RU2378673C1 - Способ визуализации изображений и устройство для его реализации - Google Patents

Способ визуализации изображений и устройство для его реализации Download PDF

Info

Publication number
RU2378673C1
RU2378673C1 RU2008112738/28A RU2008112738A RU2378673C1 RU 2378673 C1 RU2378673 C1 RU 2378673C1 RU 2008112738/28 A RU2008112738/28 A RU 2008112738/28A RU 2008112738 A RU2008112738 A RU 2008112738A RU 2378673 C1 RU2378673 C1 RU 2378673C1
Authority
RU
Russia
Prior art keywords
layers
pixels
optical
electro
matrices
Prior art date
Application number
RU2008112738/28A
Other languages
English (en)
Other versions
RU2008112738A (ru
Inventor
Владимир Исфандеярович Аджалов (RU)
Владимир Исфандеярович Аджалов
Original Assignee
Владимир Исфандеярович Аджалов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Исфандеярович Аджалов filed Critical Владимир Исфандеярович Аджалов
Priority to RU2008112738/28A priority Critical patent/RU2378673C1/ru
Priority to JP2010529892A priority patent/JP2011501217A/ja
Priority to CN2008801263149A priority patent/CN101939706A/zh
Priority to PCT/RU2008/000618 priority patent/WO2009123500A1/ru
Priority to EP08873692A priority patent/EP2267558A4/en
Priority to US12/733,689 priority patent/US20100194668A1/en
Publication of RU2008112738A publication Critical patent/RU2008112738A/ru
Application granted granted Critical
Publication of RU2378673C1 publication Critical patent/RU2378673C1/ru

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0322Arrangements comprising two or more independently controlled crystals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/12Function characteristic spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0224Active addressable light modulator, i.e. Spatial Light Modulator [SLM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0476Holographic printer
    • G03H2001/0484Arranged to produce three-dimensional fringe pattern
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2223Particular relationship between light source, hologram and observer
    • G03H2001/2231Reflection reconstruction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/10Spectral composition
    • G03H2222/17White light
    • G03H2222/18RGB trichrome light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/20Coherence of the light source
    • G03H2222/23Temporal coherence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/20Coherence of the light source
    • G03H2222/24Low coherence light normally not allowing valuable record or reconstruction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/10Shape or geometry
    • G03H2225/133D SLM
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/20Nature, e.g. e-beam addressed
    • G03H2225/22Electrically addressed SLM [EA-SLM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/30Modulation
    • G03H2225/32Phase only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2227/00Mechanical components or mechanical aspects not otherwise provided for
    • G03H2227/05Support holding the holographic record
    • G03H2227/06Support including light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2240/00Hologram nature or properties
    • G03H2240/50Parameters or numerical values associated with holography, e.g. peel strength
    • G03H2240/61SLM related parameters, e.g. pixel size

Abstract

Изобретение относится к области информационных технологий. Способ заключается в том, что пучком широкополосного оптического излучения осуществляют освещение одновременно блока матриц пикселей, в котором матрицы установлены параллельно друг другу, причем освещают матрицы с той же стороны, с какой наблюдают изображение. В качестве изменяемой оптической характеристики пикселей во всех этих матрицах используют показатель преломления. В устройстве, включающем экран, представляющий собой многослойную структуру, выполненную из материалов, прозрачных для электромагнитного излучения оптического диапазона, многослойная структура содержит чередующиеся слои материала, обладающего электрооптическим эффектом, и слои прозрачного материала, не обладающего этим эффектом, причем все слои, обладающие электрооптическим эффектом, электрически изолированы друг от друга, и каждый из них выполнен в виде матрицы электрически управляемых элементов - пикселей. Техническим результатом является создание электрически управляемых фазовых объемных дифракционных решеток и на их основе экранов для отображения объемных цветных изображений. 2 н. и 8 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области информационных технологий, точнее к способам и устройствам отображения видеоинформации, и предназначено для визуализации трехмерных изображений.
Известны способы и устройства для визуализации динамически изменяющихся объемных (трехмерных) изображений, основанные на различных модификациях стереоэффекта (см., например, Ежов В.А. и др., патент RU 2306678 С1, приоритет от 2006.02.07, и Петров B.C. и др., патент RU 2189619 С1, приоритет от 2001.01.10).
Основными недостатками подобных способов и устройств для их реализации являются неудобство наблюдения и значительные искажения в передаче объемных изображений.
Также известны способы записи объемных фазовых голограмм и устройства для их реализации (см., например, Суханов В.И. и др., патент RU 2168707 С2, приоритет от 1997.09.19).
Основным недостатком подобных способов и устройств для их реализации является невозможность визуализации динамически изменяющихся изображений.
Наиболее близким по технической сути к предложенному способу является способ визуализации изображений, заключающийся в том, что пучком широкополосного оптического излучения освещают матрицу электрически управляемых элементов (пикселей), при этом на пиксели подают распределение напряжения, рассчитываемое из условия формирования требуемого изменения текущих оптических характеристик пикселей, и наблюдают изображение (см., например, Дуняшев Э.С. и др., патент RU 2256206 С1, приоритет от 2004.08.09). Данный способ заключается в проекции на внешний экран изображения, формируемого электрически управляемой двумерной матрицей.
Наиболее близким по технической сути к предложенному устройству для реализации предлагаемого способа является устройство - экран для визуализации изображений, представляющий собой многослойную структуру, выполненную из материалов, прозрачных для электромагнитного излучения оптического диапазона (см. Козловский В.И., Колчин А.А., патент RU 2064246 С1, приоритет от 1991.12.26).
Данное устройство является экраном электронно-лучевой трубки и используется для дальнейшего отображения информации на большом внешнем экране.
Основными недостатками наиболее близких к предложенным технических решений, известного способа и известного устройства, является невозможность визуализации объемных изображений.
Технический результат изобретения - обеспечение возможности визуализации статических и динамических цветных объемных изображений за счет создания синтезированных объемных голограмм.
При этом может быть решена задача создания электрически управляемых фазовых объемных дифракционных решеток (синтезированных голограмм) и на их основе стационарных дисплеев, включая экраны для группового просмотра объемных видеофильмов, а также экранов для мобильных устройств и экранов, формируемых на лобовых стеклах автомобилей, самолетов и других управляемых человеком устройств, обеспечивающих возможность визуализации объемных цветных изображений, в том числе как статических, так и динамически изменяющихся изображений.
Для решения поставленной задачи с достижением технического результата в известном способе визуализации изображений, заключающемся в том, что пучком широкополосного оптического излучения освещают матрицу электрически управляемых элементов - пикселей, при этом на пиксели подают напряжение, распределение которого по матрице рассчитано из условия формирования требуемого изменения текущих оптических характеристик пикселей, и наблюдают изображение, согласно предложению осуществляют освещение пучком оптического излучения одновременно блока матриц пикселей, в котором матрицы установлены параллельно друг другу, причем освещают матрицы с той же стороны, с какой наблюдают изображение, при этом в качестве изменяемой оптической характеристики пикселей во всех этих матрицах используют показатель преломления.
Также для решения поставленной задачи с достижением технического результата, в известном устройстве для визуализации изображений, включающем экран, представляющий собой многослойную структуру, выполненную из материалов, прозрачных для электромагнитного излучения оптического диапазона, согласно предложению многослойная структура содержит чередующиеся слои материала, обладающего электрооптическим эффектом, и слои прозрачного материала, не обладающего этим эффектом, причем все слои, обладающие электрооптическим эффектом, электрически изолированы друг от друга, и каждый из них выполнен в виде матрицы электрически управляемых элементов - пикселей, причем матрицы установлены параллельно друг другу с возможностью освещения с той же стороны, с какой наблюдают изображение.
В рамках заявленного технического решения предложены частные варианты развития заявляемого способа.
В первом таком варианте подаваемое напряжение рассчитано из условия формирования изменения показателя преломления в пикселях, соответствующее дискретизированной по числу и расположению имеющихся пикселей интерференционной картине голограммы изображений во встречных пучках.
Во втором варианте используют пиксели с размером стороны не более 128 нанометров, а блок матриц имеет общую толщину не менее 2 микрометров с шагом не более 256 нанометров.
В рамках заявленного технического решения предложены также варианты (частные случаи) выполнения заявляемого устройства для визуализации изображений.
В первом таком варианте многослойная структура имеет толщину не менее 2 микрометров и выполнена с размером стороны пикселя не более 128 нанометров, при этом слои материала, обладающего электрооптическим эффектом, расположены в многослойной структуре с шагом не более 256 нанометров.
Во втором таком варианте устройство дополнительно снабжено не менее чем одним обращенным к экрану источником широкополосного оптического излучения, расположенным с внешней стороны экрана.
В третьем варианте все слои материала, обладающего электрооптическим эффектом, расположены в многослойной структуре регулярно, то есть с постоянным шагом между слоями, при этом размер стороны пикселей равен половине шага между этими слоями.
Согласно еще одному варианту слои материала, обладающего электрооптическим эффектом, расположены в многослойной структуре с шагом между этими слоями, находящимся в диапазоне от 50 до 75 нанометров.
Также предложена дополнительная модификация, согласно которой толщина каждого слоя материала, обладающего электрооптическим эффектом, равна размеру стороны пикселей.
Кроме того, предложена дополнительная модификация, согласно которой общая толщина слоев материала, обладающего электрооптическим эффектом, находится в интервале от до 4 до 15 микрометров.
Существо предлагаемого технического решения заключается в следующем. Для решения поставленной задачи автором фактически предложен способ синтезирования динамически управляемых фазовых объемных голограмм и устройство для его осуществления.
Группа изобретений поясняется чертежом, на котором схематично изображено устройство для визуализации изображений. На чертеже представлены экран 1, представляющий собой многослойную структуру, которая содержит чередующиеся слои материала, обладающего электрооптическим эффектом 2, и слои из прозрачного для оптического излучения материала, не обладающего этим эффектом 3, причем слои, обладающие электрооптическим эффектом, электрически изолированы друг от друга, и каждый из них выполнен в виде матрицы электрически управляемых элементов - пикселей 4. На чертеже также изображен обращенный к экрану источник широкополосного оптического излучения 5, установленный с внешней (обращенной к наблюдателю) стороны экрана 1, и элемент механической связи источника 5 с экраном 6. Для удобства пояснения существа предложенных технических решений на чертеже также изображены восстанавливаемый (наблюдаемый) точечный источник света (суть элемента любого сколь угодно сложного объемного изображения) и глаз наблюдателя 8, защищенный от прямого излучения источника широкополосного излучения источника 5 элементом механической связи 6. Вместо источника излучения может использоваться естественное солнечное излучение. При этом экран 6 ориентируют таким образом, чтобы он был освещен солнечным светом.
Предложенное для реализации способа устройство работает следующим образом. Широкополосное излучение от источника 5 (источника белого света) направляется на экран 1, выполненный в виде чередующихся слоев 2 и 3. В качестве среды для формирования синтезируемых динамически изменяющихся голограмм согласно предложенному способу следует использовать любой материал, из которого можно изготовить матрицу электрически управляемых элементов (пикселей 4), в которых электрически управляемым оптическим параметром (изменяемой оптической характеристикой) является показатель преломления. Соответственно, в предложенном устройстве из известных подобных материалов предложено использовать материалы с явно выраженным электрооптическим эффектом, в частности арсенид галлия и ниобат лития.
В результате выполненный согласно предложению экран устройства 1 представляет собой трехмерную матрицу электрически управляемых фазовых элементов 4.
При освещении такого экрана источником широкополосного оптического излучения (источником «белого света») 1 в результате дифракции на объемной интерференционной фазовой решетке, составленной из пикселей 4, оптическое излучение будет частично отражаться. Попадая в зрительный аппарат человека 8, отраженное от устройства излучение формирует для наблюдателя изображение, например изображение точечного источника 7. Конкретный вид изображения определяется подаваемым на трехмерную матрицу пикселей распределением управляющего напряжения.
Как известно, обычные объемные голограммы являются результатом фоторегистрации картины интерференции во встречных пучках двух когерентных волн - так называемой опорной волны и волны от голографируемого объекта. Пространственная частота образующейся интерференционной картины определяется углом схождения волновых фронтов и длиной волны используемого источника излучения, составляя в предельном случае половину длины волны источника.
Образующаяся объемная интерференционная картина, в случае ее успешной регистрации, может быть использована по схеме «на отражение» для восстановления изображения исходного объекта, причем в качестве восстанавливающей волны допустимо использовать широкополосный источник (источник белого света) благодаря спектральной селективности образующейся объемной интерференционной картины.
Предложенная группа технических решений является результатом исследования возможности синтеза объемных фазовых интерференционных решеток - аналогов объемных голограмм во встречных пучках. В качестве исходной информации о подлежащей синтезу объемной интерференционной решетке может быть использовано реальное распределение картины интерференции при записи этой картины методами классической топографии (с освещением объекта когерентным пучком или пучками света и получением интерференционной картины во встречных пучках). В качестве исходной информации о подлежащей синтезу объемной интерференционной решетке также может быть использовано расчетное распределение картины интерференции. В последнем случае, как известно, каждая точка объекта может быть взаимно однозначно представлена в виде предполагаемого распределения интерференционной картины при взаимодействии излучения от этой точки и пучка когерентного излучения с фронтом, соответствующим фронту пучка, который предполагается использовать для освещения синтезированной голограммы. Фактически, изображению каждой предполагаемой к восстановлению точки объекта может быть взаимно однозначно представлена соответствующая ей интерференционная объемная картина, представляющая собой объемную картину интерференции (объемная зоновая картина Френеля) от точечного источника излучения и опорной волны.
Отметим, что описание возможных методов получения исходной информации о распределении интерференционной картины, подлежащей синтезу, приведено здесь для пояснения существа предложения, не является предметом настоящего изобретения и не является существенным для достижения ожидаемого технического результата. Таким же образом, для проекции видеоизображений в известном способе и устройстве не является существенным метод получения информации о распределении напряжений, которое необходимо подать на пиксели для формирования изображения.
Существенным для достижения ожидаемого технического эффекта является обеспечение возможности синтеза динамически управляемых объемных фазовых структур, близких по своему физическому устройству к объемным голограммам во встречных пучках.
Автором проведены исследования вопроса о возможности представления таких голограмм в виде набора матриц электрически управляемых элементов. В результате исследования установлено, что в качестве теоретической основы для решения задачи синтеза требуемых структур может быть использован предложенный автором пространственный аналог известной теоремы о выборке (теоремы Котельникова). Как известно, согласно теореме о выборке для дискретизации временных сигналов необходимо осуществлять выборку (дискретизацию сигнала) с частотой, как минимум вдвое превышающей наиболее высокую спектральную составляющую дискретизируемого сигнала. Применительно к решаемой задаче, автором было теоретически обосновано, а затем экспериментально подтверждено предположение, что в области трехмерного представления интерференционных картин также существует правило предельной частоты дискретизации. Для выявления этого правила любую сколь угодно сложную трехмерную интерференционную картину предложено рассматривать как суперпозицию синусоидально изменяющихся независимых пространственных решеток по трем координатам, т.е. в виде трехмерного представления Фурье при использовании в качестве переменных так называемых пространственных частот, измеряемых в единицах, размерность которых обратна единице длины.
В упрощенном виде выявленное правило может быть сформулировано следующим образом: для успешной дискретизации трехмерной интерференционной картины необходимо использовать шаг пространственной дискретизации по каждой из пространственных координат с пространственной частотой, превышающей удвоенную предельную пространственную частоту дискретизируемой интерференционной картины, взятую в проекции этой картины на соответствующую координату.
Как показали результаты осуществленного автором математического моделирования, применительно к поставленной задаче визуализации изображений в видимом (воспринимаемом человеческим глазом) диапазоне длин волн, это обозначает необходимость формирования электрически управляемых матричных структур с шагом между слоями не более 256 нанометров и с размером пикселя в каждой матрице не более 128 нанометров. При этом для сохранения эффекта спектральной селективности, как показали результаты экспериментальных исследований, общая толщина синтезируемой объемной фазовой картины должна быть не менее двух микрометров.
Если такую структуру осветить пучком широкополосного оптического излучения, а на пиксели подать распределение напряжений, соответствующее требуемой картине дискретизации расчетной или зарегистрированной голограммы, то со стороны освещения наблюдатель будет видеть восстановленное изображение, динамически изменяющееся сообразно скорости и характеру изменения распределения напряжений на пикселях.
Качество восстанавливаемого при помощи синтезируемой голограммы изображения может быть улучшено, если для восстановления изображения использовать не произвольный, а конкретный источник оптического излучения. В дополнительных вариантах реализации предложенного устройства, оно дополнительно снабжено конкретным источником широкополосного излучения, устанавливаемым с внешней (обращенной к наблюдателю) стороны экрана. Естественно, источник должен быть установлен за пределами апертуры (наблюдаемой поверхности) экрана и должен быть выполнен так, чтобы не заслонять экран и чтобы прямое излучение этого источника не попадало в зрительный аппарат наблюдателя. При этом любой установленный источник имеет конкретный фронт излучения, что облегчает задачу математического моделирования.
Фактически, для этого конкретного случая реализации, в слоях материала, обладающего электрооптическим эффектом, для визуализации изображения точечного источника излучения (суть элемента любого сколь угодно сложного изображения), необходимо сформировать картину распределения показателя преломления (путем подачи соответствующего распределения напряжения), соответствующую дискретизированной картине регистрации результата интерференции точечного источника, подлежащего восстановлению, с когерентным ему источником, расположенным в том месте, где расположен восстанавливающий источник белого света, причем с теми же характеристиками фронта излучения.
Исследование возможностей улучшения качества синтезируемых голограмм за счет регуляризации и дальнейшего уменьшения размера дискретизации (шага между слоями и размера пикселей) показало, что предпочтительным вариантом для реализации заявленного способа является устройство, в котором расположение матриц электрически управляемых элементов в многослойной структуре регулярно, то есть с постоянным шагом между слоями, при размере стороны пикселей, равным половине шага между этими слоями. Экспериментальным путем (при помощи математического моделирования) установлено, что предпочтительный размер дискретизации, обеспечивающий экономически эффективный баланс между качественными характеристиками формируемых изображений и требованиями к микроминиатюризации, для формирования синтезированных объемных изображений во всем диапазоне наблюдаемого спектра оптического излучения в пределах всей апертуры экрана обеспечивается при шаге между матрицами электрически управляемых элементов, находящемся в диапазоне от 50 до 75 нанометров. При этом выявлено, что наилучшие качественные характеристики формируемых изображений будут обеспечиваться при регулярности дискретизации по всем координатам, то есть при толщине каждого слоя материала, обладающего электрооптическим эффектом, равной размеру стороны пикселей.
Дальнейшее исследование зависимости качества восстанавливаемого изображения от количества формируемых слоев показало, что предпочтительный размер общей толщины слоев, обладающих электрооптическим эффектом, обеспечивающий экономически эффективный баланс между качественными характеристиками формируемых изображений и требованиями к микроминиатюризации, находится в интервале от до 4 до 15 микрометров.
Таким образом, предложенный способ визуализации изображений, равно как и предложенное устройство для его реализации, решают поставленную задачу с достижением ожидаемых технических результатов.

Claims (10)

1. Способ визуализации изображений, заключающийся в том, что пучком широкополосного оптического излучения освещают матрицу электрически управляемых элементов - пикселей, при этом на пиксели подают напряжение, распределение которого по матрице рассчитано из условия формирования требуемого изменения текущих оптических характеристик пикселей, и наблюдают изображение, отличающийся тем, что осуществляют освещение пучком оптического излучения одновременно блока матриц пикселей, в котором матрицы установлены параллельно друг другу, причем освещают матрицы с той же стороны, с какой наблюдают изображение, а в качестве изменяемой оптической характеристики пикселей во всех этих матрицах используют показатель преломления.
2. Способ по п.1, отличающийся тем, что подаваемое напряжение рассчитано из условия формирования изменения показателя преломления в пикселях, соответствующее дискретизированной по числу и расположению имеющихся пикселей интерференционной картине голограммы изображений во встречных пучках.
3. Способ по п.1, отличающийся тем, что используют пиксели с размером стороны пикселя не более 128 Нм, а блок матриц имеет общую толщину не менее 2 мкм с шагом не более 256 Нм.
4. Устройство для визуализации изображений, включающее экран, представляющий собой многослойную структуру, выполненную из материалов, прозрачных для электромагнитного излучения оптического диапазона, отличающееся тем, что многослойная структура содержит чередующиеся слои материала, обладающего электрооптическим эффектом, и слои прозрачного материала, не обладающего этим эффектом, причем все слои, обладающие электрооптическим эффектом, электрически изолированы друг от друга, и каждый из них выполнен в виде матрицы электрически управляемых элементов - пикселей, причем матрицы установлены параллельно друг другу с возможностью освещения с той же стороны, с какой наблюдают изображение.
5. Устройство по п.4, отличающееся тем, что многослойная структура имеет толщину не менее 2 мкм и выполнена с размером стороны пикселя не более 128 Нм, при этом слои материала, обладающего электрооптическим эффектом, расположены в многослойной структуре с шагом не более 256 Нм.
6. Устройство по п.4, отличающееся тем, что оно дополнительно снабжено не менее чем одним обращенным к экрану источником широкополосного оптического излучения, расположенным с внешней стороны экрана.
7. Устройство по п.4, отличающееся тем, что все слои материала, обладающего электрооптическим эффектом, расположены в многослойной структуре регулярно, то есть с постоянным шагом между слоями, при этом размер стороны пикселей равен половине шага между этими слоями.
8. Устройство по п.4, отличающееся тем, что слои материала, обладающего электрооптическим эффектом, расположены в многослойной структуре с шагом между этими слоями, находящимся в диапазоне от 50 до 75 Нм.
9. Устройство по п.4, отличающееся тем, что толщина каждого слоя материала, обладающего электрооптическим эффектом, равна размеру стороны пикселей.
10. Устройство по п.4, отличающееся тем, что суммарная толщина слоев материала, обладающего электрооптическим эффектом, находится в интервале от 4 до 15 мкм.
RU2008112738/28A 2008-04-03 2008-04-03 Способ визуализации изображений и устройство для его реализации RU2378673C1 (ru)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2008112738/28A RU2378673C1 (ru) 2008-04-03 2008-04-03 Способ визуализации изображений и устройство для его реализации
JP2010529892A JP2011501217A (ja) 2008-04-03 2008-09-24 画像可視化方法及びその方法を実施する装置
CN2008801263149A CN101939706A (zh) 2008-04-03 2008-09-24 用于可视化图像的方法以及用于执行该方法的装置
PCT/RU2008/000618 WO2009123500A1 (ru) 2008-04-03 2008-09-24 Способ визуализации изображений и устройство для его реализации
EP08873692A EP2267558A4 (en) 2008-04-03 2008-09-24 IMAGE VISUALIZATION METHOD AND CORRESPONDING DEVICE
US12/733,689 US20100194668A1 (en) 2008-04-03 2008-09-24 Method for visualizing images and a device for performing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008112738/28A RU2378673C1 (ru) 2008-04-03 2008-04-03 Способ визуализации изображений и устройство для его реализации

Publications (2)

Publication Number Publication Date
RU2008112738A RU2008112738A (ru) 2009-10-10
RU2378673C1 true RU2378673C1 (ru) 2010-01-10

Family

ID=41135772

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008112738/28A RU2378673C1 (ru) 2008-04-03 2008-04-03 Способ визуализации изображений и устройство для его реализации

Country Status (6)

Country Link
US (1) US20100194668A1 (ru)
EP (1) EP2267558A4 (ru)
JP (1) JP2011501217A (ru)
CN (1) CN101939706A (ru)
RU (1) RU2378673C1 (ru)
WO (1) WO2009123500A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2574346C1 (ru) * 2014-07-09 2016-02-10 Татьяна Олеговна Иванова Способ панорамного видеонаблюдения и устройство для его осуществления

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8625306B2 (en) * 2006-08-28 2014-01-07 Youngtack Shim Electromagnetically-countered display systems and methods
CN103246073B (zh) * 2013-05-22 2015-06-24 天津中天证照印刷有限公司 一种动态立体图像的合成***
CN103246074B (zh) * 2013-05-22 2015-04-01 天津中天证照印刷有限公司 一种动态立体图像的合成方法
DE102015101687A1 (de) * 2015-02-05 2016-08-11 Carl Zeiss Jena Gmbh Verfahren und Vorrichtungen zur Dateneinspiegelung
CN106338905B (zh) * 2016-10-31 2017-11-14 京东方科技集团股份有限公司 一种显示装置及其显示方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2079620A1 (en) * 1991-10-25 1993-04-26 Roeland M. T. Hekker Holographic elements for an optical recording system
RU2064206C1 (ru) * 1991-12-26 1996-07-20 Физический институт им.П.Н.Лебедева РАН Лазерный экран электронно-лучевой трубки и способ его изготовления
JP3238755B2 (ja) * 1992-08-21 2001-12-17 富士通株式会社 ホログラムの作成および立体表示方法並びに立体表示装置
JP3338479B2 (ja) * 1992-09-18 2002-10-28 富士通株式会社 ホログラムの作成および立体表示方法並びに立体表示装置
US5581378A (en) * 1993-02-01 1996-12-03 University Of Alabama At Huntsville Electro-optical holographic display
US5751452A (en) * 1993-02-22 1998-05-12 Nippon Telegraph And Telephone Corporation Optical devices with high polymer material and method of forming the same
JP3393935B2 (ja) * 1994-09-16 2003-04-07 株式会社東芝 ホログラムディスプレイ
RU2115148C1 (ru) * 1996-09-20 1998-07-10 Научно-производственная фирма "Эксцентр" при Саратовском государственном университете Устройство для электронного формирования трехмерного голографического изображения
US5973727A (en) * 1997-05-13 1999-10-26 New Light Industries, Ltd. Video image viewing device and method
RU2168707C2 (ru) 1997-09-19 2001-06-10 Инофирма Корнинг Инкорпорейтед Объемная фазовая голограмма и способ ее получения
WO2000003274A1 (en) * 1998-07-08 2000-01-20 Digilens, Inc. Switchable holographic optical system
JP3576852B2 (ja) * 1999-02-10 2004-10-13 日本電気株式会社 ホログラフィテレビジョン素子およびホログラフィテレビジョン装置
RU2189619C1 (ru) 2001-01-10 2002-09-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт телевидения" Очки для наблюдения цветных стереотелевизионных изображений
JP4089371B2 (ja) * 2002-09-24 2008-05-28 セイコーエプソン株式会社 透過型スクリーン及びリア型プロジェクタ
RU2256206C1 (ru) 2004-08-09 2005-07-10 Дуняшев Эдварт Сулейманович Проектор
RU2306678C1 (ru) 2006-02-07 2007-09-20 Василий Александрович ЕЖОВ Автостереоскопический дисплей с квазинепрерывным спектром ракурсов
US20070211319A1 (en) * 2006-03-09 2007-09-13 Canon Kabushiki Kaisha Display apparatus, hologram reproduction apparatus and apparatus utilizing hologram

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2574346C1 (ru) * 2014-07-09 2016-02-10 Татьяна Олеговна Иванова Способ панорамного видеонаблюдения и устройство для его осуществления

Also Published As

Publication number Publication date
CN101939706A (zh) 2011-01-05
JP2011501217A (ja) 2011-01-06
EP2267558A1 (en) 2010-12-29
WO2009123500A1 (ru) 2009-10-08
EP2267558A4 (en) 2011-10-05
US20100194668A1 (en) 2010-08-05
RU2008112738A (ru) 2009-10-10

Similar Documents

Publication Publication Date Title
KR101427057B1 (ko) 홀로그램 계산 방법
RU2378673C1 (ru) Способ визуализации изображений и устройство для его реализации
CN103777432B (zh) 空间光调制器及其光场三维显示***
CN104272198B (zh) 一种在光调制装置中编码全息图的方法
TWI376535B (en) Method, device and use of device for reading out information encoded on light modulators
KR20080096505A (ko) 비디오 홀로그램용 디스플레이 장치에 화상 내용을멀티모드로 표시하기 위한 방법 및 멀티모드 디스플레이장치
JPH0635392A (ja) 立体表示装置
CN106940486A (zh) 一种显示装置及其显示方法
JPH0682612A (ja) 回折格子アレイおよびそれを用いた立体像表示装置
JP3338479B2 (ja) ホログラムの作成および立体表示方法並びに立体表示装置
KR101292370B1 (ko) 디지털 홀로그램을 이용하는 3차원 영상 표시 장치
JP2000304912A (ja) 回折格子パターン
Lin et al. Augmented reality using holographic display
Zheng et al. A novel three-dimensional holographic display system based on LC-R2500 spatial light modulator
Ma et al. Resolution-improved holographic stereogram for dual-view 3D display based on integral imaging
Yoon et al. A spatial light modulating LC device applicable to amplitude-modulated holographic mobile devices
KR102099142B1 (ko) 공간 광 변조 패널 및 이를 이용한 입체 영상 표시장치
Wang Principle and Outlook of Holography
KR20150073458A (ko) 디지털 홀로그램 영상 재생 장치 및 그 장치에 의한 입체 영상 재생 방법
Škereň et al. Design and visualization of synthetic holograms for security applications
Tsuchiyama et al. Full-color high-definition CGH reconstructing hybrid scenes of physical and virtual objects
JP3951576B2 (ja) 回折格子パターン
Müller et al. Multicolor Holographic Display of 3D Scenes Using Referenceless Phase Holography (RELPH). Photonics 2021, 8, 247
Tsuchiyama et al. A Simulation technique for selection of color filter used for full-color high-definition CGH
US20220253017A1 (en) Beam expanding film and holographic display apparatus including the same

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20110615

MM4A The patent is invalid due to non-payment of fees

Effective date: 20120404