RU2395070C2 - Способ определения механических характеристик металлического материала - Google Patents

Способ определения механических характеристик металлического материала Download PDF

Info

Publication number
RU2395070C2
RU2395070C2 RU2006105939/28A RU2006105939A RU2395070C2 RU 2395070 C2 RU2395070 C2 RU 2395070C2 RU 2006105939/28 A RU2006105939/28 A RU 2006105939/28A RU 2006105939 A RU2006105939 A RU 2006105939A RU 2395070 C2 RU2395070 C2 RU 2395070C2
Authority
RU
Russia
Prior art keywords
bar
cavity
surfacing
metal
metal material
Prior art date
Application number
RU2006105939/28A
Other languages
English (en)
Other versions
RU2006105939A (ru
Inventor
Бернар БУЭ (FR)
Бернар Буэ
Стефан Мишель КЕРНЕИ (FR)
Стефан Мишель КЕРНЕИ
Клод Андре Шарль ПАНЬОН (FR)
Клод Андре Шарль ПАНЬОН
Эрик Кристиан Жан ПИНТО (FR)
Эрик Кристиан Жан ПИНТО
Original Assignee
Снекма
Снекма Сервис
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0550518A external-priority patent/FR2882533B1/fr
Priority claimed from FR0508150A external-priority patent/FR2889092B1/fr
Application filed by Снекма, Снекма Сервис filed Critical Снекма
Publication of RU2006105939A publication Critical patent/RU2006105939A/ru
Application granted granted Critical
Publication of RU2395070C2 publication Critical patent/RU2395070C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/325Ti as the principal constituent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0268Dumb-bell specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/0282Two dimensional, e.g. tapes, webs, sheets, strips, disks or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Laser Beam Processing (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Изобретение относится к области турбомашин, в частности авиационных турбомашин, и предназначено для ремонта деталей, таких как облопаченные диски. Способ определения механических характеристик металлического материала относительно металла, образующего деталь, подлежащую ремонту, заключается в том, что выполняют механическую обработку полости в бруске из указанного металла; осуществляют наплавку в полости посредством указанной установки; вырезают тестовый образец из бруска так, чтобы он содержал центральную зону, состоящую только из наплавленного металла; и подвергают тестовый образец испытанию на усталость образующего образец металла при осевых вибрациях. Технический результат направлен на упрощение проверки детали, на возможность удовлетворительного ремонта. 5 з.п. ф-лы, 9 ил.

Description

Настоящее изобретение относится к области турбомашин, в частности авиационных турбомашин, и предназначено для ремонта деталей, таких как облопаченные диски.
Для удовлетворения все возрастающих требований к рабочим характеристикам двигателей для компрессоров газотурбинных двигателей в настоящее время из титановых сплавов изготавливают выполненные заодно облопаченные диски, или «блиски». В известном роторе лопатки удерживаются своими хвостовиками, которые вставлены в корпус, выполненный на ободе диска. При этом диски и лопатки изготавливаются отдельно, после чего собираются в облопаченный ротор. В «блиске» лопатки и диск изготавливают непосредственно из кованной заготовки, то есть они образуют единую деталь. Этот способ позволяет добиться существенного снижения массы двигателя и обеспечивает значительную экономию при изготовлении.
Однако ротор такого типа имеет недостаток, заключающийся в трудности его ремонта. При работе лопатки компрессора могут претерпеть повреждения из-за ударов, вызываемых попаданием в двигатель посторонних тел или из-за эрозии, вызванной пылью и другими частицами, содержащимися в воздухе, протекающем через двигатель, и приходящими в контакт с поверхностью лопаток. Такой износ двигателя, если он не может быть отремонтирован в соответствии с критериями, установленными в документации производителя, влечет замену одной или более из дефектных лопаток. В случае деталей, где лопатки выполнены за одно целое, такие лопатки являются цельной частью массивной детали и, в отличие от обычных конструкций, их нельзя заменять или даже снимать для индивидуального ремонта. Деталь необходимо ремонтировать непосредственно на диске. Следовательно, при ремонте необходимо учитывать все аспекты компонента, включая его размер, массу, и, в случае крупногабаритных компонентов, возможность доступа к ремонтируемой зоне.
Таким образом, в случае «блиска», к областям каждой лопатки, обычно затрагиваемым ремонтом, относятся конец лопаток, угол аэродинамической поверхности на стороне передней кромки, угол аэродинамической поверхности на стороне задней кромки, передняя кромка и задняя кромка.
Разработанные способы ремонта заключаются в удалении поврежденного участка и замене удаленного участка деталью подходящей формы или в проведении наплавки. Эти способы по существу основаны на обычных операциях металлообработки, используемых для удаления поврежденного участка, бесконтактного контроля отремонтированной детали, ультразвуковой наклепки и заданной обработки отремонтированного участка.
Настоящее изобретение относится к ремонту наплавкой.
Ремонт особенно затруднен в случае применения некоторых сплавов, сварка которых приводит к образованию объемных дефектов. Это особенно справедливо для титанового сплава Ti17. Это сплав упомянут, например, в заявке на европейский патент ЕР 1340832 того же заявителя, которая относится к изделию, например лопатке, выполненной из этого материала. Наплавка, обычно и широко применяющаяся в авиационной промышленности и использующая методы дуговой сварки вольфрамовым электродом в среде инертного газа (TIG) или сварки микроплазмой, позволяет обрабатывать сплав Ti17 только для участков, ограниченных зонами небольших напряжений.
Эти обычные способы наплавки приводят к образованию дефектов. Так, TIG-наплавка, требующая существенного расхода энергии по сравнению с небольшой толщиной свариваемых деталей, генерирует напряжения и приводит к образованию большого количества пор, таких как микропоры или микропузырьки, а также образует расширенную зону термического влияния. Такие микропоры, которые нелегко обнаружить, генерируют ослабление механических свойств, величина которого доходит до 80%. Поэтому такого типа наплавка пригодна только в зонах, испытывающих небольшие напряжения. Наплавка микроплазмой приводит к образованию уменьшенной зоны термического влияния, которая все еще остается относительно большой. Более того, этот способ требует особого внимания и периодической проверки используемого оборудования и компонентов, чтобы рабочие параметры станка оставались стабильными и не приводили к изменениям ожидаемых результатов.
В патенте США № 6568077 описан способ ремонта лопатки на «блиске», при котором поврежденный участок подвергают механической обработке, а затем, в первом рабочем режиме, удаленный участок восстанавливают путем осаждения металла на станке для сварки вольфрамовым электродом в среде инертного газа (TIG). Во втором рабочем режиме вваривают вставку на станке для электронно-лучевой сварки. После этого на подходящем станке восстанавливают профиль лопатки. Однако в этом способе нет упоминания о проблеме, встречающейся при сварке определенных титановых сплавов.
В частности, способом, предотвращающим возникновение дефектов в сварочной зоне, является лазерная наплавка.
Лазерная наплавка уже известна и используется, например, для задач, где необходимо генерировать металлический контур, особенно по данным систем автоматизированного проектирования (CAD). Стенки имеют толщину от 0,05 до 3 мм и высота слоев составляет от 0,05 до 1 мм. Этот способ позволяет добиться прекрасной металлургической связи с подложкой.
Способ наплавки лазерным лучом имеет следующие преимущества: приток теплоты постоянен во времени. У теплоты нет времени на накопление в объеме и на диффузию, и следовательно, для титана отсутствует выделение газа и ограничивается уменьшение прочности. Более того, этот способ обладает хорошей повторяемостью и надежностью после установки параметров станка, и он легко контролируется.
Применяемые в настоящее время лазерные технологии заключаются в подаче материала заполнителя и одновременном облучении подложки лазерным лучом. Материал по существу наносится в зоне обработки в форме порошка или металлической проволоки. В других вариантах он распыляется в форме струй порошка на рабочую зону с помощью подходящей насадки.
Однако такой способ сложен для реализации.
Во-первых, необходимо убедиться, что металл, используемый для наплавки, пригоден для ремонта и не оказывает вредного влияния на механические свойства ремонтируемой зоны, приводящего к ее ослаблению.
Во-вторых, рассматриваемая установка должна быть способна проводить ремонт без ослабления свойств самого материала.
Таким образом, объектом настоящего изобретения является способ определения механических характеристик металлического материала относительно металла, образующего ремонтируемую деталь, и оценки установки для ремонта такой металлической детали путем наплавки этого металлического материала, характеризующийся тем, что: выполняют механическую обработку полости в бруске из металла ремонтируемой детали; осуществляют наплавку в полости посредством указанной установки, используя указанный металлический материал; вырезают тестовый образец от бруска так, чтобы он содержал центральную зону, состоящую только из наплавленного металла; и подвергают тестовый образец испытанию на усталость образующего образец металла при осевых вибрациях.
Если для ремонта деталей производитель или пользователь станков использует субподрядчиков любого рода, которые, возможно, применяют сплавы, не идентичные сплаву, из которого изготовлены детали, важно иметь простое средство проверки этих деталей на возможность удовлетворительного ремонта. Таким образом, способ согласно настоящему изобретению отвечает этому требованию. Все, что требуется от производителя или пользователя - это предоставить такому субподрядчику ряд таких тестовых образцов, а субподрядчик должен вернуть их производителю или пользователю после проведения операции наплавки согласно настоящему способу. Анализ образцов после разрушения при испытаниях даст точную картину возможности проведения удовлетворительного ремонта, обеспечивающего нужные механические свойства.
В способе используется преимущественно установка для лазерной наплавки, однако он применим к наплавке любого типа.
В способе, в частности, для детали, изготовленной из титанового сплава, используется металлический материал, также состоящий из титанового сплава, в частности, Ti17 или TA6V.
Преимущественно, брусок имеет форму параллелепипеда, а полость, выполненная в бруске, имеет форму, соответствующую форме, выполняемой в ремонтируемой детали. В частности, полость выполняется цилиндрической с осью, проходящей поперек бруска.
Далее следует подробное описание настоящего изобретения со ссылками на прилагаемые чертежи, на которых:
Фиг.1 - часть облопаченного диска, выполненного в виде единой детали;
Фиг.2 - схематическое сечение насадки, используемой для наплавки;
Фиг.3-6 - тестовая деталь с лазерной наплавкой для определения механических характеристик согласно настоящему изобретению;
Фиг.7 - испытание на усталость тестовой детали с наплавкой при вибрации;
Фиг.8 - микрофотография поверхности излома; и
Фиг.9 - граф для анализа результатов теста.
На Фиг.1 показан облопаченный диск 1, выполненный в виже единой детали. Лопатки 3 проходят радиально и распределены по периферии диска 5. Узел выполнен в форме единой детали в том смысле, что он произведен либо механической обработкой из одной заготовки, либо путем приваривания, по меньшей мере, части его компонентов. В частности лопатки не крепятся к диску расцепляемыми механическими средствами. Зонами, подверженными повреждениям, являются передние кромки 31, задние кромки 32, углы 33 передней кромки, углы 34 задней кромки и конец 35 аэродинамического профиля, имеющий утонченный участок, образующий известную уплотняющую кромку.
Наблюдаемые повреждения зависят от положения зоны. Например, на передней кромке, задней кромке или на углу аэродинамического профиля, это может быть потеря материала, вызванная ударами посторонних тел, или трещины. На конце аэродинамического профиля повреждения чаще имеют форму износа из-за трения о кожух двигателя.
В зависимости от зоны повреждений некоторое количество материала удаляется так, что определяются геометрия, размеры и стороны ремонтируемой зоны. Такая операция определения формы выполняется механической обработкой, в частности фрезерованием, с использованием соответствующего инструмента, позволяющего получить чистоту поверхности, сравнимую с требуемым качеством наплавки.
Наплавляемую поверхность, предназначенную для приема материала наполнителя, затем очищают как механическим, так и химическим способами. Такая очистка выбирается в соответствии с материалом подложки. Это важно при использовании, в частности, титанового сплава TI17 или TA6V.
На Фиг.2 показана насадка 30 для лазерной наплавки. Эта насадка имеет каналы для подачи металлического порошка, осаждаемого на зону ремонта вдоль оси распространения лазерного луча. Луч направляют на деталь и на металлический порошок М, захваченный потоком газа G в зоне, нагреваемой лучом.
Насадка перемещается вдоль зоны ремонта вперед и назад, постепенно наплавляя стопку слоев материала, осаждаемого и плавящегося лазерным лучом. Наплавку осуществляют с постоянной скоростью и интенсивностью, даже если деталь имеет переменную толщину.
Параметры подстраивают, в частности так, чтобы ограничить внутренние напряжения и любую повторную обработку, а также размер зоны термического влияния. При наплавке следует принимать во внимание следующие параметры:
- высота точки фокусировки лазерного луча (предпочтительно YAG-лазер) над поверхностью;
- скорость подачи головки 30;
- энергия луча;
- используемый порошок (Ti17 или TA6V), который не обязательно является тем же материалом, что и подложка, размер частиц которого предпочтительно составляет от 30 до 100 мкм, и который имеет точку фокусировки,
- характер захватывающего или удерживающего газа, которым предпочтительно является гелий или аргон.
Тип применяемой насадки определяют заранее. Скорость и энергия зависят от типа применяемого станка.
В частности, было обнаружено, что при использовании Ti17, для предотвращения появления пористости в объеме, параметры не должны изменяться более, чем на ±5%.
Настоящее изобретение относится к оценке установки для лазерной сварки для реализации способа ремонта наплавкой. Более конкретно, прежде, чем вводить станок в эксплуатацию и проводить ремонт «блисков» наплавкой, необходимо проверить, не возникнет ли в отремонтированных деталях вредное уменьшение прочности при их эксплуатации.
Такую оценку осуществляют, проводя испытания на так называемых тестовых образцах для определения характеристик и оценки. Такой тестовый образец 50 показан на Фиг.3-6 и позволяет:
- визуально определить отсутствие окисления и измерить геометрию наплавки;
- оценить металлургическое качество наплавки после механической обработки с термообработкой и без термообработки с помощью неразрушающих и разрушающих тестов, например, с помощью теста на глубину проникновения пробника и с помощью микрофотографии,
- определить механические характеристики наплавленного лазерной сваркой материала Ti17 после механической обработки и термообработки, то есть провести тесты на многоцикловую усталость.
В конкретном случае ремонта «блиска» предпочтительно использовать брусок 50, полученный из кованной заготовки «блиска», поскольку она будет иметь направление волокнистости того же характера, что и «блиски», которые будут ремонтироваться на этой установке. Для проведения таких тестов брусок имеет форму параллелепипеда, например, следующих размеров: 100×19×8 мм.
Как показано на Фиг.4, механической обработкой выполняют углубление 52, геометрия профиля которого соответствует полости, которая будет вырезана из поврежденной зоны на передней или задней кромке аэродинамического профиля, для формирования зоны ремонта. Здесь полость имеет цилиндрическую форму, ось которой проходит поперечно длине бруска.
Брусок 50 шире, чем аэродинамический профиль. Это углубление 52 подвергают наплавлению, как показано на Фиг.5, на той установке, которая подвергается оценке. Полость имеет достаточную глубину, например, максимальную глубину 5 мм так, что необходимо осуществлять способ, позволяющий создать пакет из нескольких слоев. Более того, благодаря ширине бруска, наплавку осуществляют путем пересечения различных слоев.
Когда наплавка готова, как показано на Фиг.5, возможно, с небольшим запасом, который, как считается, не приводит к каким-либо последствиям, из бруска вырезают слой 56. Этот слой 56, показанный заштрихованным на Фиг.5, содержит наплавленный участок 54. Как видно на этом чертеже, слой параллелен и слегка смещен, например, на 1 мм, относительно поверхности, на которой проводилась наплавка. Например, из бруска толщиной 8 мм вырезают слой толщиной 2,5 мм. Этот слой, соответственно, имеет три отдельных участка, при этом центральный участок состоит исключительно из материала наплавки, который помещен между двумя элементами из первоначального бруска.
На Фиг.6 показан слой 56, который подвергают механической обработке для получения центрального участка 56а, образующего брусок, содержащий зону наплавки. В этом центральном участке вся толщина участка 56а состоит из материала наплавки. По обе стороны от центрального бруска 56а выполнены более широкие язычки 56b для крепления в кулачках машины для испытаний на циклическую усталость.
Эти тесты, схематически представленные на Фиг.7, заключаются в чередующемся приложении осевой сжимающей силы и осевой растягивающей силы. Частота и амплитуда вибраций, количество циклов и температура, в частности, являются заранее заданными.
На Фиг.8 показано микрофотография поверхности излома тестового образца. Тестовый образец разрушился в зоне наплавки. Исследования этой поверхности позволяют проверить качество наплавки и определить характер имеющихся дефектов. На графе с логарифмической шкалой на оси Х откладывается уровень чередующегося напряжения в МПа для разных образцов как функция количества циклов и количество циклов, после которого отмечено разрушение. Например, на этом графе для выборки, состоящей из нескольких тестовых образцов, отмечено возникновение разрушений тестовых образцов, вызванное отказом краев А и отказами сердечника В.
Анализируя материалы, таким образом, определяют уровень ослабления материала для проверяемой установки. Этот уровень является отношением механической прочности материала после наплавки к механической прочности этого материала на свежеизготовленной детали.
Когда тесты образцов дают удовлетворительные результаты и уровень превышает минимальное пороговое значение, определяемое экспериментально, установку вводят в эксплуатацию.

Claims (6)

1. Способ определения механических характеристик металлического материала относительно металла, образующего деталь, подлежащую ремонту, отличающийся тем, что:
выполняют механическую обработку полости в бруске из указанного металла; осуществляют наплавку в полости посредством установки;
вырезают тестовый образец из бруска так, чтобы он содержал центральную зону, состоящую только из наплавленного металла; и
подвергают тестовый образец испытанию на усталость образующего образец металла при осевых вибрациях.
2. Способ по п.1, отличающийся тем, что установка является установкой для лазерной наплавки.
3. Способ по п.2, отличающийся тем, что металлическим материалом является титановый сплав, в частности Ti17 или TA6V.
4. Способ по п.1, отличающийся тем, что металлическим материалом является титановый сплав, в частности Ti17 или TA6V.
5. Способ по п.1, отличающийся тем, что брусок имеет форму параллелепипеда, а полость, выполненная механической обработкой бруска, имеет форму, соответствующую форме полости, выполняемой в ремонтируемой детали.
6. Способ по любому из предшествующих пунктов, отличающийся тем, что полость имеет цилиндрическую форму с осью, проходящей поперек бруска.
RU2006105939/28A 2005-02-25 2006-02-26 Способ определения механических характеристик металлического материала RU2395070C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0550518A FR2882533B1 (fr) 2005-02-25 2005-02-25 Procede de reparation de disque aubage monobloc, eprouvette de debut et de fin campagne
FR0550518 2005-02-25
FR0508150 2005-07-29
FR0508150A FR2889092B1 (fr) 2005-07-29 2005-07-29 Procede de caracterisation mecanique d'un materiau metallique

Publications (2)

Publication Number Publication Date
RU2006105939A RU2006105939A (ru) 2007-09-10
RU2395070C2 true RU2395070C2 (ru) 2010-07-20

Family

ID=36177647

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006105939/28A RU2395070C2 (ru) 2005-02-25 2006-02-26 Способ определения механических характеристик металлического материала

Country Status (7)

Country Link
US (1) US20060236765A1 (ru)
EP (1) EP1696220B1 (ru)
JP (1) JP5072237B2 (ru)
CA (1) CA2537682C (ru)
DE (1) DE602006000955T2 (ru)
RU (1) RU2395070C2 (ru)
SG (1) SG125240A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457458C1 (ru) * 2011-03-14 2012-07-27 Открытое акционерное общество "Техдиагностика" Способ отбора пробы высоконагруженного металла сосудов и аппаратов, эксплуатируемых в сероводородсодержащих средах
RU2525153C1 (ru) * 2013-03-21 2014-08-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Эталонный образец с контролируемым распределением напряжений по толщине

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904577B1 (fr) * 2006-08-03 2009-06-05 Snecma Sa Methode pour evaluer la resistance en fatigue de joints soudes
CA2691334C (en) * 2007-06-12 2018-02-27 Rolls-Royce Corporation System, method, and apparatus for repair of components
US8253063B2 (en) * 2008-07-30 2012-08-28 Hydraforce, Inc. Method for making a solenoid actuator
JP5187209B2 (ja) * 2009-01-30 2013-04-24 株式会社Ihi 微小欠陥部材の疲労強度下限値の評価方法
DE202009010962U1 (de) 2009-08-13 2009-10-22 Zunhammer Gmbh Förderanordnung für Wirtschaftsdünger
EP2312292A1 (de) 2009-10-15 2011-04-20 Siemens Aktiengesellschaft Material für Zug- und HCF-Versuche für die Prüfung von Auftragsschweissungen und Verfahren
DE102010026084A1 (de) 2010-07-05 2012-01-05 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zum Auftragen von Materialschichten auf einem Werkstück aus TiAI
FR2963828B1 (fr) * 2010-08-10 2020-04-03 Safran Aircraft Engines Influence de l'usinage sur la tenue mecanique d'une piece en materiau composite
FR2979702B1 (fr) * 2011-09-05 2013-09-20 Snecma Procede de preparation d'eprouvettes de caracterisation mecanique d'un alliage de titane
ITCO20120041A1 (it) * 2012-09-07 2014-03-08 Nuovo Pignone Spa Metodo per la riparazione di un componente di turbomacchina
WO2015006414A1 (en) * 2013-07-09 2015-01-15 United Technologies Corporation Tensile test geometry
EP3436670A1 (en) * 2016-03-31 2019-02-06 Siemens Aktiengesellschaft Gas turbine component selection at manufacture
US20180021890A1 (en) * 2016-07-22 2018-01-25 Caterpillar Inc. System and method to produce a structure for a weld joint using additive manufacturing
US11939872B2 (en) 2018-11-02 2024-03-26 Tennine Corp. Miniaturized turbogenerator for the direct electrical propulsion of automotive, urban air mobility, and small marine vehicles
US11865655B2 (en) 2020-01-20 2024-01-09 Blade Diagnostics Corporation Techniques for automated maintenance of integrally bladed rotors
CN114166857A (zh) * 2021-10-29 2022-03-11 中国船舶重工集团公司第七二五研究所 一种金属材料焊接接头抗裂性测试方法及焊接方法
US11828190B2 (en) 2021-11-18 2023-11-28 General Electric Company Airfoil joining apparatus and methods
CN114131286B (zh) * 2021-11-25 2022-10-25 中国能源建设集团浙江火电建设有限公司 一种高强钢大直径超长花键轴断裂修复方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH644450A5 (de) * 1980-02-11 1984-07-31 Russenberger Pruefmasch Vorrichtung fuer die schwingfestigkeitspruefung.
DE3030532A1 (de) * 1980-08-13 1982-03-18 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren zum rissfreien energiestrahlschweissen von warmfesten formteilen
US4730093A (en) * 1984-10-01 1988-03-08 General Electric Company Method and apparatus for repairing metal in an article
JP2769335B2 (ja) * 1988-11-30 1998-06-25 昭和アルミニウム株式会社 耐摩耗性に優れたアルミニウム合金材の製造方法
US5914059A (en) * 1995-05-01 1999-06-22 United Technologies Corporation Method of repairing metallic articles by energy beam deposition with reduced power density
JP2924731B2 (ja) * 1995-09-13 1999-07-26 株式会社神戸製鋼所 Cr鋼製タービンロータの肉盛溶接用溶接材料及び該溶接材料を用いた肉盛溶接方法
FR2742689B1 (fr) * 1995-12-22 1998-02-06 Gec Alsthom Electromec Procede pour fabriquer une aube en titane alpha beta comprenant un insert de titane beta metastable, et aube realisee par un tel procede
FR2749784B1 (fr) * 1996-06-13 1998-07-31 Snecma Procede de fabrication d'un aube creuse de turbomachine et presse-four a multiple effet utilisee dans sa mise en oeuvre
FR2752539B1 (fr) * 1996-08-22 1998-09-18 Snecma Procede de fabrication d'une aube creuse de turbomachine et equipement de vrillage evolutif a chaud utilise
US6172327B1 (en) * 1998-07-14 2001-01-09 General Electric Company Method for laser twist welding of compressor blisk airfoils
US6568077B1 (en) * 2000-05-11 2003-05-27 General Electric Company Blisk weld repair
JP4490608B2 (ja) * 2001-08-09 2010-06-30 株式会社東芝 構造物の補修方法
JP2003117679A (ja) * 2001-10-11 2003-04-23 Hitachi Cable Ltd 複合ろう材及びろう付加工用複合材並びにろう付け方法
JP4406219B2 (ja) * 2003-05-29 2010-01-27 日産自動車株式会社 レーザ肉盛り加工装置
JP4038724B2 (ja) * 2003-06-30 2008-01-30 トヨタ自動車株式会社 レーザクラッド加工装置およびレーザクラッド加工方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457458C1 (ru) * 2011-03-14 2012-07-27 Открытое акционерное общество "Техдиагностика" Способ отбора пробы высоконагруженного металла сосудов и аппаратов, эксплуатируемых в сероводородсодержащих средах
RU2525153C1 (ru) * 2013-03-21 2014-08-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Эталонный образец с контролируемым распределением напряжений по толщине

Also Published As

Publication number Publication date
CA2537682C (fr) 2013-08-06
US20060236765A1 (en) 2006-10-26
JP5072237B2 (ja) 2012-11-14
CA2537682A1 (fr) 2006-08-25
DE602006000955D1 (de) 2008-06-05
EP1696220A1 (fr) 2006-08-30
EP1696220B1 (fr) 2008-04-23
RU2006105939A (ru) 2007-09-10
JP2006231410A (ja) 2006-09-07
DE602006000955T2 (de) 2009-05-28
SG125240A1 (en) 2006-09-29

Similar Documents

Publication Publication Date Title
RU2395070C2 (ru) Способ определения механических характеристик металлического материала
RU2397329C2 (ru) Способ восстановления выполненного в виде единой детали облопаченного диска, а также тестовый образец (варианты)
JP5008354B2 (ja) ターボ機械の一体型のブレード付きディスクのブレードを補修する方法、および該方法を実行するための試験片
US9174312B2 (en) Methods for the repair of gas turbine engine components using additive manufacturing techniques
US7448280B2 (en) Method for evaluating the fatigue strength of welded joints
JP4572412B2 (ja) 経時プラズマ光スペクトル解析を用いたレーザー衝撃ピーニングの監視及び制御方法
Gao et al. Investigation of a 3D non‐contact measurement based blade repair integration system
CN110234837A (zh) 修复整体叶盘的方法
Kuroki et al. Application of linear friction welding technique to aircraft engine parts
Wanjara et al. High Frequency Vibration Fatigue Behavior of Ti6Al4V Fabricated by Wire‐Fed Electron Beam Additive Manufacturing Technology
CN112945769B (zh) 一种焊接接头低周疲劳裂纹扩展性能薄弱微区的评价方法
Heikinheimo et al. Joint characterisation for repair brazing of superalloys
FR2889092A1 (fr) Procede de caracterisation mecanique d'un materiau metallique
Gabrielli et al. Blades and vanes platform laser rebuilding
Denkena et al. Ball end milling of titanium TIG weld material and the effect of SiC addition–process forces and shape deviations
Azar et al. Electron beam weld repair and qualification of titanium fan blades for military gas turbine engines
Patnaik et al. Repair and life extension of titanium alloy fan blades in aircraft gas turbines
Miglietti et al. Evaluation of Platform Weld Repairs on F-Class, Stage 1 Buckets
Crall et al. Laser twist weld repair of compressor blisk airfoils
CN117758254A (zh) 零部件表面损伤激光熔覆修复方法、装置及零部件
Thukaram Robot based 3D welding for jet engine blade repair and rapid prototyping of small components
Pego Fernández Mechanical properties of Hybrid laser-MIG welding and spot welding on lap joint
Thukaram Robot based three-dimensional welding for jet engine blade repair and rapid prototyping of small components
Everett Development of a Laser Cladding Process for Shrouded Turbine Blades
Miller Plasma arc weld repair of titanium fan blades

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20130703

PD4A Correction of name of patent owner