RU2416863C2 - Исполнительный механизм - Google Patents

Исполнительный механизм Download PDF

Info

Publication number
RU2416863C2
RU2416863C2 RU2009100099/07A RU2009100099A RU2416863C2 RU 2416863 C2 RU2416863 C2 RU 2416863C2 RU 2009100099/07 A RU2009100099/07 A RU 2009100099/07A RU 2009100099 A RU2009100099 A RU 2009100099A RU 2416863 C2 RU2416863 C2 RU 2416863C2
Authority
RU
Russia
Prior art keywords
actuator
actuator according
speed
voltage
generator
Prior art date
Application number
RU2009100099/07A
Other languages
English (en)
Other versions
RU2009100099A (ru
Inventor
Свенн Эрик Кнудсен ЕНСЕН (DK)
Свенн Эрик Кнудсен ЕНСЕН
Йон АБРАХАМСЕН (DK)
Йон АБРАХАМСЕН
Original Assignee
Линак А/С
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Линак А/С filed Critical Линак А/С
Publication of RU2009100099A publication Critical patent/RU2009100099A/ru
Application granted granted Critical
Publication of RU2416863C2 publication Critical patent/RU2416863C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/102Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction brakes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/12Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by short-circuit or resistive braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18024Rotary to reciprocating and rotary
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18568Reciprocating or oscillating to or from alternating rotary
    • Y10T74/18576Reciprocating or oscillating to or from alternating rotary including screw and nut
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18568Reciprocating or oscillating to or from alternating rotary
    • Y10T74/18576Reciprocating or oscillating to or from alternating rotary including screw and nut
    • Y10T74/18704Means to selectively lock or retard screw or nut

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stopping Of Electric Motors (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Direct Current Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Изобретение относится к области электротехники и может быть использовано в исполнительных механизмах. Техническим результатом является упрощение и управление скоростью во время разъединения. Исполнительный механизм содержит реверсивный электрический двигатель и трансмиссию для приведения в движение исполнительного органа, имеющего возможность возвратно-поступательного перемещения. Исполнительный орган, двигатель и трансмиссия не имеют самоблокировки. Имеется тормоз для удержания исполнительного органа в любом положении, когда электрический двигатель неактивен. Указанный тормоз может быть отпущен механизмом размыкателя. Двигатель используется как генератор при отпускании тормоза, а напряжение, создаваемое генератором, используется для регулирования скорости исполнительного органа. Имеется быстродействующий размыкатель, который позволяет выводить исполнительный орган из зацепления с двигателем и трансмиссией для коррекции положения в таком состоянии, причем движение исполнительного органа в расцепленном состоянии происходит с управляемой скоростью. 13 з.п. ф-лы, 9 ил.

Description

Настоящее изобретение относится к исполнительному механизму, заявленному в ограничительной части пункта 1 формулы изобретения.
Для удобства представления материала описание изобретения основывается на случае линейного исполнительного механизма со шпинделем, который через трансмиссию приводится в движение электрическим двигателем, причем исполнительный орган этого исполнительного механизма представляет собой трубчатый шток, перемещаемый ходовой гайкой. Однако подразумевается, что изобретение относится также к поворотным исполнительным механизмам, наподобие, например, описанного в заявке WO 01/17401 А1 от имени Линак А/С.
В исполнительном механизме для временного разъединения с высокоинерционной частью трансмиссии и двигателем используется быстродействующий размыкатель, вследствие чего не имеющий средств самоблокировки исполнительный орган под воздействием прилагаемой нагрузки самопроизвольно отходит в исходное положение или же может быть перемещен вручную. В качестве примера сфер применения быстродействующих размыкателей можно назвать больничные кровати, подъемники для пациентов, а также ворота, двери и окна некоторых типов, и иные конструкции, в которых необходимо или даже жизненно важно иметь возможность мгновенной коррекции положения исполнительного органа.
Исполнительные механизмы с быстродействующим размыкателем известны, например, из описаний изобретений ЕР 685662 В1 и ЕР 577541 В1 от имени Линак А/С. В первой публикации описан быстродействующий размыкатель, в котором два цилиндрических элемента соединены отделяемой пружиной сцепления. Во второй публикации описан быстродействующий размыкатель с двумя коническими зубчатыми колесами, одно из которых может выводиться из зацепления.
При использовании быстродействующих размыкателей, однако, во многих ситуациях существует опасность того, что конструкция, источник нагрузки и, возможно, пациент, перемещаемый с помощью исполнительного механизма, могут получить повреждения в результате столкновения, которое имеет место, когда исполнительный орган ударяется в своем крайнем положении о механический концевой ограничитель. Сила этого удара обусловлена тем, что исполнительный орган под нагрузкой совершает ускоренное движение, которое оканчивается столкновением с более или менее жестким механическим ограничителем.
Однако из публикации WO 98/30816, заявленной Линак А/С, известна несложная конструкция, позволяющая управлять скоростью во время срабатывания быстродействующего размыкателя. В этом быстродействующем размыкателе используется цилиндрическая пружина сцепления, в сжатом состоянии упирающаяся в цилиндрический элемент. Контролируя натяжение пружины, можно в большей или меньшей степени вывести ее из контакта с цилиндрическим элементом и, таким образом, управлять скоростью. Эта конструкция хорошо работает, но громоздка, состоит из многих деталей, и с ее помощью может быть сложно точно управлять скоростью.
Цель настоящего изобретения - предложить исполнительный механизм с упрощенным быстродействующим размыкателем, который позволяет управлять скоростью во время разъединения.
Эта цель достигается в исполнительном механизме, описанном в пункте 1 формулы изобретения. Изобретение основывается на том, что электрический двигатель работает как генератор, если его ротор принудительно приведен в движение. Для этого применены исполнительный орган, двигатель и трансмиссия без средств самоблокировки, так что они могут быть приведены в движение при воздействии нагрузки на исполнительный орган. Для штатной фиксации исполнительного органа в любом желаемом положении в исполнительном механизме предусматривается тормоз. Могут использоваться тормоза различных типов - механические или электрические. При отпускании тормоза подвижные элементы исполнительного механизма приходят в движение, при котором двигатель работает как генератор. Возникающее при этом электрическое напряжение, пропорциональное скорости, используется для управления скоростью исполнительного органа. Это можно сделать различными способами, например посредством тормоза с электроприводом. Наиболее простой способ, однако, при этом заключается в том, чтобы электрически нагрузить двигатель коротким замыканием. Нагрузка может быть постоянной резистивной или же управляться широтно-импульсной модуляцией. Коммутируя нагрузку соответствующим образом, можно получить большую или меньшую скорость. Для задания момента начала торможения может быть предусмотрена небольшая электрическая цепь, которая включает торможение, когда генерируемое напряжение превышает определенный уровень, например порядка 28-34 вольт. Этот предел может разрешаться с помощью транзистора, например полевого. Предполагается, что исполнительный орган приближается к концевому ограничителю с определенной скоростью. Следует отметить, однако, что скорость может варьировать в определенных пределах в зависимости от конкретных условий. Однако в ходе движения возможно также менять скорость, если включить в цепь потенциометр для регулирования напряжения, а вместе с ним и скорости. Особенно мощный эффект торможения достигается если не только нагружать двигатель при определенных условиях по скорости, но еще и подавать на двигатель отрицательное (по отношению к генерируемому) напряжение.
Ниже приводятся более подробные пояснения к изобретению с обращением к прилагаемым чертежам, на которых:
на фиг.1 изображен исполнительный механизм в разрезе;
на фиг.2 показана пороговая величина напряжения для торможения двигателем;
на фиг.3 представлено отношение между номинальным рабочим напряжением и напряжением торможения двигателем в данной системе;
на фиг.4 показана пороговая величина напряжения для торможения двигателем в случае, когда блок управления отключают с помощью реле;
на фиг.5 схематически показана система управления, содержащая исполнительный механизм;
на фиг.6 схематически показана система управления, содержащая исполнительный механизм и дополнительное реле;
на фиг.7 представлена примерная электрическая схема системы торможения двигателем;
на фиг.8 представлена примерная электрическая схема системы торможения двигателем с дополнительным реле;
на фиг.9 показаны варианты расположения системы торможения двигателем.
Исполнительный механизм на фиг.1 имеет корпус с реверсивным низковольтным двигателем 1 постоянного тока, который через червячную передачу 2 приводит во вращение шпиндель 3. На шпинделе расположена ходовая гайка 4, на которой закреплен исполнительный орган 6 в форме трубчатого штока с возможностью перемещения вдоль наружной трубки 5, причем один конец указанной наружной трубки встроен в корпус 7. За счет удержания шпинделя от вращения обеспечивается возвратно-поступательное перемещение исполнительного органа в зависимости от направления вращения двигателя.
Двигатель, червячная передача и шпиндель не имеют самоблокировки, а это означает, что нагрузка на исполнительном органе давлением на ходовую гайку приведет во вращение шпиндель, а вместе с ним червячную передачу и ротор двигателя.
Чтобы зафиксировать исполнительный орган в любом желаемом положении, когда подача тока в двигатель прекращается, исполнительный механизм снабжен тормозом 8 в виде цилиндрической пружины, которую можно отпустить при помощи механизма размыкателя. Когда тормоз отпущен, исполнительный орган, как сказано выше, получает возможность свободно перемещаться. При этом ротор двигателя приводится во вращение и начинает работать как генератор, причем с увеличением скорости он генерирует более высокое напряжение. Это напряжение имеет противоположную полярность по отношению к тому напряжению, которое подается на двигатель, чтобы выдвигать исполнительный орган из начального положения. Работа двигателя в качестве генератора используется для управления скоростью исполнительного органа.
Это управление может осуществляться различными способами: либо путем непосредственного использования генерируемого напряжения, либо путем изменения внутренних параметров двигателя.
На фиг.5 представлена реализация, которой соответствуют графики электрических характеристик на фиг.2 и фиг.3. В данном примере цепь срабатывает от напряжения 50 В. Это означает, что при напряжении ниже 50 В исполнительный механизм может работать, как обычно. Однако необходимо, чтобы блок управления не замыкал двигатель накоротко при бездействии. Важно, что генерация напряжения имеет место, когда исполнительный орган перемещается обратно в начальное положение, ввиду чего напряжение имеет отрицательную полярность по отношению к напряжению, которым исполнительный орган выдвигался наружу. Пример электрической схемы, решающей эту задачу, показан на фиг.7. Подаваемое на двигатель напряжение с положительной полярностью на клемме М2 по отношению к М1 приводит двигатель в движение, перемещающее исполнительный орган в поступательном направлении. Предполагается, что при использовании данной конструкции в кровати, такое перемещение исполнительного органа соответствует подъему части кровати вместе с ее нагрузкой. При отключении напряжения исполнительный орган фиксируется в своем положении при помощи тормоза. Если отпустить тормоз, то вследствие отсутствия самоблокировки шпинделя в исполнительном механизме и благодаря высокой технической эффективности червячного механизма и двигателя, при наличии поднятого груза исполнительный орган начнет обратное движение в исходное положение. Двигатель будет работать как генератор, и создаваемое при этом напряжение будет положительным в точке М1 по отношению к М2. Пока движение не подавляется, скорость двигателя будет возрастать, что ведет к увеличению генерируемого напряжения. Когда напряжение достигнет предварительно заданной пороговой величины, сработает цепь, которая ограничит число оборотов, создавая нагрузку на генератор. Практически это осуществляется за счет того, что транзистор, изображенный здесь как полевой транзистор, замкнет накоротко двигатель при достижении порогового напряжения на стабилитроне. Тем самым будет обеспечена регулировка скорости.
В другой реализации, показанной на фиг.6, применено реле. Когда двигатель неподвижен, к нему подключена цепь поглощения. Обмотка реле смонтирована непосредственно при кабеле исполнительного механизма, так что при активации канала управления цепь поглощения отключается и двигатель оказывается подключенным к каналу. В данной реализации блок управления может замыкать накоротко клеммы М1 и М2, поскольку эти клеммы фактически разомкнуты, когда двигатель не приводится в движение блоком управления. Следует отметить, что электрическая цепь на фиг.8, в принципе, идентична цепи на фиг.7, но дополнительно содержит реле. В этой реализации пороговое напряжение для торможения двигателем может выбираться свободно, поскольку оно не связано с напряжением в блоке управления. Это означает, что в данной реализации эту цепь можно выполнять без учета блока управления и, в принципе, в простейшем виде она может состоять из шунта короткого замыкания или постоянной резистивной нагрузки, но возможны и более развитые решения, наподобие представленного. На графике фиг.4 изображена ситуация, когда пороговое напряжение для торможения выбрано ниже рабочего напряжения двигателя.
В варианте, показанном на фиг.9, компоненты поглощающей цепи физически расположены в блоке управления, а не внутри исполнительного механизма. Принцип действия при этом сохраняется прежний, отличие только в местоположении. Система может работать и при отсутствии тока. В то же время чертеж показывает и исходную реализацию, где компоненты поглощающей цепи расположены в исполнительном механизме.
В качестве дальнейшего развития устройства торможения двигателем предлагается, но не иллюстрируется, интеллектуальная система, в которой для более точной регулировки скорости исполнительного органа при отпущенном тормозе используется система определения положения исполнительного механизма. В обычном случае для определения числа оборотов двигателя относительно некоторого положения, как правило, концевого ограничителя, используется по меньшей мере один геркон или датчик Холла. Это число оборотов может быть пересчитано в положение исполнительного органа, поскольку известен шаг подачи резьбы шпинделя. Если же, например, для определения положения исполнительного органа используется микропроцессор, его программа может быть расширена так, чтобы он вычислял скорость двигателя. Это значение скорости можно использовать для того, чтобы вычислить, как следует коммутировать нагрузку генератора, чтобы управлять скоростью. При этом микропроцессор может непосредственно управлять полевым транзистором, создавая динамическую нагрузку, которая обеспечит точное задание скорости. Чтобы избежать рассеяния энергии в компонентах цепи, микропроцессор может управлять транзистором посредством широтно-импульсной модуляции. В варианте без микропроцессора необходимый эффект может быть достигнут за счет преобразования управляющего сигнала с помощью триггера Шмитта в прямоугольные импульсы, что позволит минимизировать рассеяние энергии в управляющем транзисторе. Таким образом, рабочий цикл сигнала будет задавать соотношение между временем, когда генератор нагружен и когда бездействует. Если используется также информация от микропроцессора о положении исполнительного органа, можно рассчитать форсированное торможение двигателем, которое будет включаться непосредственно перед концевым ограничителем, чтобы избежать столкновения с ним исполнительного органа, которое могло бы причинить разрушения. При этом ничто не мешает управляющей системе для более интенсивного торможения приложить напряжение противоположной полярности по отношению к генератору. Это соответствует тому, что управляющая система пытается перемещать исполнительный орган в направлении, противоположном текущему направлению движения. Прикладываемое таким образом напряжение, для более эффективного снижения скорости, может быть динамическим в виде переменного или широтно-импульсно модулированного напряжения.
Данное изобретение не исключает, что генерируемое напряжение используется только в качестве управляющего сигнала, что означает, что к генератору не прилагается значимой электрической нагрузки. С помощью управляющего сигнала можно управлять электромеханическим тормозом, соединенным с трансмиссией и/или двигателем, динамически или прерывисто включаемым, чтобы управлять скоростью соответственно исполнительного органа или двигателя. Такое механическое торможение может естественным образом сочетаться с электрическим торможением двигателем в качестве нагружаемого генератора, как было описано выше.
Используемый в данном описании термин «микропроцессор» подразумевает любые устройства, способные обеспечить такую обработку данных в описанном процессе, которая отнесена в этом описании на долю микропроцессора. Это, в частности, контроллеры, PIC, AVR, RISC-процессоры, аппаратные реализации конечных автоматов, специализированные интегральные схемы и подобные.

Claims (14)

1. Исполнительный механизм, содержащий реверсивный электрический двигатель и трансмиссию для приведения в движение исполнительного органа, имеющего возможность возвратно-поступательного перемещения, причем исполнительный орган не имеет самоблокировки, быстродействующий размыкатель и средства управления скоростью, позволяющие выводить исполнительный орган из зацепления с трансмиссией и управлять его скоростью в расцепленном состоянии, отличающийся тем, что двигатель и трансмиссия также не являются самоблокирующимися, исполнительный механизм имеет тормоз для удержания исполнительного органа в любом положении, когда электрический двигатель неактивен, причем указанный тормоз может быть отпущен механизмом размыкателя, при отпускании тормоза двигатель используется как генератор, а напряжение, создаваемое генератором, используется для регулирования скорости исполнительного органа.
2. Исполнительный механизм по п.1, отличающийся тем, что скорость исполнительного органа может регулироваться путем нагружения двигателя.
3. Исполнительный механизм по п.2, отличающийся тем, что двигатель замкнут накоротко и что нагрузка является резистивной или управляется широтно-импульсной модуляцией.
4. Исполнительный механизм по п.1, отличающийся тем, что, когда напряжение, создаваемое генератором, достигает определенного уровня, например 28-34 В, включается торможение.
5. Исполнительный механизм по п.4, отличающийся тем, что содержит транзистор, например полевой транзистор, для установления напряжения генератора, при котором должно быть включено торможение.
6. Исполнительный механизм по п.1, отличающийся тем, что содержит потенциометр для регулирования скорости.
7. Исполнительный механизм по п.1, отличающийся тем, что торможение происходит посредством создания напряжения, полярность которого противоположна полярности напряжения, создаваемого генератором.
8. Исполнительный механизм по п.7, отличающийся тем, что создаваемое напряжение может быть импульсно модулированным.
9. Исполнительный механизм по любому из пп.1-8, отличающийся тем, что включает микропроцессор для вычисления необходимого эффекта торможения.
10. Исполнительный механизм по п.9, отличающийся тем, что эффект торможения рассчитывают по скорости двигателя, измеряемой, например, датчиками, которые установлены на двигателе или шпинделе.
11. Исполнительный механизм по п.9, отличающийся тем, что в качестве входной информации микропроцессора используется положение исполнительного органа для обеспечения замедления исполнительного органа перед контактом с концевым ограничителем.
12. Исполнительный механизм по п.9, отличающийся тем, что микропроцессор управляет активацией торможения двигателем через интерфейс.
13. Исполнительный механизм по п.12, отличающийся тем, что интерфейс использует сигнал в форме напряжения, тока, магнитного поля или оптический сигнал.
14. Исполнительный механизм по п.1, отличающийся тем, что напряжение, создаваемое генератором, используется для управления электромеханическим тормозом в целях ограничения скорости двигателя, непосредственно или в качестве управляющего сигнала.
RU2009100099/07A 2006-06-13 2007-06-13 Исполнительный механизм RU2416863C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200600797 2006-06-13
DKPA200600797 2006-06-13

Publications (2)

Publication Number Publication Date
RU2009100099A RU2009100099A (ru) 2010-07-20
RU2416863C2 true RU2416863C2 (ru) 2011-04-20

Family

ID=38544387

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009100099/07A RU2416863C2 (ru) 2006-06-13 2007-06-13 Исполнительный механизм

Country Status (6)

Country Link
US (1) US8193755B2 (ru)
EP (1) EP2027642A1 (ru)
CN (1) CN101467334B (ru)
AU (1) AU2007260348B2 (ru)
RU (1) RU2416863C2 (ru)
WO (1) WO2007143998A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660646C1 (ru) * 2017-08-25 2018-07-06 Закрытое акционерное общество "КБ "Проминжиниринг" Пороговый блок управления режимом работы исполнительного механизма или технологического оборудования
RU2734372C1 (ru) * 2019-01-21 2020-10-15 Роторк Контролс Лимитед Нагревание исполнительного механизма клапана

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8419804B2 (en) * 2008-09-04 2013-04-16 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
US8875592B2 (en) * 2009-12-04 2014-11-04 Linak A/S Linear actuator
DE102010000635A1 (de) * 2010-03-04 2011-09-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Sitz für ein Kraftfahrzeug
DE202010009334U1 (de) * 2010-06-21 2011-09-22 BROSE SCHLIEßSYSTEME GMBH & CO. KG Spindelantrieb für die motorische Verstellung eines Verstellelements eines Kraftfahrzeugs
US9453563B2 (en) * 2010-09-24 2016-09-27 Danaher Corporation Linear actuator
FR2985108B1 (fr) * 2011-12-23 2017-02-24 Laurent Villerouge Dispositif de generation d'energie utilisant l'energie de chocs ou vibrations
US20130181448A1 (en) * 2012-01-17 2013-07-18 Hamilton Sundstrand Corporation Electric actuators in aircraft systems
DE102012211062A1 (de) * 2012-06-27 2014-01-02 Stabilus Gmbh Antriebseinrichtung und Baukasten für eine derartige Antriebseinrichtung
TW201416585A (zh) * 2012-10-17 2014-05-01 Hiwin Mikrosystem Corp 螺桿往復運動之內轉式直驅機構
CN102968127B (zh) * 2012-11-13 2016-04-13 四川钟顺太阳能开发有限公司 一种直线驱动装置及其用于太阳能跟踪的控制及使用方法
WO2014198341A1 (fr) * 2013-06-14 2014-12-18 Laurent Villerouge Dispositif de génération d'énergie utilisant l'énergie de chocs ou vibrations
US20160172942A1 (en) * 2013-07-04 2016-06-16 Linak A/S Actuator system
EP3033244B1 (de) * 2013-08-12 2019-05-08 Schunk Bahn- und Industrietechnik GmbH Stromübertragungsvorrichtung
DE102016205367A1 (de) 2016-03-31 2017-10-05 Meiko Maschinenbau Gmbh & Co. Kg Reinigungsvorrichtung und Verfahren zum Reinigen von Reinigungsgut
DE102016214774B4 (de) * 2016-08-09 2023-08-03 Stabilus Gmbh Drehantriebseinrichtung mit lastabhängiger Bremse
EP3673575A1 (en) * 2017-08-23 2020-07-01 Linak A/S A linear actuator with an end stop switch

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158797A (en) 1977-02-22 1979-06-19 Haulamatic Corporation Power hoist
DK86292A (da) * 1992-06-30 1993-12-31 Linak As Lineaer aktuator
US5394069A (en) 1993-03-08 1995-02-28 International Business Machines Corporation Mechanical brake hold circuit for an electric motor
DK171715B1 (da) 1994-05-31 1997-04-01 Linak As Lineær aktuator
US5847522A (en) 1995-11-13 1998-12-08 Gec-Marconi Aerospace Inc. Locking devices and control circuitry for permanent magnet electric motors
DE19637039C1 (de) 1996-09-12 1997-11-13 Becker Antriebe Gmbh Bremsvorrichtung für einen Rauchschutzvorhang
DK151096A (da) 1996-12-23 1998-07-17 Linak As Lineær aktuator
US5957798A (en) * 1997-09-10 1999-09-28 Gec-Marconi Aerospace Inc. Fail-free actuator assembly
GB9901221D0 (en) * 1998-12-04 1999-03-10 Huntleigh Technology Plc Bed
DE60012551T2 (de) 1999-09-02 2005-08-04 Linak A/S Drehantrieb, insbesondere für verstellbare möbel, wie betten und bettbodens
CN100403628C (zh) * 2001-09-04 2008-07-16 Lg电子株式会社 可逆电动机
DK174879B1 (da) * 2001-10-03 2004-01-19 Linak As Aktuator
FR2830895B1 (fr) 2001-10-12 2004-02-20 Meritor Light Vehicle Sys Ltd Motoreducteur, leve-vitre et procede de fonctionnement de leve-vitre
DK1460914T4 (da) * 2001-12-13 2021-08-30 Linak As En indstillelig konstruktion, fortrinsvis et møbel og en klembeskyttelse samt en drivenhed dertil
US6791215B2 (en) * 2002-06-05 2004-09-14 Board Of Regents The University Of Texas System Fault tolerant linear actuator
EP1920172B1 (en) * 2005-09-02 2010-12-01 Linak A/S Actuator
GB0622148D0 (en) * 2006-11-07 2006-12-20 Arpino Mario P Walk-with apparatus
WO2009018422A1 (en) * 2007-07-31 2009-02-05 Herman Miller, Inc. Integrated patient room
EP2250401B1 (en) * 2008-02-08 2013-04-10 Linak A/S Actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2660646C1 (ru) * 2017-08-25 2018-07-06 Закрытое акционерное общество "КБ "Проминжиниринг" Пороговый блок управления режимом работы исполнительного механизма или технологического оборудования
RU2734372C1 (ru) * 2019-01-21 2020-10-15 Роторк Контролс Лимитед Нагревание исполнительного механизма клапана

Also Published As

Publication number Publication date
AU2007260348A1 (en) 2007-12-21
EP2027642A1 (en) 2009-02-25
CN101467334A (zh) 2009-06-24
CN101467334B (zh) 2012-08-29
WO2007143998A1 (en) 2007-12-21
AU2007260348B2 (en) 2011-06-02
US20090193917A1 (en) 2009-08-06
RU2009100099A (ru) 2010-07-20
US8193755B2 (en) 2012-06-05

Similar Documents

Publication Publication Date Title
RU2416863C2 (ru) Исполнительный механизм
US11002360B2 (en) Shift range control apparatus
TWI548201B (zh) 馬達控制裝置及其控制方法
JP6569584B2 (ja) シフトレンジ制御装置
DE102007062779B4 (de) Im ausgeschalteten Zustand aktivierte elektromagnetische Bremse
CN111819784A (zh) 用于降低离合器接合速度的装置和方法
JP7115339B2 (ja) シフトレンジ制御装置
US7516822B2 (en) Simple electric parking brake actuator motor
WO2019159720A1 (ja) ブレーキ駆動制御回路
JP2008296323A5 (ru)
WO2011143863A1 (zh) 直流电机步进调速控制装置
CA2735114C (en) Electric gripper drive with a torsional compliance device
JP6673195B2 (ja) シフトレンジ制御装置
JP6711929B2 (ja) バルブアクチュエータ
JP2004531425A (ja) 電気機械式アクチュエータからヒステリシスを除去する方法
US20070145937A1 (en) Braking system for electric step motors
JP7021045B2 (ja) シフトレンジ制御装置
CN109478476B (zh) 用于中压断路器的致动器
US9678510B2 (en) Electromagnetic actuator
KR20110114899A (ko) 접점스위치를 적용한 전자식 주차제동장치
RU2313173C2 (ru) Способ управления электроприводом постоянного тока
CN118019672A (zh) 电动制动装置
ES2090423T3 (es) Motor paso a paso, en particular como un actuador para componentes de maquina.
JP2002369460A (ja) 永久磁石型直流モータおよびモータ駆動型変速機操作装置
CN114746675A (zh) 马达控制装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130614