RU2413352C1 - Устройство электропитания для транспортного средства - Google Patents

Устройство электропитания для транспортного средства Download PDF

Info

Publication number
RU2413352C1
RU2413352C1 RU2009149698A RU2009149698A RU2413352C1 RU 2413352 C1 RU2413352 C1 RU 2413352C1 RU 2009149698 A RU2009149698 A RU 2009149698A RU 2009149698 A RU2009149698 A RU 2009149698A RU 2413352 C1 RU2413352 C1 RU 2413352C1
Authority
RU
Russia
Prior art keywords
energy storage
storage device
current
power
charging
Prior art date
Application number
RU2009149698A
Other languages
English (en)
Inventor
Такахиде ИИДА (JP)
Такахиде ИИДА
Original Assignee
Тойота Дзидося Кабусики Кайся
Кабусики Кайся Тойота Дзидосокки
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тойота Дзидося Кабусики Кайся, Кабусики Кайся Тойота Дзидосокки filed Critical Тойота Дзидося Кабусики Кайся
Application granted granted Critical
Publication of RU2413352C1 publication Critical patent/RU2413352C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Использование: в области электротехники. Технический результат заключается в уменьшении дисбаланса между токами зарядки/разрядки для множества устройств накопления энергии. Устройство содержит первый и второй аккумуляторы (B1, B2), подключенные параллельно к главным нагрузкам (14, 22), повышающий преобразователь (12А), предусмотренный между первым аккумулятором (B1) и главными нагрузками, повышающий преобразователь (12В), предусмотренный между вторым аккумулятором (B2) и главными нагрузками, вспомогательный аккумулятор (В3), преобразователь (33) постоянного тока в постоянный ток и вспомогательную нагрузку (35), приводимую в действие посредством мощности от вспомогательного аккумулятора (В3) или преобразователя (33) постоянного тока в постоянный ток. Контроллер (30) определяет токи зарядки или токи разрядки для аккумуляторов (B1, B2), отражающие изменения в токе, протекающем через вспомогательную нагрузку (35). 7 з.п. ф-лы, 9 ил.

Description

Область техники
Настоящее изобретение относится к устройству электропитания для транспортного средства, а более конкретно к устройству электропитания для транспортного средства, имеющего множество установленных устройств накопления энергии.
Предшествующий уровень техники
Электрические транспортные средства, гибридные транспортные средства, транспортные средства на топливных элементах и т.п. недавно созданы и введены в практическое применение как безвредные для окружающей среды транспортные средства. Эти транспортные средства имеют установленный электродвигатель и устройство электропитания для приведения в движение электродвигателя.
Установка множества аккумуляторов на таких транспортных средствах рассматривается с точки зрения увеличения допустимого расстояния пробега только за счет аккумуляторов.
Выложенная заявка Японии 2002-10502 раскрывает устройство зарядки и разрядки для аккумуляторов, которое может заряжать и разряжать множество аккумуляторов одновременно.
Для электрических транспортных средств желательно, чтобы допустимое расстояние пробега на одной зарядке было значительным. Для гибридных транспортных средств, имеющих двигатель внутреннего сгорания, аккумулятор и электродвигатель, также желательно, чтобы допустимое расстояние пробега на одной зарядке без использования двигателя внутреннего сгорания было значительным, когда гибридные транспортные средства сконфигурированы таким образом, что аккумулятор перезаряжается от внешнего источника.
Чтобы увеличивать допустимое расстояние пробега на одной зарядке, величина энергии аккумуляторов, установленных на транспортном средстве, должна быть увеличена. Увеличение величины энергии может достигаться за счет: 1) увеличения энергетической емкости на один элемент аккумулятора; или 2) увеличения числа установленных элементов аккумулятора.
При вышеупомянутой технологии 1) трудно обеспечивать требуемую величину энергии вследствие наличия верхнего предела мощности для элемента аккумулятора. Технология 2) может достигаться посредством увеличения числа последовательно или параллельно размещенных элементов.
Увеличение числа последовательно размещенных элементов приводит к высокому напряжению. Тем не менее, увеличение числа последовательно размещенных элементов ограничено верхним пределом выдерживаемых напряжений инвертора, электродвигателя и т.п., которые являются электрическими нагрузками. Напротив, параллельное соединение элементов аккумулятора без использования устройства регулирования мощности приведет к износу некоторых из аккумуляторов, хотя может быть обеспечена требуемая емкость. Это означает, что производительность установленных аккумуляторов не может быть полностью использована.
Дополнительно транспортные средства с установленным электродвигателем для приведения в движение колес обычно оборудованы вспомогательным аккумулятором для приведения в действие вспомогательной нагрузки в дополнение к аккумулятору высокого напряжения в несколько сотен вольт для приведения в действие электродвигателя.
Зарядка вспомогательного аккумулятора и подача питания на вспомогательную нагрузку могут выполняться при напряжении, получаемом за счет понижающего преобразования напряжения в аккумуляторе высокого напряжения посредством преобразователя постоянного тока в постоянный ток.
В этом случае, тем не менее, установка множества аккумуляторов высокого напряжения для увеличения допустимого расстояния пробега требует осуществления определенных мер для сбалансированной зарядки множества аккумуляторов высокого напряжения, поскольку один из аккумуляторов высокого напряжения требуется также для подачи питания во вспомогательную нагрузку.
Краткое изложение сущности изобретения
Задача настоящего изобретения состоит в том, чтобы предоставить устройство электропитания для транспортного средства, имеющего множество установленных устройств накопления энергии, в котором дисбаланс зарядки/разрядки для множества устройств накопления энергии уменьшается.
Настоящее изобретение направлено на создание устройства электропитания для транспортного средства, включающего в себя первое и второе устройства накопления энергии, подключенные параллельно к главной нагрузке, первый преобразователь мощности, предусмотренный между первым устройством накопления энергии и главной нагрузкой, второй преобразователь мощности, предусмотренный между вторым устройством накопления энергии и главной нагрузкой, третий преобразователь мощности, принимающий ток, выделенный из ветви, соединяющей первый преобразователь мощности и первое устройство накопления энергии, вспомогательную нагрузку, приводимую в действие посредством мощности от третьего преобразователя мощности, и контроллер, управляющий первым-третьим преобразователями мощности. Контроллер определяет токи зарядки/разрядки для первого и второго устройств накопления энергии, отражающие изменения в токе, протекающем через вспомогательную нагрузку, чтобы управлять первым преобразователем мощности и/или вторым преобразователем мощности, когда определенные токи заряжаются/разряжаются.
Предпочтительно устройство электропитания для транспортного средства дополнительно включает в себя аккумуляторное зарядное устройство для зарядки первого и второго устройств накопления энергии посредством мощности, принимаемой из источника, внешнего для транспортного средства. Аккумуляторное зарядное устройство подключается к первому устройству накопления энергии. Первый и второй преобразователи мощности выделяют часть тока, принимаемого от аккумуляторного зарядного устройства, чтобы работать как еще одно аккумуляторное зарядное устройство, заряжающее второе устройство накопления энергии.
Более предпочтительно устройство электропитания для транспортного средства дополнительно включает в себя датчик тока, детектирующий ток зарядки/разрядки для первого устройства накопления энергии. Контроллер временно приостанавливает работу третьего преобразователя мощности, чтобы вычислить ток, выделенный в направлении третьего преобразователя мощности, на основе разности в токе зарядки/разрядки для первого устройства накопления энергии до и после приостановки, и корректирует работу первого и второго преобразователей мощности на основе выделенного тока.
Еще более предпочтительно первый преобразователь мощности повышает напряжение от первого устройства накопления энергии в направлении главной нагрузки в ходе зарядки из источника, внешнего для транспортного средства. Второй преобразователь мощности работает таким образом, что ток постоянной величины протекает от главной нагрузки в направлении второго устройства накопления энергии в ходе зарядки от источника, внешнего для транспортного средства.
Предпочтительно контроллер вычисляет ток, выделенный из ветви, соединяющей первый преобразователь мощности и первое устройство накопления энергии, в направлении третьего преобразователя мощности, когда контроллер допускает, чтобы потребление энергии во вспомогательной нагрузке варьировалось.
Более предпочтительно контроллер допускает, чтобы потребление энергии во вспомогательной нагрузке варьировалось через каждый предварительно определенный промежуток времени.
Более предпочтительно контроллер допускает, чтобы потребление энергии во вспомогательной нагрузке варьировалось, когда разность между состоянием зарядки первого устройства накопления энергии и состоянием зарядки второго устройства накопления энергии превышает предварительно определенное значение.
Предпочтительно контроллер вычисляет состояние зарядки первого устройства накопления энергии и состояние зарядки второго устройства накопления энергии, чтобы управлять первым-третьим преобразователями мощности таким образом, что разность между состоянием зарядки первого устройства накопления энергии и состоянием зарядки второго устройства накопления энергии не увеличивалась.
Согласно настоящему изобретению, когда установлено множество устройств накопления энергии, уменьшается дисбаланс зарядки/разрядки. Это в результате исключает такое состояние, когда некоторые из множества устройств накопления энергии имеют меньший срок службы, чем остальные устройства накопления энергии.
Краткое описание чертежей
В дальнейшем изобретение поясняется описанием предпочтительного варианта воплощения со ссылками на сопровождающие чертежи, на которых:
Фиг. 1 иллюстрирует основную конфигурацию транспортного средства согласно варианту осуществления настоящего изобретения;
Фиг. 2 - принципиальная электрическая схема, показывающая подробную конфигурацию инверторов 14 и 22, показанных на фиг. 1, согласно изобретению;
Фиг. 3 - принципиальная электрическая схема, показывающая подробную конфигурацию повышающих преобразователей 12A и 12B, показанных на фиг. 1, согласно изобретению;
Фиг. 4 - принципиальная схема для описания состояния устройства электропитания для транспортного средства в ходе зарядки согласно изобретению;
Фиг. 5 - блок-схема последовательности операций способа для описания управления зарядкой, выполняемого посредством контроллера 30, согласно изобретению;
Фиг. 6 - схема для описания изменений в токе зарядки до и после приостановки работы преобразователя 33 постоянного тока в постоянный ток согласно изобретению;
Фиг. 7 - операционная временная диаграмма сигналов, показывающая пример, где управление осуществляется на основе блок-схемы последовательности операций способа по фиг. 5 согласно изобретению;
Фиг. 8 - блок-схема последовательности операций способа для описания управления зарядкой, выполняемого посредством контроллера 30, показанного на фиг. 1, согласно второму варианту осуществления;
Фиг. 9 - операционная временная диаграмма сигналов, показывающая пример, где управление осуществляется на основе блок-схемы последовательности операций способа по фиг. 8, согласно изобретению;
Описание предпочтительных вариантов осуществления изобретения
Далее подробно описывается вариант осуществления настоящего изобретения со ссылками на чертежи. Аналогичные ссылки с номерами обозначают аналогичные или соответствующие части по всем чертежам, и их описание не повторяется.
Первый вариант осуществления
Фиг. 1 иллюстрирует основную конфигурацию транспортного средства 1 согласно варианту осуществления настоящего изобретения.
Транспортное средство 1 (фиг. 1) включает в себя аккумуляторы B1 и B2 в качестве устройств накопления энергии, повышающие преобразователи 12A и 12B в качестве преобразователей мощности, сглаживающий конденсатор CH, датчики 10A, 10B и 13 напряжения, инверторы 14 и 22, двигатель 4, электродвигатели-генераторы MG1 и MG2, механизм 3 деления мощности и контроллер 30.
Устройства накопления энергии, установленные на этом транспортном средстве, перезаряжаются от внешнего источника. С этой целью транспортное средство 1 дополнительно включает в себя аккумуляторное зарядное устройство 6 для соединения аккумулятора B1 с промышленной сетью 8 энергоснабжения, например, 100 В переменного тока. Аккумуляторное зарядное устройство 6 преобразует переменный ток в постоянный ток при одновременном регулировании напряжения, которое должно подаваться в аккумуляторы. Чтобы обеспечивать зарядку от внешнего источника, могут использоваться другие технологии, например соединение нейтральных точек обмоток статора электродвигателей-генераторов MG1 и MG2 с источником питания переменного тока или использование повышающих преобразователей 12A и 12B для взаимодействия в качестве устройства преобразования переменного тока в постоянный ток.
Сглаживающий конденсатор CH сглаживает напряжение, повышенное посредством повышающих преобразователей 12A и 12B. Датчик 13 напряжения воспринимает напряжение VH между контактными зажимами сглаживающего конденсатора CH для вывода в контроллер 30.
Инвертор 14 преобразует постоянное напряжение, принимаемое от повышающего преобразователя 12B или 12A, в трехфазное переменное напряжение для вывода в электродвигатель-генератор MG1. Инвертор 22 преобразует постоянное напряжение, принимаемое от повышающего преобразователя 12B или 12A, в трехфазное переменное напряжение для вывода в электродвигатель-генератор MG2.
Механизм 3 деления мощности соединен с двигателем 4, электродвигателем-генератором MG1 и электродвигателем-генератором MG2, чтобы распределять мощность приведения в движение между ними. Например, в качестве механизма 3 деления мощности может использоваться планетарная зубчатая передача, имеющая три вращающихся вала солнечной шестерни, водила планетарной передачи и коронной шестерни. В планетарной зубчатой передаче, когда вращение двух из этих трех вращающихся валов определено, неизбежно определяется вращение другого из вращающихся валов. Эти три вращающихся вала подключаются к вращающимся валам двигателя 4, электродвигателя-генератора MG1 и электродвигателя-генератора MG2, соответственно. Вращающийся вал электродвигателя-генератора MG2 соединен с колесом через редукторную и дифференциальную передачи (не показаны). Устройство редукторной передачи для вращающегося вала электродвигателя-генератора MG2 может быть включено в механизм 3 деления мощности.
Датчик 10A напряжения измеряет напряжение V1 между контактными зажимами аккумулятора B1. Чтобы отслеживать состояние зарядки аккумулятора B1 вместе с датчиком 10A напряжения, предусмотрен датчик 11A тока, измеряющий ток I1, протекающий через аккумулятор B1. Также предусмотрен блок 37 определения SOC, определяющий SOC1 (SOC: состояние зарядки) аккумулятора B1. Блок 37 определения SOC вычисляет SOC на основе накопления напряжения разомкнутой цепи аккумулятора B1 и тока I1, протекающего через аккумулятор B1 для вывода в контроллер 30. В качестве аккумулятора B1 могут использоваться вторичная аккумуляторная батарея на свинцово-кислотных, никель-металлогидридных или ионно-литиевых элементах, конденсатор большой емкости, такой как электрический двухслойный конденсатор, и т.п.
Датчик 10B напряжения измеряет напряжение V2 между контактными зажимами аккумулятора B2. Чтобы отслеживать SOC аккумулятора B2 вместе с датчиком 10B напряжения, предусмотрен датчик 11B тока, измеряющий ток I2, протекающий через аккумулятор B2. Также предусмотрен блок 39 определения SOC, определяющий SOC2 аккумулятора B2. Блок 39 определения SOC вычисляет SOC на основе накопления напряжения разомкнутой цепи аккумулятора B2 и тока I2, протекающего через аккумулятор B2 для вывода в контроллер 30. В качестве аккумулятора B2 может использоваться вторичная аккумуляторная батарея на свинцово-кислотных, никель-металлогидридных или ионно-литиевых элементах, конденсатор большой емкости, такой как электрический двухслойный конденсатор и т.п.
Накапливаемая емкость аккумуляторов B2 и B1 задается таким образом, что аккумуляторы B2 и B1, когда используются одновременно, например, могут выводить максимальную мощность, допустимую для электрических нагрузок (инвертора 22 и электродвигателя-генератора MG2), подключенных к линии питания. Это обеспечивает движение на максимальной мощности в режиме EV (электрического транспортного средства), движущегося без использования двигателя.
Когда электроэнергия аккумулятора B2 потреблена, двигатель 4 используется в дополнение к аккумулятору B1, чтобы тем самым обеспечивать движение на максимальной мощности без использования аккумулятора B2.
Инвертор 14 подключается к линии PL2 питания и линии SL2 заземления. Инвертор 14 принимает напряжение, повышенное посредством повышающих преобразователей 12A и 12B, чтобы приводить в действие, например, электродвигатель-генератор MG1 для пуска двигателя 4. Инвертор 14 также возвращает электроэнергию, генерируемую в электродвигателе-генераторе MG1, на основе механической энергии, передаваемой от двигателя 4, обратно в повышающие преобразователи 12A и 12B. На данном этапе повышающие преобразователи 12A и 12B управляются посредством контроллера 30, чтобы работать как понижающие схемы.
Инвертор 22 подключается к линии PL2 питания и линии SL2 заземления параллельно инвертору 14. Инвертор 22 преобразует постоянные напряжения, принимаемые от повышающих преобразователей 12A и 12B, в трехфазные переменные напряжения для вывода в электродвигатель-генератор MG2, который приводит в движение колесо. Инвертор 22 также возвращает электроэнергию, генерируемую в электродвигателе-генераторе MG2 после рекуперативного торможения, обратно в повышающие преобразователи 12A и 12B. На данном этапе повышающие преобразователи 12A и 12B управляются посредством контроллера 30, чтобы работать как понижающие схемы.
Контроллер 30 принимает соответствующие значения команды крутящего момента, значения тока электродвигателя и скорости вращения электродвигателей-генераторов MG1 и MG2, соответствующие значения напряжений V1, V2 и VH и сигнал пуска. Контроллер 30 затем выводит инструкцию повышающего преобразования, инструкцию понижающего преобразования и инструкцию прекращения работы в повышающий преобразователь 12B.
Дополнительно контроллер 30 выводит в инвертор 14 инструкцию приведения в действие, чтобы преобразовывать постоянное напряжение, принимаемое от повышающих преобразователей 12A и 12B, в переменное напряжение для приведения в действие электродвигателя-генератора MG1 и инструкцию рекуперации, чтобы преобразовывать переменное напряжение, генерируемое в электродвигателе-генераторе MG1, в постоянное напряжение, которое должно возвращаться обратно в повышающие преобразователи 12A и 12B.
Аналогично контроллер 30 выводит в инвертор 22 инструкцию приведения в действие, чтобы преобразовывать постоянное напряжение в переменное напряжение для возбуждения электродвигателя-генератора MG2, и инструкцию рекуперации, чтобы преобразовывать переменное напряжение, генерируемое в электродвигателе-генераторе MG2, в постоянное напряжение, которое должно возвращаться обратно в повышающие преобразователи 12A и 12B.
Дополнительно предусмотрены вспомогательный аккумулятор B3 и преобразователь 33 постоянного тока в постоянный ток для приведения в действие вспомогательной нагрузки 35. Преобразователь 33 постоянного тока в постоянный ток подключается к линии PL1A питания и линии SL2 заземления. В ходе зарядки часть тока Icg зарядки выделяется так, чтобы ток I3 подавался в преобразователь 33 постоянного тока в постоянный ток.
Вспомогательная нагрузка 35 включает в себя, например, источники питания для различных типов ЭБУ (электронных блоков управления), фары, лампы освещения салона, окна с сервоприводом, гудка, мигающего светового сигнала и т.п. Поскольку эти вспомогательные нагрузки неизбежно активируются при приеме запросов на приведение в действие, вопрос отслеживания тока I3 для того, чтобы ограничивать операции вспомогательных нагрузок, не рассматривается. Следовательно, во многих случаях не предусмотрено какого-либо датчика тока для измерения тока I3.
На фиг. 2 изображена принципиальная схема, показывающая подробную конфигурацию инверторов 14 и 22, показанных на фиг. 1.
Ссылаясь на фиг. 1 и 2, инвертор 14 включает в себя плечо 15 U-фазы, плечо 16 V-фазы и плечо 17 W-фазы. Плечо 15 U-фазы, плечо 16 V-фазы и плечо 17 W-фазы подключены параллельно между линией PL2 питания и линией SL2 заземления.
Плечо 15 U-фазы включает в себя IGBT-элементы Q3 и Q4 (IGBT - биполярные транзисторы с изолированным затвором), соединенные последовательно между линией PL2 питания и линией SL2 заземления, и диоды D3 и D4, соединенные параллельно с IGBT-элементами Q3 и Q4, соответственно. Диод D3 имеет катод, соединенный с коллектором IGBT-элемента Q3, и анод, соединенный с эмиттером IGBT-элемента Q3. Диод D4 имеет катод, соединенный с коллектором IGBT-элемента Q4, и анод, соединенный с эмиттером IGBT-элемента Q4.
Плечо 16 V-фазы включает в себя IGBT-элементы Q5 и Q6, соединенные последовательно между линией PL2 питания и линией SL2 заземления, и диоды D5 и D6, соединенные параллельно с IGBT-элементами Q5 и Q6, соответственно. Диод D5 имеет катод, соединенный с коллектором IGBT-элемента Q5, и анод, соединенный с эмиттером IGBT-элемента Q5. Диод D6 имеет катод, соединенный с коллектором IGBT-элемента Q6, и анод, соединенный с эмиттером IGBT-элемента Q6.
Плечо 17 W-фазы включает в себя IGBT-элементы Q7 и Q8, соединенные последовательно между линией PL2 питания и линией SL2 заземления, и диоды D7 и D8, соединенные параллельно с IGBT-элементами Q7 и Q8, соответственно. Диод D7 имеет катод, соединенный с коллектором IGBT-элемента Q7, и анод, соединенный с эмиттером IGBT-элемента Q7. Диод D8 имеет катод, соединенный с коллектором IGBT-элемента Q8, и анод, соединенный с эмиттером IGBT-элемента Q8.
Плечи соответствующих фаз имеют свои промежуточные узлы, соединенные с фазными контактными зажимами фазных катушек электродвигателя-генератора MG1, соответственно. В частности, электродвигатель-генератор MG1 - это трехфазный синхронный электродвигатель на постоянных магнитах, и три U-, V- и W-фазные катушки имеют концы, соединенные вместе с нейтральной точкой. U-фазная катушка имеет другой конец, соединенный с линией UL, направленной от узла подключения между IGBT-элементами Q3 и Q4. V-фазная катушка имеет другой конец, соединенный с линией VL, направленной от узла подключения между IGBT-элементами Q5 и Q6. W-фазная катушка имеет другой конец, соединенный с линией WL, направленной от узла подключения между IGBT-элементами Q7 и Q8.
Инвертор 22, показанный на фиг. 1, является аналогичным инвертору 14 по внутренней схемной конфигурации за исключением того, что он подключается к электродвигателю-генератору MG2. Следовательно, его подробное описание не приводится повторно. Управляющие сигналы PWMI и PWMC, показанные на фиг. 2 как подаваемые в инвертор, являются сигналами, соответствующими инструкции приведения в действие и инструкции рекуперации, соответственно.
На фиг. 3 показана схема подробной конфигурации повышающих преобразователей 12A и 12B, показанных на фиг. 1.
Повышающий преобразователь 12A включает в себя катушку L1 индуктивности с одним концом, соединенным с линией PL1A питания, IGBT-элементы Q1 и Q2, соединены последовательно между линией PL2 питания и линией SL2 заземления, и диоды D1 и D2 соединены параллельно с IGBT-элементами Q1 и Q2, соответственно.
Катушка L1 индуктивности имеет другой конец, соединенный с эмиттером IGBT-элемента Q1 и коллектором IGBT-элемента Q2. Диод D1 имеет катод, соединенный с коллектором IGBT-элемента Q1, и анод, соединенный с эмиттером IGBT-элемента Q1. Диод D2 имеет катод, соединенный с коллектором IGBT-элемента Q2, и анод, соединенный с эмиттером IGBT-элемента Q2.
Повышающий преобразователь 12B, показанный на фиг. 1, аналогичен повышающему преобразователю 12A по внутренней схемной конфигурации, за исключением того, что он подключается к линии PL1B питания вместо линии PL1A питания. Его подробное описание не приводится повторно. Управляющие сигналы PWU и PWD, показанные на фиг. 3 как подаваемые в повышающий преобразователь, являются сигналами, соответствующими инструкции повышающего преобразования и инструкции понижающего преобразования, соответственно.
Ссылаясь на фиг. 1 поясняется работа устройства электропитания для транспортного средства согласно настоящему варианту осуществления.
Устройство электропитания для транспортного средства (фиг. 1) включает в себя первое и второе устройства (B1, B2) накопления энергии, подключенные параллельно к главным нагрузкам (14, 22), первый преобразователь (12A) мощности, предусмотренный между первым устройством (B1) накопления энергии и главными нагрузками, второй преобразователь (12B) мощности, предусмотренный между вторым устройством (B2) накопления энергии и главными нагрузками, вспомогательное устройство (B3) накопления энергии, третий преобразователь (33) мощности, заряжающий вспомогательное устройство накопления энергии посредством тока I3, выделенного из ветви, соединяющей первый преобразователь мощности и первое устройство накопления энергии, вспомогательную нагрузку 35, приводимую в действие посредством электроэнергии от вспомогательного устройства (B3) накопления энергии или третьего преобразователя (33) мощности, и контроллер 30, управляющий первым-третьим преобразователями (12A, 12B, 33) мощности. Контроллер 30 определяет ток зарядки или токи разрядки для первого и второго устройств (B1, B2) накопления энергии, отражающие изменения в токе, протекающем через вспомогательную нагрузку 35.
Предпочтительно, устройство электропитания для транспортного средства дополнительно включает в себя аккумуляторное зарядное устройство 6 для зарядки первого и второго устройств (B1, B2) накопления энергии посредством электроэнергии, принимаемой из источника, внешнего для транспортного средства. Аккумуляторное зарядное устройство 6 подключается к первому устройству (B1) накопления энергии. Первый и второй преобразователи (12A, 12B) мощности работают как еще одно аккумуляторное зарядное устройство для выделения части тока, принимаемого от аккумуляторного зарядного устройства 6 для зарядки второго устройства (12B) накопления энергии.
Более предпочтительно устройство электропитания для транспортного средства дополнительно включает в себя датчик 11A тока, детектирующий ток зарядки и ток разрядки для первого устройства (B1) накопления энергии. Контроллер 30 временно приостанавливает работу третьего преобразователя (33) мощности, чтобы вычислять ток (I3), выделенный в направлении третьего преобразователя (33) мощности, на основе разности тока зарядки и тока разрядки для первого устройства (B1) накопления энергии до и после приостановки третьего преобразователя (33) мощности. Операции первого и второго преобразователей мощности корректируются на основе выделенного тока.
Еще более предпочтительно в ходе зарядки от источника, внешнего для транспортного средства, первый преобразователь (12A) мощности выполняет операцию повышающего преобразования от первого устройства (B1) накопления энергии в направлении главных нагрузок (14, 22). В ходе зарядки от источника, внешнего для транспортного средства, второй преобразователь (12B) мощности работает таким образом, что ток (Iconst2) протекает из главных нагрузок (14, 22) во второе устройство (B2) накопления энергии.
Предпочтительно, когда предполагается, что потребление энергии во вспомогательной нагрузке 35 изменялось, контроллер 30 вычисляет ток I3, выделенный из ветви, соединяющей первый преобразователь (12A) мощности и первое устройство (B1) накопления энергии, в направлении третьего преобразователя (33) мощности.
На фиг. 4 показана принципиальная схема, описывающая состояние устройства электропитания для транспортного средства в ходе зарядки.
На фиг. 4 ток схематично представляется как поток воды. Ток Icg зарядки вытекает из аккумуляторного зарядного устройства 6 в резервуар, соответствующий аккумулятору B1. Повышающие преобразователи (12A, 12B) действуют как аккумуляторное зарядное устройство для аккумулятора B2, чтобы подавать ток I2 из аккумулятора B1 в аккумулятор B2.
Также из аккумулятора B1 вытекает ток I3 для вспомогательной нагрузки. Ток I3 подается в аккумулятор B3 посредством клапана регулирования расхода, соответствующего преобразователю 33 постоянного тока в постоянный ток. Аккумулятор B3 подает ту же самую величину тока I3, которая принимается, во вспомогательную нагрузку.
В этой системе рассмотрим зарядку, при которой SOC аккумуляторов B1 и B2 увеличивается на одинаковую величину. Тем не менее, ток, который должен подаваться в нагрузку, управляемую по запросу водителя, такую как фара или гудок, может требоваться в дополнение к потребляемому току различных ЭБУ, активируемых в ходе зарядки, и опорному току, определенному на основе потерь преобразователя 33 постоянного тока в постоянный ток. Другими словами, ток I3 может варьироваться.
Когда происходит это изменение, возникает дисбаланс зарядки между аккумуляторами B1 и B2, если ток I2 сохраняется постоянным. Возможное соображение в таком случае состоит в том, что дисбаланс в ходе зарядки должен быть приемлемым, когда зарядка одного из аккумуляторов, полностью заряженного ранее, прекращается, тогда как другой аккумулятор продолжает заряжаться таким образом, чтобы аккумуляторы B1 и B2 в итоге приводились в полностью заряженное состояние. Тем не менее, время для зарядки аккумуляторов может быть коротким периодом времени согласно обстоятельствам пользователя. Это означает, что время зарядки, достаточно длительное для того, чтобы полностью заряжать оба аккумулятора B1 и B2, не обязательно может предоставляться. Повторение кратковременной зарядки от внешнего источника должно вызывать дисбаланс зарядки/разрядки между аккумуляторами B1 и B2, так что один из аккумуляторов может иметь меньший срок службы, чем другой.
Соответственно, желательно, чтобы аккумуляторы B1 и B2 заряжались так, чтобы достигать оптимального возможного баланса даже в ходе зарядки. Для сбалансированной зарядки аккумуляторов B1 и B2 ток I2, подаваемый в аккумулятор B2, также должен варьироваться согласно изменениям в токе I3, подаваемом во вспомогательную нагрузку, когда ток Icg зарядки является константой.
На фиг. 5 показана блок-схема последовательности операций способа, описывающая управление зарядкой, выполняемое посредством контроллера 30, показанного на фиг. 1. Процесс на этой блок-схеме последовательности операций способа активируется из основной программы и выполняется через равные интервалы времени или каждый раз, когда удовлетворяются предварительно определенные условия.
Ссылаясь на фиг. 1 и 5, когда процесс на этой блок-схеме последовательности операций способа запущен, определяется, прошло ли заданное время T, на этапе S1. Если заданное время T не прошло, процесс переходит к этапу S8, где управление передается в основную программу.
Когда определяется то, что заданное время прошло, на этапе S1, ток I1, детектированный датчиком 11A тока на данном этапе, сохраняется в запоминающем устройстве 27 в контроллере 30 как значение I1A тока на этапе S2. Процесс затем переходит к этапу S3.
На этапе S3 контроллер 30 временно приостанавливает работу преобразователя 33 постоянного тока в постоянный ток. На этом этапе преобразователь 33 постоянного тока в постоянный ток управляется таким образом, чтобы преобразовывать напряжение в аккумуляторе B1 (например, 200 В) в некоторое выходное напряжение (например, 14 В) для подачи напряжения зарядки во вспомогательный аккумулятор B3, который предоставляет напряжение питания во вспомогательную нагрузку 35.
При таком управлении ток I3, подаваемый в преобразователь 33 постоянного тока в постоянный ток, становится значением, отражающим потребляемый ток вспомогательной нагрузки, когда вспомогательный аккумулятор B3 находится в полностью заряженном состоянии. Соответственно ток I3 может быть идентифицирован посредством отслеживания изменений тока зарядки до и после приостановки преобразователя 33 постоянного тока в постоянный ток без необходимости предусматривать датчик тока для измерения тока I3.
На фиг. 6 показана схема, описывающая изменения тока зарядки до и после приостановки преобразователя 33 постоянного тока в постоянный ток.
Ток Icg зарядки, принимаемый от аккумуляторного зарядного устройства, является значением (постоянным значением Iconst1), определяемым в принципе посредством ограничения емкости аккумуляторного зарядного устройства 6. Ток I2 зарядки для аккумулятора B2 управляется посредством аккумуляторного зарядного устройства 12 для аккумулятора B2, формируемого посредством повышающих преобразователей 12A и 12B.
Повышающий преобразователь 12A повышает напряжение в линии PL1A питания, например 200 В, для вывода в линию PL2 питания. Напряжение в линии PL2 питания составляет около 600 В. В таком случае повышающий преобразователь 12B работает как понижающая схема, понижающая напряжение в линии PL2 питания (например, 600 В) к напряжению в линии PL1B питания (например, 200 В). Повышающий преобразователь 12B, работающий как понижающая схема, принимает значение команды управления током постоянной величины, которая должна управляться, таким образом, что ток зарядки становится постоянным значением Iconst2.
На фиг. 6 при условии, что напряжения в аккумуляторах B1 и B2 управляются так, чтобы быть практически равными, выполняется следующее уравнение:
Icg=I1+I2+I3.... (1)
Поскольку Icg управляется так, чтобы быть током Iconst1 постоянной величины, а I2 управляется так, чтобы быть Iconst2, выполняются уравнения (2) и (3) при условии, что значением тока I1 до приостановки преобразователя постоянного тока в постоянный ток является I1A, а значением тока I1 после приостановки (I3=0) является I1B:
Iconst1=I1A+Iconst2+I3..., (2)
Iconst1=I1B+Iconst2.... (3)
Уравнения (2) и (3) показывают, что выполняется следующее уравнение:
I3=I1B-I1A.... (4)
Обращаясь снова к фиг. 1 и 5, после приостановки преобразователя 33 постоянного тока в постоянный ток на этапе S3, значение тока I1, измеряемое посредством датчика 11A тока, сохраняется в запоминающем устройстве 27 как значение I1B тока на этапе S4. Дополнительно на этапе S5 вычисляется разность ΔI=I1B-I1A между значением I1A тока, сохраненным на этапе S2, и значением I1B тока, сохраненным на этапе S4. Эта разность равна току I3, подаваемому в преобразователь 33 постоянного тока в постоянный ток, как можно видеть из вышеприведенного уравнения (4).
После этого на этапе S6 значение команды зарядки для аккумулятора B2 вычисляется в соответствии с уравнением (5), которое должно быть обновлено на этапе S7:
Iconst2=(Iconst1-ΔI)/2.... (5)
Обновление значения команды для повышающего преобразователя 12B дает возможность задания одинакового тока I1, заряжаемого в аккумулятор B1, и тока I2, заряжаемого в аккумулятор B2, даже после того, как потребляемый ток вспомогательных нагрузок варьировался.
На фиг. 7 показана операционная временная диаграмма, показывающая пример, где управление осуществляется на основе блок-схемы последовательности операций способа по фиг. 5.
Часть вспомогательных нагрузок (фиг. 1 и 7), например фара, включена между временем t0 и временем t3, что означает, что ток I3 превышает стандартное значение.
Поскольку значение Iconst2 команды зарядки задается на основе стандартного значения тока I3, скорость увеличения SOC (B1) аккумулятора B1 ниже, чем в SOC (B2) аккумулятора B2 между временем t0 и временем t1. При дальнейшей зарядке на этих скоростях разность SOC между аккумуляторами B1 и B2 становится все больше и больше, как указано посредством пунктирных линий.
Соответственно, как показано на фиг. 7, контроллер 30 предполагает, чтобы потребление энергии вспомогательной нагрузки 35 варьировалось каждый раз, когда заданное время T проходило. Затем контроллер 30 временно приостанавливает работу преобразователя 33 постоянного тока в постоянный ток для измерения потребляемого тока вспомогательной нагрузки 35.
Работа преобразователя 33 постоянного тока в постоянный ток временно приостанавливается от времени t1 до времени t2 после истечения постоянного времени T. От времени t1 до времени t2 вспомогательная нагрузка 35 принимает ток от вспомогательного аккумулятора B3. Затем выполняются этапы S2-S7 на блок-схеме последовательности операций способа по фиг. 5, чтобы изменять значение управления зарядкой, и в результате этого разность SOC не увеличивается между временем t2 и t3, как указано посредством сплошной линии.
Во время t3, когда часть вспомогательных нагрузок отключена, ток I3 уменьшается на эту величину. Это заставляет ток зарядки для аккумулятора B1 увеличиваться, так что скорость увеличения SOC (B1) выше, чем в SOC (B2). При дальнейшей зарядке на этих скоростях SOC аккумулятора B1 должно превышать SOC аккумулятора B2, как указано посредством пунктирной линии, приводя к увеличению разности между ними.
Тем не менее, преобразователь 33 постоянного тока в постоянный ток снова приостанавливается от времени t4 до времени t5 после того, как постоянное время T истекло со времени t2. Ток I3 детектируется на данном этапе, чтобы обновлять значение команды зарядки на основе результата детектирования. После времени t5 зарядка продолжается таким образом, что разность SOC между аккумуляторами B1 и B2 не увеличивается.
В ходе приостановки работы преобразователя 33 постоянного тока в постоянный ток разрядка вспомогательного аккумулятора B3 продолжается, чтобы подавать потребляемый ток во вспомогательную нагрузку 35 в течение приостановки. Тем не менее, вспомогательный аккумулятор B3 переводится практически в полностью заряженное состояние снова в течение постоянного времени T. Таким образом, ток I3 не включает в себя ток зарядки для зарядки аккумулятора B3 в следующий раз, когда преобразователь 33 постоянного тока в постоянный ток приостанавливается, чтобы измерять ток I3.
Как описано выше, временная приостановка работы преобразователя 33 постоянного тока в постоянный ток для того, чтобы измерять ток I, на основе изменений токов зарядки для аккумуляторов B1 и B2 на этой стадии исключает необходимость предоставлять дополнительный датчик тока для измерения тока I3. Это позволяет предотвратить повышение затрат на производство.
Второй вариант осуществления
В первом варианте осуществления ток I3 измеряется каждый раз, когда постоянный период времени истек. Во втором варианте осуществления ток измеряется I3, когда разность SOC между аккумуляторами B1 и B2 превышает предварительно определенное значение, чтобы корректировать токи зарядки для аккумуляторов B1 и B2. Поскольку транспортное средство выполнено так, как показано на фиг. 1, описание не повторяется.
На фиг. 8 показана блок-схема последовательности операций способа, описывающая управление зарядкой, выполняемое посредством контроллера 30, показанного на фиг. 1, согласно второму варианту осуществления. Процесс на этой блок-схеме последовательности операций способа активируется из основной программы и выполняется через равные интервалы времени или каждый раз, когда предварительно определенные условия удовлетворяются.
Блок-схема последовательности операций способа на фиг. 8 отличается от блок-схемы по фиг. 5 тем, что этапы S1A и S1B выполняются вместо этапа S1 на блок-схеме последовательности операций способа по фиг. 5.
Когда процесс операций способа запущен (фиг. 1 и 8), абсолютное значение разности между SOC (B1) аккумулятора B1 и SOC (B2) аккумулятора B2 получается как ΔSOC на этапе S1A. Затем на этапе S1B определяется то, больше или нет ΔSOC предварительно определенного порогового значения K (%).
Если ΔSOC>K не выполняется, процесс переходит к этапу S8, где управление передается в основную программу. Когда ΔSOC>K выполняется, последовательно выполняются этапы S2-S7. Этапы S2-S7 аналогичны этапам по фиг. 5 согласно первому варианту осуществления, и их описание не повторяется.
На фиг. 9 показана временная диаграмма, показывающая пример, где управление осуществляется на основе блок-схемы последовательности операций способа по фиг. 8.
Поскольку разность ΔSOC (фиг. 1 и 9) между SOC (B1) аккумулятора B1 и SOC (B2) аккумулятора B2 не превышает пороговое значение K до времени t11, преобразователь 33 постоянного тока в постоянный ток включается для работы в обычном режиме.
Во время t11, когда разность ΔSOC превышает пороговое значение K (%), контроллер 30 временно приостанавливает работу преобразователя 33 постоянного тока в постоянный ток от времени t11 до времени t12. В течение этого периода дисбаланс между токами зарядки для аккумуляторов B1 и B2 корректируется. Таким образом, не допускается превышение разностью SOC ΔSOC порогового значения K.
При корректировке скорость увеличения SOC (наклон графика) изменяется до и после времени t12.
Во время t13, когда ΔSOC превышает снова пороговое значение K, контроллер 30 временно приостанавливает работу преобразователя 33 постоянного тока в постоянный ток от времени t13 до времени t14. В течение этого периода дисбаланс между токами зарядки для аккумуляторов B1 и B2 корректируется. Таким образом, не допускается превышения разностью SOC ΔSOC порогового значения K.
При корректировке скорость увеличения SOC (наклон графика) изменяется до и после времени t14.
Как описано выше, во втором варианте осуществления, контроллер 30 вычисляет SOC (B1) первого устройства (B1) накопления и SOC (B2) второго устройства (B2) накопления (на этапе S1A), чтобы управлять первым-третьим преобразователями (12A, 12B, 33) мощности таким образом, что разность SOC ΔSOC между первым и вторым устройствами накопления не увеличивается.
Как показано на фиг. 9, контроллер 30 предполагает, чтобы потребление энергии во вспомогательных нагрузках 35 варьировалось, когда разность SOC ΔSOC между первым и вторым устройствами (B1, B2) накопления превышает пороговое значение K (%). Контроллер 30 затем детектирует изменения в потреблении энергии, чтобы сбрасывать значение команды тока зарядки согласно результату детектирования. Это позволяет уменьшать дисбаланс зарядки между аккумуляторами, что позволяет исключать такое состояние, что один из аккумуляторов имеет меньший срок службы, чем другой аккумулятор.
В первом и втором вариантах осуществления транспортное средство 1, показанное на фиг. 1, может иметь датчик тока, который непосредственно измеряет ток I3. В этом случае аккумуляторы B1 и B2 также могут заряжаться сбалансированно посредством корректировки токов зарядки через равные интервалы времени или каждый раз, когда предварительно определенные условия удовлетворяются, таким образом, что разность токов зарядки для аккумуляторов B1 и B2 пропадает.
Дополнительно, в первом и втором вариантах осуществления, ток Iconst2 зарядки для зарядки аккумулятора B2 корректируется. Альтернативно эти варианты осуществления могут варьироваться таким образом, что ток Iconst1 зарядки от аккумуляторного зарядного устройства 6 увеличивается или уменьшается согласно изменениям мощности потребления вспомогательных нагрузок, тогда как Iconst2 сохраняется постоянным.
Настоящий вариант осуществления описывает, в качестве примера, корректировку токов зарядки в ходе зарядки от внешнего источника. Альтернативно токи зарядки могут корректироваться аналогично в случае работы генератора для зарядки в ходе движения или в случае выполнения зарядки посредством генерирования мощности в ходе рекуперативного торможения.
Дополнительно, когда множество аккумуляторов разряжается вместо зарядки, величина дисбаланса SOC для множества аккумуляторов также может уменьшаться в ходе разрядки аналогично посредством аналогичной корректировки токов разрядки, отражающих мощность потребления во вспомогательных нагрузках.
В качестве варианта осуществления настоящего изобретения показан пример гибридного транспортного средства. Альтернативно настоящее изобретение также может применяться к различным типам гибридных транспортных средств, электрических транспортных средств и т.п., имеющих множество установленных аккумуляторов.
Следует понимать, что варианты осуществления, раскрытые в данном документе, приводятся во всех отношениях в качестве иллюстрации, а не в качестве ограничения. Объем настоящего изобретения задан посредством формулы изобретения, а не в соответствии с вышеприведенным описанием, и включает в себя все модификации и изменения, эквивалентные по значению и объему формуле изобретения.

Claims (8)

1. Устройство электропитания для транспортного средства, содержащее: первое и второе устройства (B1, B2) накопления энергии, подключенные параллельно к главной нагрузке (14, 22); первый преобразователь (12А) мощности, предусмотренный между первым устройством накопления энергии и главной нагрузкой; второй преобразователь (12В) мощности, предусмотренный между вторым устройством накопления энергии и главной нагрузкой; третий преобразователь (33) мощности, принимающий ток, выделенный из ветви, соединяющей первый преобразователь мощности и первое устройство накопления энергии; вспомогательную нагрузку (35), приводимую в действие посредством мощности от третьего преобразователя мощности; и контроллер (30), управляющий первым-третьим преобразователями мощности, при этом контроллер конфигурирован для определения токов зарядки/разрядки для первого и второго устройств накопления энергии, отражающих изменения в токе, протекающем через вспомогательную нагрузку, чтобы управлять первым преобразователем мощности и/или вторым преобразователем мощности, когда токи, определенные контроллером, заряжаются/разряжаются.
2. Устройство электропитания по п.1, дополнительно содержащее аккумуляторное зарядное устройство (6) для зарядки первого и второго устройств накопления энергии посредством энергии, принимаемой из источника, внешнего для транспортного средства, при этом: аккумуляторное зарядное устройство подключено к первому устройству накопления энергии, и первый и второй преобразователи мощности выполнены для деления части тока, принимаемого от аккумуляторного зарядного устройства, чтобы работать как еще одно аккумуляторное зарядное устройство, заряжающее второе устройство накопления энергии.
3. Устройство электропитания по п.2, дополнительно содержащее датчик (11А) тока, детектирующий ток зарядки/разрядки для первого устройства накопления энергии, при этом: контроллер конфигурирован для временной приостановки работы третьего преобразователя мощности, чтобы вычислить ток, выделенный в направлении третьего преобразователя мощности, на основе разности в токе зарядки/разрядки для первого устройства накопления энергии до и после приостановки, и корректировки работы первого и второго преобразователей мощности на основе выделенного тока.
4. Устройство электропитания по п.3, в котором: первый преобразователь мощности повышает напряжение от первого устройства накопления энергии в направлении главной нагрузки в ходе зарядки из источника, внешнего для транспортного средства, и второй преобразователь мощности работает таким образом, что ток постоянной величины протекает от главной нагрузки в направлении второго устройства накопления энергии в ходе зарядки из источника, внешнего для транспортного средства.
5. Устройство электропитания по п.1, в котором контроллер вычисляет ток, выделенный из ветви, соединяющей первый преобразователь мощности и первое устройство накопления энергии, в направлении третьего преобразователя мощности, когда контроллер допускает, чтобы потребление энергии во вспомогательной нагрузке варьировалось.
6. Устройство электропитания по п.5, в котором контроллер допускает, чтобы потребление энергии во вспомогательной нагрузке варьировалось через каждый предварительно определенный промежуток времени.
7. Устройство электропитания по п.5, в котором контроллер допускает, чтобы потребление энергии во вспомогательной нагрузке варьировалось, когда разность между состоянием зарядки первого устройства накопления энергии и состоянием зарядки второго устройства накопления энергии превышает предварительно определенное значение.
8. Устройство электропитания по п.1, в котором контроллер вычисляет состояние зарядки первого устройства накопления энергии и состояние зарядки второго устройства накопления энергии, чтобы управлять первым-третьим преобразователями мощности таким образом, что разность между состоянием зарядки первого устройства накопления энергии и состоянием зарядки второго устройства накопления энергии не увеличивается.
RU2009149698A 2007-06-06 2008-05-30 Устройство электропитания для транспортного средства RU2413352C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007150720A JP4874874B2 (ja) 2007-06-06 2007-06-06 車両の電源装置
JP2007-150720 2007-06-06

Publications (1)

Publication Number Publication Date
RU2413352C1 true RU2413352C1 (ru) 2011-02-27

Family

ID=40093768

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009149698A RU2413352C1 (ru) 2007-06-06 2008-05-30 Устройство электропитания для транспортного средства

Country Status (6)

Country Link
US (1) US8143859B2 (ru)
EP (1) EP2154764B1 (ru)
JP (1) JP4874874B2 (ru)
CN (1) CN101682202B (ru)
RU (1) RU2413352C1 (ru)
WO (1) WO2008149964A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2498476C1 (ru) * 2012-05-03 2013-11-10 Закрытое акционерное общество "ИРИС" Зарядно-разрядное устройство с рекуперацией электроэнергии в корабельную сеть

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008000590T5 (de) * 2007-03-13 2010-04-15 Komatsu Ltd. Generatormotoransteuervorrichtung und Verfahren zum Entladen von Ladungen aus einer Kapazität der Generatormotoransteuervorrichtung
US8288885B2 (en) * 2008-06-03 2012-10-16 Honeywell International Inc. Method and system for improving electrical load regeneration management of an aircraft
US8274173B2 (en) 2008-12-02 2012-09-25 General Electric Company Auxiliary drive apparatus and method of manufacturing same
US8806271B2 (en) * 2008-12-09 2014-08-12 Samsung Electronics Co., Ltd. Auxiliary power supply and user device including the same
JP5343981B2 (ja) * 2009-02-03 2013-11-13 トヨタ自動車株式会社 車両の充電システム
CN102421631B (zh) * 2009-05-14 2014-07-02 丰田自动车株式会社 电动汽车及其控制方法
JP5299097B2 (ja) * 2009-06-05 2013-09-25 トヨタ自動車株式会社 電源装置およびその制御方法並びに動力出力装置、ハイブリッド自動車
JP2011072067A (ja) * 2009-09-24 2011-04-07 Toyota Motor Corp 車両の電源システムおよびそれを備える電動車両
CN102577010B (zh) * 2009-10-05 2015-06-24 日本碍子株式会社 控制装置、控制装置网以及控制方法
JP5591815B2 (ja) * 2009-10-05 2014-09-17 日本碍子株式会社 制御装置、制御装置網及び制御方法
JP2011097721A (ja) * 2009-10-29 2011-05-12 Mitsubishi Electric Corp 車載用回転電機の駆動装置
JP5168308B2 (ja) * 2010-04-14 2013-03-21 トヨタ自動車株式会社 電源システムおよびそれを搭載する車両
JP5479291B2 (ja) * 2010-09-30 2014-04-23 本田技研工業株式会社 電動補助自転車の制御装置
US8532854B2 (en) * 2010-10-01 2013-09-10 GM Global Technology Operations LLC Method and apparatus for managing multiple battery packs in a hybrid or electric vehicle
EP2625766A4 (en) * 2010-10-05 2015-10-21 Taing Foung Phan BATTERY REINFORCING SYSTEM
CN103260933B (zh) * 2010-12-14 2015-11-25 本田技研工业株式会社 车辆
JP2012152021A (ja) * 2011-01-19 2012-08-09 Mitsubishi Heavy Ind Ltd 電池システム
JP5344047B2 (ja) * 2011-02-03 2013-11-20 トヨタ自動車株式会社 二次電池の出力制御装置
JP5725544B2 (ja) 2011-03-01 2015-05-27 オムロンオートモーティブエレクトロニクス株式会社 電力変換装置および電力制御方法
EP2709255A1 (en) * 2011-05-13 2014-03-19 Toyota Jidosha Kabushiki Kaisha Vehicle power source system
JP5605320B2 (ja) * 2011-06-28 2014-10-15 株式会社オートネットワーク技術研究所 車両用電源装置
JP5742524B2 (ja) * 2011-07-08 2015-07-01 ソニー株式会社 制御装置、蓄電システム、電子機器、電動車両および電力システム
CN102904290B (zh) * 2011-07-25 2015-02-04 国基电子(上海)有限公司 电子装置及其判断电池充满的方法
US8917004B2 (en) * 2011-12-07 2014-12-23 Rotonix Hong Kong Limited Homopolar motor-generator
FR2986917B1 (fr) * 2012-02-13 2014-02-21 Converteam Technology Ltd Systeme d'alimentation electrique d'une charge, et centrale de production d'energie electrique comprenant un tel systeme
JP5577367B2 (ja) 2012-03-19 2014-08-20 本田技研工業株式会社 電動車両の制御装置
JP5345263B1 (ja) * 2012-05-18 2013-11-20 三菱電機株式会社 インバータ装置
CN102785563B (zh) * 2012-08-23 2015-06-03 浙江吉利汽车研究院有限公司杭州分公司 混合动力电动汽车动力***
GB2505707B (en) * 2012-09-11 2015-04-15 Jaguar Land Rover Ltd A method for controlling an electrical system in a vehicle
GB201216127D0 (en) * 2012-09-11 2012-10-24 Jaguar Cars A method for determining the change in a vehicle battery
WO2014063065A1 (en) 2012-10-19 2014-04-24 Gogoro, Inc. Battery configuration for an electric vehicle
JP5744072B2 (ja) * 2013-01-10 2015-07-01 三菱電機株式会社 車載用回転電機の駆動装置
JP2014143817A (ja) * 2013-01-23 2014-08-07 Toyota Motor Corp 車両の電源システム
CN103287281B (zh) * 2013-05-21 2016-06-08 潍柴动力股份有限公司 一种汽车驱动***及其电能控制方法
US20140375066A1 (en) * 2013-06-19 2014-12-25 Tai-Her Yang Combustion and emergency start controlling device having auxiliary power source and system thereof
CN103439599A (zh) * 2013-08-07 2013-12-11 扬州亚星客车股份有限公司 一种电动车实时测量***
US9969276B2 (en) * 2013-10-09 2018-05-15 Ford Global Technologies, Llc Plug-in vehicle with secondary DC-DC converter
US10286800B2 (en) 2013-10-09 2019-05-14 Ford Global Technologies, Llc Control pilot latch-out mechanism to reduce off-board energy consumption
TWI629184B (zh) * 2013-10-18 2018-07-11 睿能創意公司 用於一車輛之電力輸送系統及其操作方法
WO2015071970A1 (ja) * 2013-11-13 2015-05-21 ボルボ ラストバグナー アクチエボラグ 充放電システム
GB201320375D0 (en) * 2013-11-19 2014-01-01 Shelton Christopher Charging bus
KR101592650B1 (ko) * 2013-12-26 2016-02-11 현대모비스 주식회사 친환경 차량의 저전압 직류 변환 장치를 위한 멀티 전압 출력 제공 장치 및 방법
US9701264B2 (en) * 2014-06-20 2017-07-11 Andrew Aboudaoud Systems and methods for coupling a power converter to a fuse tap
JP6384412B2 (ja) * 2014-07-10 2018-09-05 株式会社デンソー 電源装置
JP6769046B2 (ja) * 2016-03-01 2020-10-14 株式会社Gsユアサ 蓄電素子の監視装置、蓄電素子モジュール、socの推定方法
EP3472920B1 (en) * 2016-06-15 2021-03-17 Katlego Systems, LLC Power supply system
CN106160113B (zh) * 2016-08-18 2018-10-30 特变电工西安电气科技有限公司 一种充电机电源模块智能功率分配控制方法
CN108400580B (zh) * 2017-02-04 2023-04-18 中兴通讯股份有限公司 通信供电***及通信供电***供电控制方法
JP6693446B2 (ja) * 2017-03-10 2020-05-13 トヨタ自動車株式会社 駆動装置
US20180312075A1 (en) * 2017-04-28 2018-11-01 GM Global Technology Operations LLC High voltage bus system for electrified vehicles
EP3670241B1 (en) * 2017-08-14 2021-08-11 Nissan Motor Co., Ltd. Power source system for vehicle
JP6671402B2 (ja) 2018-02-22 2020-03-25 本田技研工業株式会社 車両用電源装置
KR102532312B1 (ko) * 2018-03-06 2023-05-16 현대자동차주식회사 차량의 전원 공급 시스템 및 이를 제어하는 방법
JP7176852B2 (ja) * 2018-03-30 2022-11-22 本田技研工業株式会社 車両電源システム
JP2020043708A (ja) * 2018-09-12 2020-03-19 本田技研工業株式会社 電源装置
JP6979395B2 (ja) * 2018-10-09 2021-12-15 本田技研工業株式会社 電動車両
US10661679B2 (en) * 2018-10-26 2020-05-26 Premergy, Inc. Multiple chemistry battery systems for electric vehicles
JP7428631B2 (ja) * 2020-12-10 2024-02-06 本田技研工業株式会社 電源システム
KR102619173B1 (ko) * 2020-12-21 2024-01-03 현대모비스 주식회사 양방향 절연형 대용량 dc-dc 컨버터 및 그 제어방법
JP7420125B2 (ja) * 2021-09-27 2024-01-23 トヨタ自動車株式会社 電源システム
CN114498866B (zh) * 2022-04-19 2022-07-29 伏达半导体(合肥)有限公司 双电池充电装置、方法及其控制器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2025862C1 (ru) 1992-01-30 1994-12-30 Юлий Иосифович Майзенберг Устройство управления зарядом аккумуляторной батареи транспортного средства
JP4125855B2 (ja) 2000-06-16 2008-07-30 株式会社三社電機製作所 蓄電池用充放電装置
KR100387483B1 (ko) 2000-12-30 2003-06-18 현대자동차주식회사 전기 자동차용 배터리의 충전상태 제어방법
US6608396B2 (en) 2001-12-06 2003-08-19 General Motors Corporation Electrical motor power management system
JP3969165B2 (ja) 2002-04-16 2007-09-05 トヨタ自動車株式会社 電圧変換装置、電圧変換方法、電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP2004025979A (ja) 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd 走行車両用電源システム
JP2004320877A (ja) 2003-04-15 2004-11-11 Toyota Motor Corp 駆動装置用の電力装置およびこれを備える自動車並びに電力装置の制御方法
JP2004320872A (ja) * 2003-04-15 2004-11-11 Isuzu Motors Ltd 車両用電源装置
JP4184879B2 (ja) * 2003-07-03 2008-11-19 株式会社日立製作所 鉄道車両駆動システム
JP2005033898A (ja) 2003-07-10 2005-02-03 Toyota Motor Corp 車両の電源装置
JP4148468B2 (ja) * 2003-08-29 2008-09-10 富士電機ホールディングス株式会社 電池の充電制御装置
JP4140552B2 (ja) 2004-04-28 2008-08-27 トヨタ自動車株式会社 自動車用電源装置およびそれを備える自動車
JP4254714B2 (ja) 2005-01-12 2009-04-15 トヨタ自動車株式会社 駆動装置用の電力装置およびこれを搭載する自動車並びに電力装置の制御方法
JP4222337B2 (ja) * 2005-04-04 2009-02-12 トヨタ自動車株式会社 複数の電源を備えた電源システム及びそれを備えた車両
US7557464B2 (en) * 2006-05-23 2009-07-07 Continental Automotive Systems Us, Inc. System and method for isolating sources and loads of a power system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WО 2005105511 A1, 10.11.2005. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2498476C1 (ru) * 2012-05-03 2013-11-10 Закрытое акционерное общество "ИРИС" Зарядно-разрядное устройство с рекуперацией электроэнергии в корабельную сеть

Also Published As

Publication number Publication date
WO2008149964A1 (ja) 2008-12-11
EP2154764A4 (en) 2017-06-14
JP4874874B2 (ja) 2012-02-15
CN101682202B (zh) 2012-08-08
JP2008306823A (ja) 2008-12-18
CN101682202A (zh) 2010-03-24
EP2154764A1 (en) 2010-02-17
EP2154764B1 (en) 2019-06-26
US20100141213A1 (en) 2010-06-10
US8143859B2 (en) 2012-03-27

Similar Documents

Publication Publication Date Title
RU2413352C1 (ru) Устройство электропитания для транспортного средства
RU2414036C1 (ru) Установка энергопитания транспортного средства и транспортное средство
US7898103B2 (en) Power supply apparatus for vehicle and vehicle incorporating the same
US8035247B2 (en) Power supply device for vehicle
US8039987B2 (en) Power source device and vehicle with power source device
US8089177B2 (en) Power supply system, vehicle having power supply system, and control method of power supply system
JP5287983B2 (ja) 電源システムおよびそれを備える車両
JP6696408B2 (ja) 駆動システム
US8571734B2 (en) Power supply system for electrically powered vehicle and method for controlling the same
US7847521B2 (en) Power supply system for vehicle
US8292009B2 (en) Power supply device and vehicle including the same, control method for power supply device, and computer-readable recording medium having program for causing computer to execute that control method recorded thereon
US8072725B2 (en) Connection unit and vehicle incorporating the same
JP2009027774A (ja) 車両
JP6645407B2 (ja) 駆動システム
US8798826B2 (en) Power supply system, vehicle including the same, control method for power supply system, and computer-readable recording medium recording program for causing computer to execute the control method
JP2007174867A (ja) 車両用電源装置
JP2010004667A (ja) 電源システム
JP2007274785A (ja) 車両駆動用電源システム
JP2010115050A (ja) 車両の電源システム
JP2010022174A (ja) 電源システム

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180531