструзии 10-300 г/см с полипропиленом, полиолефиновыми смесями и многими родственными полимерами. Максимальная производительность составляет примерно 50-70 кг/ч. Максимальная скорость линии составляет примерно 200 м/мин. Эффективная толщина материала, произведенного методом выдувной экструзии, составляет примерно 500 мм.
В двухкомпонентной линии выдувной экструзии REICOFIL задействованы два 50-мм (l/d=25) экструдера. Каждый из экструдеров способен независимо контролировать температуру матрицы. Каждый из них обладает собственным дозировочным насосом расплавленного полимера от 20 см3/об/производительность насоса.
Выдувная экструзия из расплава осуществляется сквозь 600-мм щелевую матрицу с 601 отверстием. Каждое отверстие имеет диаметр 0,4 мм. Два потока расплавленного полимера объединяются перед щелевой матрицей и проходят через пластину перекрывателя с сеткой фильтра. Горячий воздух подается на каждую сторону щелевой матрицы, таким образом равномерно растягивая расплавленный полимер перед охлаждением до твердой нити.
Нити собираются на движущемся ленточном конвейере или коллекторе. С помощью вертикально крепящегося каркаса оборудования можно варьировать расстояние от матрицы до коллектора. Материал собирается в виде снимаемых рулонов 500-мм мотальной машиной контролируемого напряжения.
Пример IV
Метод исследования эффективности фильтрации
Фильтрационная эффективность нетканого материала, состоящего из волокон, произведенных из полипропиленовых полимеров, способных к выдувной экструзии из расплава, сравнивалась с фильтрационной эффективностью нетканого материала, состоящего из волокон, полученных из ранее известных и коммерчески доступных полимеров, способных к выдувной экструзии из расплава. С тем, чтобы сравнить фильтрационные эффективности каждого нетканого материала, два вида нетканого материала производились обычными для промышленности методами из волокон, состоящих из полимеров, способных к выдувной экструзии из расплава, являющихся настоящим предметом изобретения, и нетканого материала, произведенного из волокон, содержащих коммерчески доступные полимеры, способные к выдувной экструзии из расплава, Valtec HH442H, распространяемый фирмой Basell. Затем сравнивали фильтрационную эффективность обоих нетканых материалов: оба материала подвергали коронному разряду путем прохождения материалов через ионизированный воздух. Затем измерялась фильтрационная эффективность с течением времени при комнатной температуре и при повышенных температурах с тем, чтобы ускорить ослабление заряда. Прибором, используемым для определения фильтрационной эффективности, был автоматический тестер фильтров CertiTest® модели 8127/8130 фирмы TSI.
Результаты исследования
Пример 3 представляет нетканый материал, полученный из волокон, состоящих из представленных полимеров, способных к выдувной экструзии из расплава с использованием представленной каталитической системы, в то время как пример для сравнения 5 представляет нетканый материал, полученный с использованием каталитической системы Циглера-Натта. Как показано в таблице 3А, нетканый материал, произведенный из волокон, состоящих из полимеров, являющихся предметом настоящего изобретения, характеризовался более высокой фильтрационной эффективностью и таким образом удерживал больший статический заряд, чем нетканый материал, полученный из волокон коммерчески доступных полимеров, способных к выдувной экструзии из расплава.
Таблица 3А
Эффективность фильтрации в различное время после коронного разряда
8 часов, комнатная температура 36 часов, комнатная температура 25 часов при 70°С 1 неделя при 45°С 1 неделя при комнатной температуре 1 месяц при 45°С 1 месяц при комнатной температуре
Пример 3 98 97 89 93 96 92 96
Пример для сравнения 5 96 95 83 87 93 85 91
Пример 4 представляет нетканый материал, полученный из волокон, состоящих из представленных полимеров, способных к экструзии с раздувом из расплава, с использованием металлоценовой каталитической системы, в то время как пример для сравнения 6 представляет другой нетканый материал, полученный с использованием каталитической системы Циглера-Натта. Как показано в таблице 3B, нетканый материал, произведенный из волокон, состоящих из полимеров, являющихся предметом настоящего изобретения, характеризовался более высокой фильтрационной эффективностью, и таким образом удерживал больший статический заряд, чем нетканый материал, полученный из волокон коммерчески доступных полимеров, способных к выдувной экструзии из расплава.
Таблица 3В
Эффективность фильтрации в различное время после коронного разряда (%)
8 часов, комнатная температура 24 часа при 70°С 30 часов при 130°С 45 дней при 45°С 45 дней при комнатной температуре
Пример 4 94 90 68 94 95
Пример для сравнения 6 98 88 77 94 95
Пример V
Барьерные свойства нетканых материалов
Барьерные свойства нетканых материалов являются важным фактором, часто самым важным из всех факторов, при определении характеристик и ценности упомянутых нетканых материалов. Барьерные свойства и характеристики материалов обычно измеряются двумя тестовыми методами: а) гидростатическое (давление водяного столба) давление (INDA стандартный метод IST 80.6) измеряет сопротивление нетканого материала по отношению проникания воды при статическом давлении. Более высокое значение гидростатического давления подразумевает более тонкую нетканую структуру (более тонкие волокна) с меньшим количеством дефектов и меньшими порами; и б) воздухопроницаемость (ASTM D737) измеряет скорость тока воздуха сквозь материал при дифференциальном давлении между двумя поверхностями материала. Более низкое значение воздухопроницаемости определяет более низкое количество воздуха, проникающего сквозь материал, и, следовательно, более высокие барьерные свойства.
Результаты исследования
Примеры 2 и 3 (скорость течения расплава полипропиленового полимера 1200 и скорость течения расплава полипропиленового полимера 1800 соответственно) представляют нетканые материалы, полученные из волокон, состоящих из представленных полимеров, способных к выдувной экструзии, полученных с использованием представленной металлоценовой системы, в то время как пример для сравнения 2 (скорость течения расплава полипропиленового полимера 1100) представляет нетканый материал, полученный из волокон коммерчески доступных полимеров, способных к выдувной экструзии из расплава и полученных с использованием каталитических систем Циглера-Натта. Как показано на фиг.1 и 2 (для двух различных производительностей 0,6 и 0,8 грамм/отверстие/минута), нетканый материал, произведенный из волокон, состоящих из полимеров, являющихся предметом настоящего изобретения, характеризовался бóльшим гидростатическим давлением (бóльшим давлением водяного столба), чем нетканый материал, произведенный из волокон коммерчески доступных полимеров, полученных методом выдувной экструзии.
Аналогично, примеры 2 и 3 (скорость течения расплава полипропиленового полимера, полученного с использованием металлоценового катализа, 1200 и скорость течения расплава полипропиленового полимера, полученного с использованием металлоценового катализа, 1800) представляют нетканые материалы, полученные из волокон, состоящих из представленных полимеров, полученных с использованием представленной металлоценовой системы, в то время как пример для сравнения 2 (скорость течения расплава полипропиленового полимера, полученного с использованием катализатора Циглера-Натта, 1100) представляет нетканый материал, полученный из волокон коммерчески доступных полимеров, полученных с использованием каталитических систем Циглера-Натта. Как показано на фиг.3 и 4 (для двух различных производительностей 0,6 и 0,8 грамм/отверстие/минута), нетканый материал, произведенный из волокон, состоящих из полимеров, являющихся предметом настоящего изобретения, характеризовался более низкой воздухопроницаемостью, чем нетканый материал, произведенный из волокон коммерчески доступных полимеров.
Пример VI
Производительность процесса и энергия консервации
Пример 2 (скорость течения расплава полипропиленового полимера, полученного с использованием металлоценового катализа, 1200) представляет нетканый материал, произведенный из волокон, состоящих из представленных полимеров, способных к выдувной экструзии из расплава, полученных с использованием представленной металлоценовой системы, в то время как пример для сравнения 2 (скорость течения расплава полипропиленового полимера, полученного с использованием катализатора Циглера-Натта, 1100) представляет нетканый материал, произведенный из волокон коммерчески доступных полимеров, способных к выдувной экструзии из расплава и полученных с использованием каталитических систем Циглера-Натта. Как показано на фиг.5, нетканый материал, произведенный из волокон, состоящих из полимеров, являющихся предметом настоящего изобретения, при формовании при более низких температурах и более низком объеме технологического воздуха характеризовались лучшими барьерными свойствами при производстве на двух экструдерах (как показано в примере III) по сравнению с нетканым материалом, произведенным из волокон коммерчески доступных полимеров.
При подобном описании настоящего предмета изобретения очевидно, что он может изменяться и модифицироваться большим числом способов. Такие изменения и модификации не следует рассматривать как отклонения от сути и области применения настоящего предмета изобретения, и все подобные модификации и изменения будут включены в рамки следующей формулы изобретения.

Claims (12)

1. Гомополимер пропилена, способный к экструзии с раздувом из расплава, характеризующийся скоростью течения расплава от 1200 до 1800 г/10 мин, измеренное методом ASTM D1238 при 230°С и 2,16 кг, индексом полидисперсии от примерно 1,3 до примерно 2,9 и температурой плавления по меньшей мере 160°С.
2. Гомополимер пропилена, способный к экструзии с раздувом из расплава, по п.1, где указанный индекс полидисперсии составляет от примерно 1,4 до примерно 2,0.
3. Гомополимер пропилена, способный к экструзии с раздувом из расплава, по п.1, где указанная температура плавления составляет по меньшей мере 163°С.
4. Гомополимер пропилена, способный к экструзии с раздувом из расплава, по п.1, где указанный гомополимер пропилена, способный к экструзии с раздувом из расплава, характеризуется изотактичностью больше примерно 90%.
5. Гомополимер пропилена, способный к экструзии с раздувом из расплава, по п.1, где указанный гомополимер пропилена, способный к экструзии с раздувом из расплава, характеризуется изотактичностью больше примерно 94%.
6. Гомополимер пропилена, способный к экструзии с раздувом из расплава, по п.1, где указанный гомополимер пропилена, способный к экструзии с раздувом из расплава, характеризуется изотактичностью больше примерно 96%.
7. Волокно из гомополимера пропилена, полученное методом выдувной экструзии из расплава, включающее гомополимер пропилена, способный к экструзии с раздувом из расплава, по п.1.
8. Волокно из гомополимера пропилена, полученное методом выдувной экструзии из расплава, по п.7, где указанное волокно характеризуется диаметром от примерно 0,1 до 10 мкм.
9. Волокно из гомополимера пропилена, полученное методом выдувной экструзии из расплава, по п.7, где указанное волокно характеризуется диаметром от примерно 1 до 6 мкм.
10. Способ получения волокна из гомополимера пропилена, способного к экструзии с раздувом из расплава, по п.7, включающий взаимодействие
- соединения металлоцена формулы (I)
Figure 00000013

где М представляет переходный металл 3, 4, 5 или 6 группы либо лантаноид или актиноид Периодической системы элементов;
Х представляет водород, галоген или R, OR, ОSО2CF3, OCOR, SR, NR2, PR2 и их комбинации, также Х может образовывать замещенный или незамещенный бутадиенильный радикал или OR'O;
R представляет линейный или разветвленный, циклический или ациклический, C1-C40 алкил, С240 алкенил, C2-C40 алкинил, С640 арил, C7-C40 алкиларил или С740 арилалкил и их комбинации, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов;
R' представляет бивалентный радикал, выбранный из C1-C40 алкилидена, С640 арилидена, C7-C40 алкиларилидена или C7-C40 арилалкилидена;
L представляет бивалентный C1-C40 углеводородный, необязательно содержащий гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, или бивалентный силилиденовый радикал, содержащий до 5 атомов кремния;
R1 и R5 представляют C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R1 и R5 могут быть как одинаковыми, так и различными;
R2, R3 и R4 представляют атомы водорода или C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R2, R3 и R4 могут быть как одинаковыми, так и различными;
R6, R7, R8, R9 и R10 представляют атомы водорода или C1-C40 углеводородные радикалы, необязательно содержащие гетероатомы, относящиеся к 13-17 группам Периодической системы элементов, причем R6, R7, R8, R9 и R10 могут быть как одинаковыми, так и различными при условии, что по меньшей мере один из группы, состоящей из R6, R7, R8, R9 и R10, не является водородом;
- по меньшей мере одного алюмоксана или соединения, способного образовать катион алкил-металлоцен;
- необязательно алюмоорганического соединения и
- мономера пропилена,
причем указанный мономер пропилена полимеризуется с образованием гомополимера пропилена, способного к экструзии с раздувом из расплава; указанный гомополимер пропилена перерабатывается в экструдере с образованием указанного волокна из гомополимера пропилена методом выдувной экструзии из расплава.
11. Нетканый материал, включающий волокно из гомополимера пропилена, полученное методом выдувной экструзии из расплава, по п.7.
12. Многослойный нетканый материал, включающий волокно из гомополимера пропилена, полученное методом выдувной экструзии из расплава, по п.7.
RU2008135438A 2006-02-02 2007-02-02 Полипропиленовые пластмассы, полученные методом выдувной экструзии, пропиленовое волокно и нетканый материал из него же, а также методы их получения RU2431640C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US76546306P 2006-02-02 2006-02-02
EP60/765,463 2006-02-02

Publications (2)

Publication Number Publication Date
RU2008135438A RU2008135438A (ru) 2010-03-10
RU2431640C2 true RU2431640C2 (ru) 2011-10-20

Family

ID=37935611

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008135438A RU2431640C2 (ru) 2006-02-02 2007-02-02 Полипропиленовые пластмассы, полученные методом выдувной экструзии, пропиленовое волокно и нетканый материал из него же, а также методы их получения

Country Status (11)

Country Link
US (1) US20090017710A1 (ru)
EP (1) EP1979384A2 (ru)
JP (1) JP5280865B2 (ru)
KR (1) KR101364329B1 (ru)
CN (1) CN101415737B (ru)
AU (1) AU2007211498A1 (ru)
BR (1) BRPI0707677A2 (ru)
CA (2) CA2641818C (ru)
HU (1) HUP0800699A2 (ru)
RU (1) RU2431640C2 (ru)
WO (1) WO2007088204A2 (ru)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2070956A1 (en) * 2007-12-14 2009-06-17 Total Petrochemicals Research Feluy Process for the production of a bimodal polypropylene having low ash content
US8986432B2 (en) * 2007-11-09 2015-03-24 Hollingsworth & Vose Company Meltblown filter medium, related applications and uses
JP2010168713A (ja) * 2008-12-24 2010-08-05 Idemitsu Kosan Co Ltd 弾性不織布、その製造方法及び繊維製品
US8372292B2 (en) * 2009-02-27 2013-02-12 Johns Manville Melt blown polymeric filtration medium for high efficiency fluid filtration
US8950587B2 (en) * 2009-04-03 2015-02-10 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
DE102009041401A1 (de) * 2009-09-12 2011-03-24 Hydac Filtertechnik Gmbh Filterelement mit einem Filtermedium sowie Verfahren zum Herstellen desselben
US8679218B2 (en) 2010-04-27 2014-03-25 Hollingsworth & Vose Company Filter media with a multi-layer structure
BR112013010313A2 (pt) * 2010-10-28 2016-09-20 Lummus Novolen Technology Gmbh não tecido e fio de polipropileno com aditivo
US10155186B2 (en) 2010-12-17 2018-12-18 Hollingsworth & Vose Company Fine fiber filter media and processes
EP2602367B1 (en) * 2011-12-06 2015-05-13 Borealis AG PP copolymers for melt blown/pulp fibrous nonwoven structures with improved mechanical properties and lower hot air consumption
KR101384489B1 (ko) * 2012-06-28 2014-04-10 롯데케미칼 주식회사 우수한 제립 안정성 및 잠재적 고용융 흐름성을 구비한 폴리프로필렌 수지 조성물
US20140336327A1 (en) * 2013-05-08 2014-11-13 Equistar Chemicals, Lp Polyolefin masterbatch based on grafted polypropylene and metallocene catalyzed polypropylene
US9694306B2 (en) 2013-05-24 2017-07-04 Hollingsworth & Vose Company Filter media including polymer compositions and blends
CN103668791A (zh) * 2013-11-30 2014-03-26 江苏奥森新材料有限公司 无纺布湿帘的生产方法
CN105793298B (zh) * 2013-12-04 2019-06-28 博里利斯股份公司 用于熔喷纤维的不含邻苯二甲酸酯的pp均聚物
ES2700363T3 (es) * 2014-01-24 2019-02-15 Fitesa Simpsonville Inc Banda no tejida de soplado en fusión que comprende un componente de polipropileno recuperado y un componente polimérico sostenible recuperado y procedimiento de fabricación del mismo campo
EP3189100A2 (en) * 2014-09-05 2017-07-12 ExxonMobil Chemical Patents Inc. Polymer compositions and nonwoven materials prepared therefrom
US10883197B2 (en) 2016-01-12 2021-01-05 Chevron Phillips Chemical Company Lp High melt flow polypropylene homopolymers for fiber applications
DK3255188T3 (da) * 2016-06-06 2019-10-14 Borealis Ag Smelteblæst væv med gode vandbarriereegenskaber
CN106633367A (zh) * 2016-08-29 2017-05-10 青岛红石极威实业发展有限公司 一种连续纤维增强热塑性复合树脂筋
CN110234804A (zh) * 2017-01-27 2019-09-13 东丽株式会社 纺粘无纺布
JP6800046B2 (ja) * 2017-02-24 2020-12-16 花王株式会社 メルトブロー不織布の製造方法
JP7236797B2 (ja) * 2017-02-24 2023-03-10 サンアロマー株式会社 ポリプロピレンナノファイバーおよび積層体の製造方法
TW201920795A (zh) * 2017-09-26 2019-06-01 日商三井化學股份有限公司 熔噴不織布、不織布積層體和過濾器
KR102326791B1 (ko) * 2017-11-27 2021-11-16 주식회사 엘지화학 폴리프로필렌 및 그 제조방법
KR102375854B1 (ko) 2017-11-28 2022-03-17 주식회사 엘지화학 폴리프로필렌 및 그 제조방법
KR102278013B1 (ko) 2017-12-21 2021-07-15 주식회사 엘지화학 폴리프로필렌 부직포 제조 방법
JP6888107B2 (ja) * 2017-12-26 2021-06-16 エルジー・ケム・リミテッド ホモポリプロピレンおよびその製造方法
US20200330911A1 (en) * 2017-12-28 2020-10-22 Mitsui Chemicals, Inc. Melt-blown nonwoven fabric, filter, and method of producing melt-blown nonwoven fabric
JP6511594B1 (ja) * 2017-12-28 2019-05-15 三井化学株式会社 メルトブローン不織布、フィルタ、及びメルトブローン不織布の製造方法
US11091861B2 (en) * 2018-01-31 2021-08-17 Fibertex Personal Care A/S Spunbonded nonwoven with crimped fine fibers
KR102402638B1 (ko) 2018-11-02 2022-05-25 주식회사 엘지화학 프로필렌 랜덤 공중합체
KR102388031B1 (ko) * 2018-11-06 2022-04-19 주식회사 엘지화학 펠렛형 폴리프로필렌 수지 및 그 제조방법
WO2020096306A1 (ko) * 2018-11-06 2020-05-14 주식회사 엘지화학 펠렛형 폴리프로필렌 수지 및 그 제조방법
JP7211296B2 (ja) * 2019-07-19 2023-01-24 日本ポリプロ株式会社 分岐状ポリプロピレン系重合体
WO2021034170A1 (ko) * 2019-08-16 2021-02-25 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리프로필렌의 제조 방법
KR102521571B1 (ko) * 2019-08-16 2023-04-13 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리프로필렌의 제조 방법
KR102482938B1 (ko) * 2019-09-30 2022-12-29 주식회사 엘지화학 펠렛형 폴리프로필렌 수지 조성물 및 그 제조방법
WO2021066398A1 (ko) * 2019-09-30 2021-04-08 주식회사 엘지화학 펠렛형 폴리프로필렌 수지 조성물 및 그 제조방법
JP7259707B2 (ja) * 2019-11-08 2023-04-18 日本ポリプロ株式会社 分岐状プロピレン系重合体
KR102600514B1 (ko) * 2019-12-04 2023-11-09 주식회사 엘지화학 폴리프로필렌 수지, 폴리프로필렌 섬유 및 이의 제조 방법
EP3916048A4 (en) * 2019-12-04 2022-03-30 Lg Chem, Ltd. POLYPROPYLENE RESIN, POLYPROPYLENE FIBER AND METHOD FOR PREPARING IT
KR102228591B1 (ko) * 2020-03-26 2021-03-16 도레이첨단소재 주식회사 복합 부직포 및 이를 포함하는 물품
CN111303534A (zh) * 2020-04-09 2020-06-19 天津科创医药中间体技术生产力促进有限公司 一种稀土/聚丙烯熔喷专用复合母粒、熔喷布及其制备方法
WO2022076786A1 (en) * 2020-10-09 2022-04-14 Stellar Enterprise LLC Disposable pad for indoor and outdoor garbage cans
CN112920510B (zh) * 2021-02-01 2022-06-10 西南石油大学 一种pp熔喷无纺布专用料助剂及pp熔喷无纺布专用料
CN112876853B (zh) * 2021-03-09 2022-07-08 宜宾丽雅新材料有限责任公司 一种熔喷料助剂及其应用

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474922A (en) * 1983-05-27 1984-10-02 Phillips Petroleum Company Filled poly(arylene sulfide) compositions
US4501848A (en) * 1984-05-24 1985-02-26 Atlantic Richfield Company Vinylidene chloride copolymer-based molding compound
US4501849A (en) * 1984-05-24 1985-02-26 Atlantic Richfield Company Chlorinated polyvinyl chloride molding compound
US4501850A (en) * 1984-05-24 1985-02-26 Atlantic Richfield Company Polyvinyl chloride molding compound
US4851488A (en) * 1987-04-23 1989-07-25 Shell Oil Company Process for altering hydrogenated polymer compositions from high melt flow to low melt flow
US4822546A (en) * 1987-08-06 1989-04-18 Exxon Chemical Patents Inc. Die design for underwater pelletization of high flow rate polymers
US4877850A (en) * 1988-02-22 1989-10-31 Phillips Petroleum Company Buffer wash of polyarylene sulfides
TW275076B (ru) * 1992-12-02 1996-05-01 Hoechst Ag
US5324796A (en) * 1992-12-02 1994-06-28 General Electric Company Polyarylene sulfide and epoxy-functionalized siloxane blends
SG66278A1 (en) * 1993-05-25 1999-07-20 Exxon Chemical Patents Inc Novel polyolefin fibers and their fabrics
IT1264680B1 (it) * 1993-07-07 1996-10-04 Spherilene Srl Catalizzatori supportati per la polimerizzazione delle olefine
IT1269837B (it) * 1994-05-26 1997-04-15 Spherilene Srl Componenti e catalizzatori per la polimerizzazione delle olefine
AU689895B2 (en) * 1994-07-11 1998-04-09 Tonen Chemical Corporation Polypropylene resin composition
US6399533B2 (en) * 1995-05-25 2002-06-04 Basell Technology Company Bv Compounds and catalysts for the polymerization of olefins
US5804301A (en) * 1996-01-11 1998-09-08 Avery Dennison Corporation Radiation-curable coating compositions
US5820981A (en) * 1996-04-02 1998-10-13 Montell North America Inc. Radiation visbroken polypropylene and fibers made therefrom
US6057407A (en) * 1997-01-08 2000-05-02 Bp Amoco Corporation High melt flow propylene polymer produced by gas-phase polymerization
US6559252B1 (en) * 1997-10-29 2003-05-06 Basell Technology Company Bv Catalysts and processes for the polymerization of olefins
US6454989B1 (en) * 1998-11-12 2002-09-24 Kimberly-Clark Worldwide, Inc. Process of making a crimped multicomponent fiber web
US6423800B1 (en) * 1999-05-26 2002-07-23 Fina Technology, Inc. Pelletized polyolefin having ultra-high melt flow and its articles of manufacture
US6103153A (en) * 1999-06-02 2000-08-15 Park; Chul B. Production of foamed low-density polypropylene by rotational molding
US7141527B1 (en) * 1999-09-22 2006-11-28 Basell Polyolefine Gmbh Catalyst system and process for the polymerization of olefins
KR100718424B1 (ko) * 1999-12-22 2007-05-14 엑손모빌 케미칼 패턴츠 인코포레이티드 폴리프로필렌계 접착제 조성물
DE19962910A1 (de) * 1999-12-23 2001-07-05 Targor Gmbh Chemische Verbindung, Verfahren zu deren Herstellung und deren Verwendung in Katalysatorsystemen zur Herstellung von Polyolefinen
BR0016723A (pt) * 1999-12-23 2003-02-18 Basell Polyolefine Gmbh Processo para a polimerização de olefinas, em particular para a copolimerização de propileno com pelo menos uma olefina adicional, composto, sistema de catalisador, usos do composto e do sistema, processo para preprar uma poliolefina, homopolìmero ou copolìmero randÈmico de propileno, copolìmero de propileno de alto impacto, uso do mesmo, e, copolìmero de propileno-etileno randÈmico
DE19962814A1 (de) * 1999-12-23 2001-06-28 Targor Gmbh Neues Katalysatorsystem und dessen Verwendung
FI111955B (fi) * 1999-12-27 2003-10-15 Borealis Tech Oy Propeenipolymeerit, joilla on erittäin korkea sulavirta
US6384142B1 (en) * 2000-02-08 2002-05-07 Exxonmobil Chemical Patents Inc. Propylene impact copolymers
JP2003522194A (ja) * 2000-02-08 2003-07-22 エクソンモービル・ケミカル・パテンツ・インク 第14族架橋ビスシクロペンタジエニル・リガンドの調製方法
KR20010112459A (ko) * 2000-02-24 2001-12-20 간디 지오프레이 에이치. 올레핀 중합용 조촉매로서 유용한 유기금속 화합물
US6376410B1 (en) * 2000-06-30 2002-04-23 Exxonmobil Chemical Patents Inc. Metallocene compositions
EP1313746B1 (en) * 2000-06-30 2005-07-27 ExxonMobil Chemical Patents Inc. Metallocenes with a bridged 4-phenyl-indenyl-ligand for olefin polymerisation
EP1411058B1 (en) * 2000-06-30 2005-11-09 ExxonMobil Chemical Patents Inc. Bridged bisindenyl metallocene compositions
JP2004507625A (ja) * 2000-08-22 2004-03-11 エクソンモービル・ケミカル・パテンツ・インク ポリプロピレン繊維及び布
US6657025B2 (en) * 2001-01-12 2003-12-02 Fina Technology, Inc. Production of ultra high melt flow polypropylene resins
US7417006B2 (en) * 2001-05-21 2008-08-26 Basell Polyolefine Gmbh Catalyst system for the polymerization of olefins
JP2005522406A (ja) * 2001-06-29 2005-07-28 エクソンモービル・ケミカル・パテンツ・インク メタロセン及び該メタロセン由来の触媒組成物
JP2006508903A (ja) * 2002-07-09 2006-03-16 バセル ポリオレフィン ジーエムビーエイチ オレフィン重合用触媒系
US6730751B2 (en) * 2002-07-16 2004-05-04 Fina Technology, Inc. Polymerization of polyethylene having high molecular weight
US7271209B2 (en) * 2002-08-12 2007-09-18 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
US6992146B2 (en) * 2002-08-22 2006-01-31 Sunoco Inc. (R&M) Very low melt viscosity resin
US6855777B2 (en) * 2002-08-22 2005-02-15 Sunoco, Inc. (R&M) Very low melt viscosity resin
WO2004026921A1 (en) * 2002-09-20 2004-04-01 Exxonmobil Chemical Patents Inc. Polymer production at supercritical conditions
CN101163723B (zh) * 2003-07-04 2010-12-22 巴塞尔聚烯烃股份有限公司 烯烃聚合方法
US20050106978A1 (en) * 2003-11-18 2005-05-19 Cheng Chia Y. Elastic nonwoven fabrics made from blends of polyolefins and processes for making the same
US7022797B2 (en) * 2004-02-20 2006-04-04 Fina Technology, Inc. Polymerization process
US20070155921A1 (en) * 2004-03-24 2007-07-05 Basell Polyolefine Gmbh Flexible prolylene copolymer compositions having a high transparency
EP1833910B1 (en) * 2004-12-17 2009-08-26 ExxonMobil Chemical Patents Inc. Polymer blends and nonwoven articles therefrom
DE602005021248D1 (de) * 2004-12-17 2010-06-24 Exxonmobil Chem Patents Inc Homogenes polymerblend und artikel daraus
US7482402B2 (en) * 2005-05-17 2009-01-27 Exxonmobil Research And Engineering Company Fiber reinforced polypropylene compositions
US7928164B2 (en) * 2005-06-22 2011-04-19 Exxonmobil Chemical Patents Inc. Homogeneous polymer blend and process of making the same
AU2005334397B2 (en) * 2005-07-12 2009-08-20 Borealis Technology Oy Counter-rotating twin screw extruder
WO2007045603A1 (en) * 2005-10-21 2007-04-26 Basell Polyolefine Gmbh Propylene polymers
JP2007145914A (ja) * 2005-11-24 2007-06-14 Japan Polypropylene Corp メルトブローン成形不織布用ポリプロピレン系粒子及びポリプロピレン系不織布
AU2007235428B2 (en) * 2006-04-07 2012-12-20 Dow Global Technologies Llc Polyolefin compositions, articles made therefrom and methods for preparing the same
WO2007126961A1 (en) * 2006-04-26 2007-11-08 Exxonmobil Chemical Patents Inc. Pelletized polymer product and process for making the same
US7833611B2 (en) * 2007-02-23 2010-11-16 Mannington Mills, Inc. Olefin based compositions and floor coverings containing the same
EP2083046A1 (en) * 2008-01-25 2009-07-29 ExxonMobil Chemical Patents Inc. Thermoplastic elastomer compositions
US7985802B2 (en) * 2008-04-18 2011-07-26 Exxonmobil Chemical Patents Inc. Synthetic fabrics, components thereof, and methods for making the same
EP2113541A1 (en) * 2008-04-28 2009-11-04 Borealis AG Adhesive propylene polymer composition suitable for extrusion coating of paper substrates
US9498932B2 (en) * 2008-09-30 2016-11-22 Exxonmobil Chemical Patents Inc. Multi-layered meltblown composite and methods for making same
EP2251375A1 (en) * 2009-05-07 2010-11-17 Borealis AG Thermoplastic polyolefin compounds with decreased flaming sensitivity

Also Published As

Publication number Publication date
RU2008135438A (ru) 2010-03-10
KR101364329B1 (ko) 2014-02-18
BRPI0707677A2 (pt) 2011-05-10
CA2766253A1 (en) 2007-08-09
KR20080098637A (ko) 2008-11-11
JP2009525375A (ja) 2009-07-09
CA2641818C (en) 2012-04-10
EP1979384A2 (en) 2008-10-15
WO2007088204A3 (en) 2007-11-08
CN101415737B (zh) 2013-06-12
AU2007211498A1 (en) 2007-08-09
CA2641818A1 (en) 2007-08-09
US20090017710A1 (en) 2009-01-15
WO2007088204A2 (en) 2007-08-09
HUP0800699A2 (en) 2009-08-28
CN101415737A (zh) 2009-04-22
JP5280865B2 (ja) 2013-09-04

Similar Documents

Publication Publication Date Title
RU2431640C2 (ru) Полипропиленовые пластмассы, полученные методом выдувной экструзии, пропиленовое волокно и нетканый материал из него же, а также методы их получения
JP5719332B2 (ja) 二軸延伸ポリプロピレンフィルム製造用の半結晶性プロピレンポリマー組成物
JP6521963B2 (ja) スパンボンド不織布及びその製造方法
US7081299B2 (en) Polypropylene fibers and fabrics
KR101280682B1 (ko) 기계적 특성이 개선된 메탈로센 폴리프로필렌 섬유 및 부직포
JPH11181620A (ja) ポリプロピレン繊維
JP2003119614A (ja) メタロセン触媒を使用として得られるプロピレン−α−オレフィン・ランダム共重合体の熔融紡糸繊維
JP5286147B2 (ja) ポリプロピレン系深絞り成形体
JP2004003091A (ja) メタロセンアイソタクティックポリプロピレン繊維の製造方法
KR102372221B1 (ko) 프로필렌 공중합체 수지 조성물 및 그 제조방법
JP6213176B2 (ja) 押出しラミネート用ポリプロピレン系樹脂組成物および積層体
US6090872A (en) Polymerization process
JP7012876B2 (ja) 2成分系繊維用樹脂組成物
JP5010802B2 (ja) 高剛性ポリプロピレン系組成物及び製造法
KR102353755B1 (ko) 호모 폴리프로필렌 및 이를 포함하는 부직포
KR102584265B1 (ko) 폴리프로필렌계 부직포 및 이의 제조방법
JP2005042204A (ja) ポリプロピレン繊維の製造法
EP3666947B1 (en) Method for producing polypropylene nonwoven fabric
JP2000336123A (ja) 易加工性プロピレン−環状オレフィン共重合体およびその製造方法
WO2008141915A2 (en) Insecticidal composition and articles obtained thereof

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130203