RU2340632C2 - Способ высушивания способных к биологическому разрушению полимеров - Google Patents

Способ высушивания способных к биологическому разрушению полимеров Download PDF

Info

Publication number
RU2340632C2
RU2340632C2 RU2004124244/04A RU2004124244A RU2340632C2 RU 2340632 C2 RU2340632 C2 RU 2340632C2 RU 2004124244/04 A RU2004124244/04 A RU 2004124244/04A RU 2004124244 A RU2004124244 A RU 2004124244A RU 2340632 C2 RU2340632 C2 RU 2340632C2
Authority
RU
Russia
Prior art keywords
drying
poly
biomass
polymer
aforementioned
Prior art date
Application number
RU2004124244/04A
Other languages
English (en)
Other versions
RU2004124244A (ru
Inventor
Сабэн БУАЛИ (CA)
Сабэн БУАЛИ
Жюли ГОДЭ (CA)
Жюли ГОДЭ
Марко БЛУЭН (CA)
Марко БЛУЭН
Лоран МАСАРО (CA)
Лоран МАСАРО
Патрик ЛАПУЭНТ (CA)
Патрик ЛАПУЭНТ
Original Assignee
Биоматера Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Биоматера Инк. filed Critical Биоматера Инк.
Publication of RU2004124244A publication Critical patent/RU2004124244A/ru
Application granted granted Critical
Publication of RU2340632C2 publication Critical patent/RU2340632C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/32Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
    • F26B3/34Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
    • F26B3/347Electromagnetic heating, e.g. induction heating or heating using microwave energy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/20Post-etherification treatments of chemical or physical type, e.g. mixed etherification in two steps, including purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/22Post-esterification treatments, including purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/06Drying; Forming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/08Concentration of starch suspensions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • C08B5/02Cellulose nitrate, i.e. nitrocellulose
    • C08B5/04Post-esterification treatments, e.g. densification of powders, including purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • C08G63/90Purification; Drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides

Abstract

Изобретение относится к способам высушивания или концентрирования растворов полимеров. Техническая задача - разработка способа высушивания биополимеров без их разрушения. Предложен способ высушивания или концентрирования способного к биологическому разрушению полимера, выбранного из полигидроксиалканоата, поликапролактона, полимерной молочной кислоты, полигликолевой кислоты, поли(лактогликолевой) кислоты, полимерной янтарной кислоты, или их смеси, или их сополимеров. Полимер, содержащийся в растворе или биомассе, подвергают воздействию СВЧ-излучения на период времени, достаточный для уменьшения концентрации полярного растворителя в вышеупомянутом растворе или биомассе соответственно на 0,0001-100%. Указанное воздействие вызывает разрушение полимера от 0 до 25%. 6 з.п. ф-лы, 13 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к способу высушивания или концентрирования растворов. В частности, оно относится к процессу высушивания полярного раствора способного к биологическому разрушению полимера (далее биоразлагаемого полимера) или биомассы и процессу концентрирования полярного раствора, содержащего биоразлагаемый полимер или биомассу.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Биоразлагаемые полимеры, такие как полигидроксиалканоаты (ПГА), представляют большой интерес и, как следствие, являются интересным новым источником полимеров для предметов широкого потребления. До последнего времени интерес к производству ПГА был вызван тем, что их физические свойства являются сходными со свойствами полимеров, получаемых из нефтехимических источников (полиэтилен, полипропилен), но, в отличие от полимеров на основе нефтепродуктов, ПГА являются как биосовместимыми, так и биоразлагаемыми. Потенциал всемирного рынка для биоразлагаемых и биосовместимых полимеров огромен. Полигидроксиалканоат (ПГА) является химическим термином для специального класса семейства полиэфиров. ПГА являются биополимерами, которые в основном производятся внутриклеточно многими микроорганизмами в качестве соединений, запасающих энергию. Наиболее обычным ПГА биополимером является ПГБ (полигидроксибутират). В данное семейство можно объединить более 90 различных мономеров, способных образовывать материалы с чрезвычайно различающимися интересными свойствами. ПГА обладают преимуществом, поскольку являются биоразлагаемыми и обладают термопластичными или эластомерными свойствами. ПГА нашли коммерческое применение в разнообразных изделиях из пластмассы, в производстве упаковки (продукты бытовой химии, личной гигиены и пищевая упаковка), бумажных покрытий, медицинских имплантатах и гигиенических продуктах (одноразовые салфетки или бумага).
Использование биоразлагаемых ПГА полимеров будет хорошей альтернативой полимерам на основе нефтепродуктов, особенно если производство и экстракция ПГА будут обходиться дешевле. Процесс извлечения ПГА из исходного биологического материала обычно включает получение биомассы, содержащей ПГА, лизирование бактериальных клеток, экстрагирование ПГА из клеток, отделение ПГА от других компонентов биологического исходного материала и извлечение ПГА.
Некоторые процедуры предварительной обработки (используемые для ослабления клеток или стимулирования их лизиса) могут требовать высушивания биомассы. Высушивание обычно осуществляется под вакуумом, на лотке внутри туннельной печи с принудительной циркуляцией воздуха, с помощью высушивания аэрозоля или на сублимационной сушке (лиофилизация). Высушивание суспензии клеток или раствора ПГА является обязательным этапом, который имеет место во многих других стадиях при производстве ПГА и экстракции. Процессы высушивания в основном требуются перед экстракцией ПГА из биомассы и после извлечения ПГА из раствора, обогащенного ПГА.
Патент США №6087471 описывает экстракцию ПГА из сухой биомассы с помощью эффективного растворителя, обедненного ПГА, и в данном случае этап растворения осуществляют при температуре выше температуры кипения растворителя, обедненного ПГА, и под давлением. Растворитель, обогащенный ПГА, отделяют от остатка нерастворившейся биомассы, и затем понижают температуру растворителя, обогащенного ПГА, вызывая осаждение ПГА. Осадок ПГА отделяют с помощью фильтрации. ПГА в форме порошка получают в результате высушивания в вакуумной печи в течение ночи при 50°С.
В Патенте США №5821299 описывается извлечение ПГА из сухой биомассы (высушенной под вакуумом, высушенной из аэрозоля, лиофильно высушенной или высушенной на лотке при 30°С в туннельной печи с принудительной циркуляцией воздуха) путем обработки биомассы растворителем для ПГА и веществом, предельно нерастворяющим ПГА. Нерастворимую биомассу удаляют, оставляя, таким образом, раствор ПГА и предельно нерастворяющее ПГА вещество. Растворитель с ПГА удаляют и получают суспензию осажденного ПГА в предельно нерастворяющем ПГА веществе. ПГА в форме порошка получают фильтрацией и высушиванием.
Патент США №6043063 описывает методику экстракции ПГА из сухой биомассы путем растворения ПГА и получения растворителя, обогащенного ПГА, и остаточного материала биомассы; далее остаточную биомассу отделяют от растворителя, обогащенного ПГА, и извлекают ПГА полимер из растворителя, обогащенного ПГА. Полимер извлекают с помощью фильтрации, отмывки и высушивания в вакуумной печи в течение ночи при 45-50°С.
Высушивание биомассы, извлеченной после стадии ферментации, также может служить интересной альтернативой, обеспечивающей долговременную консервацию биомассы и предотвращение размножения микроорганизмов. Важность высушивания при производстве ПГА объясняет необходимость наличия простых и экономичных процессов высушивания растворов ПГА или биомассы после стадии ферментации для уменьшения производственных затрат для биоразлагаемых ПГА полимеров, сравнимых с синтетическими полимерами на основе нефтепродуктов.
Концентрирование суспензии клеток или раствора биоразлагаемого ПГА полимера часто требуется перед каждой новой химической обработкой (например, перед предварительной обработкой биомассы, экстракцией ПГА растворителем, промывкой различными химическими веществами и ферментативной обработкой) в процессе производства ПГА. Концентрирование суспензии клеток или раствора ПГА обычно осуществляется центрифугированием.
Европейский патент №А-0015669 описывает диапазон концентраций (от 5 до 15% по весу твердой биомассы), который получается после концентрирования суспензии клеток при центрифугировании. Суспензию клеток, должно быть, предпочтительнее предварительно концентрировать центрифугированием перед процессом экстракции (осуществляемой объединением растворителя с водной суспензией разрушенных клеток).
При производстве нескольких типов биоразлагаемых полимеров требуется проведение стадии высушивания или концентрирования. Например, полимерная молочная кислота (ПМК) может быть получена прямой конденсацией молочной кислоты или в результате полимеризации циклического димера лактида путем раскрытия кольца.
В Патенте США №5142023 описывается способ непрерывного получения полилактидного полимера из молочной кислоты, включающий удаление воды или растворителя для того, чтобы сконцентрировать молочную кислоту перед полимеризацией. Стадия концентрирования осуществляется упариванием значительной части водной среды.
Также может быть довольно интересным или необходимым высушивание биоразлагаемого полимера перед процессом горячего формования для удаления всех следов воды или полярных растворителей. Таким образом, настоятельно рекомендуется обеспечить высушивание, которое можно применить на любой стадии во время процесса производства биоразлагаемого полимера. Настоящее изобретение относится к высушиванию или процессу концентрирования раствора с использованием методик радиационного нагрева (инфракрасный свет, радиочастоты, сверхвысокие частоты (СВЧ) и электрическое сопротивление, используемые в качестве источника получения тепла).
Способ индукционной сушки является примером способа радиационного нагрева, который уже коммерчески используется для производства синтетических полимеров, не разлагающихся биологически. В некоторых процессах производства полимеров необходимо удалять растворители и/или воду из полимера. Патент США №4055001 описывает применение процессов индукционной сушки при производстве бутилкаучука. Воду и органические растворители удаляют из неполярных материалов, пропуская указанные материалы на пневматическом конвейере через резонатор, работающий при определенной СВЧ. CN. Патент №1231297 описывает метод высушивания коллоидного высокомолекулярного полимера в СВЧ нагревательном оборудовании. Время СВЧ нагревания составляет менее 10 минут, сокращается потребление энергии и возрастает эффективность производства.
Исследователи из ЛЭХМЭМ (Лаборатория электрохимических методик и электрометодик Гидро-Квебек, Квебек, Канада) изучили методики радиационного нагрева (инфракрасный свет, радиочастоты, СВЧ и электрическое сопротивление, используемые в качестве источника получения тепла), используемые для основных применений высушивания. Они обнаружили, что методики радиационного нагрева уменьшают выброс газов, вызывающих парниковый эффект, и увеличивают эффективность высушивания по сравнению с методиками конвекции или теплопереноса. Методики радиационного нагрева также были признаны интересной альтернативой методикам традиционного нагрева.
При использовании способов радиационного нагрева вместо современных процессов высушивания (тепловой обработки, вакуумного высушивания, высушивания из аэрозоля, сублимационной сушки, высушивания на лотке в туннельной печи с принудительной циркуляцией воздуха или лиофилизации) время, требуемое для полного высушивания образца, затраты на инфраструктуру и потребление энергии значительно снижаются. Следовательно, методики радиационного нагрева являются хорошей альтернативой процессам традиционного нагрева.
Полигидроксиалканоаты принадлежат к семейству полиэфиров. Когда они подвергаются горячему формованию, полимеры являются очень чувствительными к гидролизу, что приводит к уменьшению их молекулярного веса. Следовательно, перед процессом горячего формования очень важно, а порой и критично, высушить их, чтобы удалить все следы воды (процент увлажнения должен быть ниже 0,02%).
Было бы очень желательно иметь новую методику высушивания для высушивания биополимеров без их разрушения.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Одной из целей настоящего изобретения является обеспечение способа высушивания или концентрирования раствора биоразлагаемого полимера или биомассы, включающее помещение раствора или биомассы, содержащих полимер, под воздействие СВЧ на период времени, достаточный для уменьшения концентрации раствора или биомассы в пропорциях между примерно 0,0001-100%. Полимер может быть синтетическим или природным, он может быть выбран из группы, состоящей из полиэфиров, полисахаридов, полиспиртов, поликислот, или их смеси, или их сополимера.
В соответствии с настоящим изобретением здесь представлен способ высушивания или концентрирования полиэфира, который может быть выбран из группы, состоящей из полигидроксиалканоата, поликапролактона, полимерной молочной кислоты, полигликолевой кислоты, поли(лактогликолевой) кислоты, полимерной янтарной кислоты, или их смеси, или их сополимера, или полиспирта, который может быть выбран из поливинилового спирта, целлюлозы или их производных.
Сверхвысокие частоты, используемые в процессе настоящего изобретения, могут быть выбраны между примерно 915-2450 МГц и с мощностью примерно 100-1500 Вт.
Другой целью настоящего изобретения является обеспечение способа, в котором высушивание или концентрирование осуществляется с менее чем 5% разрушения полимера в растворе или биомассе.
Растворитель, используемый для растворения полимеров, может быть водной средой, например водой, или полярным органическим растворителем, который может быть выбран из группы, состоящей из спирта, амина, амида, галогенпроизводного, цианида, альдегида, кислоты, кетона, сложного эфира, тиола и сульфоксида.
Также способ согласно данному изобретению может быть осуществлен для концентрирования или высушивания полигидроксиалканоата, который может быть выбран из группы, состоящей из поли-3-гидроксибутирата, поли-3-гидроксивалерианата, поли-3-гидроксипентаноата, поли-3-гидроксигексаноата, поли-3-гидроксигептаноата, поли-3-гидроксиоктаноата, поли-3-гидроксинонаноата, поли-3-гидроксидеканоата, поли-3-гидроксидодеканоата, поли-4-гидроксибутирата и ПГА со средней длиной цепи, или их смеси, или их сополимера.
Процесс, описанный в настоящем изобретении, позволяет высушивать и/или концентрировать биополимер или способный к биологическому разрушению (биоразлагаемый) полимер в растворе или в биомассе при отсутствии или небольшой степени разрушения биополимера. Уровень разрушения может варьироваться от 0 до 25%. Предпочтительнее, чтобы уровень разрушения составлял от 0 до 10%, а еще предпочтительнее от 0 до 2%.
Для целей настоящего изобретения ниже приведено объяснение следующих терминов.
Термин "биополимеры" предназначен для обозначения полимеров, полученных из природных или возобновляемых источников.
Термин "латекс" здесь предназначен для обозначения суспензии гранул ПГА и/или частиц в воде. Гранулы ПГА могут находиться в их природном состоянии (аморфном), повторно аморфизованном или повторно суспендированном в воде. Природный ПГА определяется как гранулы ПГА, полученные путем бактериальной ферментации, которые не были осаждены, следовательно, их степень кристаллизации остается близкой или слегка повышенной по сравнению с той, которая была в бактериях.
Термины "гранулы" и/или "частицы" здесь предназначены для обозначения сегментов биополимеров сферической формы.
Термин "биомасса" обозначает источники, из которых экстрагируется ПГА. Эти источники включают одноклеточные организмы, такие как бактерии или грибы, и организмы, такие как растения. Биомассой могут являться организмы "дикого" типа или виды, подвергшиеся генетическому воздействию и специально созданные для получения специфического ПГА. Такие модифицированные организмы получают введением генетической информации (полученной из бактерий, которые естественным образом производят ПГА), чтобы получать один или более типов ПГА.
Термин "растения" здесь предназначен для обозначения любого генно-инженерного растения, созданного для производства ПГА. Предпочтительны такие растения, как зерна злаков, масличные культуры и корнеплоды, более предпочтительны авокадо, ячмень, свекла, кормовые бобы, гречиха, морковь, кокосовые орехи, копра, кукуруза (маис), хлопчатник, тыквенные, чечевица, лимская фасоль, просо, маш, овес, масличная пальма, горох, арахис, картофель, тыква, рапсовые (например, канола), табак, пшеница и ямс. Также генетически измененные фруктовые растения включают (но не ограничиваются) яблоко, абрикос, банан, канталупскую дыню, вишню, виноград, кумкват, лимон, лайм, апельсин, папайю, персик, грушу, ананас, мандарин, томат и арбуз.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
ФИГ.1 показывает высушивание биомассы при низком уровне мощности СВЧ;
Фиг.2 показывает высушивание ПГБВ латекса при низком уровне мощности СВЧ;
Фиг.3 показывает высушивание ПГБВ латекса при высоком уровне мощности СВЧ;
Фиг.4 показывает неизмененный биополимер JG-B011 после 5 мин обработки СВЧ при 50% уровне мощности;
Фиг.5 показывает неизмененный биополимер JG-B011 после 2 мин обработки СВЧ мощностью 550 Вт;
Фиг.6 показывает переработанную биомассу после воздействия СВЧ;
Фиг.7 показывает биомассу, подвергшуюся воздействию СВЧ в течение 1 мин при мощности 1100 Вт;
Фиг.8 показывает высушенную биомассу после 2 мин воздействия СВЧ при мощности 1100 Вт;
Фиг.9 показывает высушенную биомассу после 1 мин воздействия СВЧ при мощности 550 Вт;
Фиг.10 показывает высушенную биомассу после 2 мин воздействия СВЧ при мощности 550 Вт; и
Фиг.11 показывает высушенную биомассу после 4 мин воздействия СВЧ при мощности 550 Вт.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНОГО ВАРИАНТА
Ниже настоящее изобретение будет описано более подробно со ссылками на сопровождающие чертежи, на которых показаны предпочтительные варианты изобретения. Данное изобретение может, однако, быть воплощено в разнообразных многочисленных формах и не должно интерпретироваться как ограниченное лишь вариантами, представленными здесь; до некоторой степени эти варианты обеспечены для того, чтобы данное раскрытие было всесторонним и полным, и они полностью передают область действия изобретения для тех, кто обладает соответствующими знаниями.
В соответствии с настоящим изобретением здесь приведен новый процесс высушивания биополимеров и биомассы. Биополимеры получены из природных источников или являются производными процесса ферментации.
В соответствии с настоящим изобретением здесь приведен новый процесс концентрирования биополимеров и биомассы. Биополимеры получены из природных источников или являются производными процесса ферментации.
Процесс, описываемый в данном изобретении, относится к использованию методик радиационного нагрева для высушивания или концентрирования биоразлагаемого полимера или раствора биомассы во время процесса его производства. Методики радиационного нагрева могут использоваться вместо традиционных процессов концентрирования раствора (центрифугирования) или как очень привлекательная альтернатива современным процессам высушивания (тепловой обработке, вакуумному высушиванию, высушиванию из аэрозоля, сублимационной сушке или высушиванию на лотке в туннельной печи с принудительной циркуляцией воздуха). Иллюстрацией типов биоразлагаемых полимеров, которые могут быть высушены с помощью методик настоящего изобретения, являются следующие.
Биоразлагаемые полимеры, содержащие следующее повторяющееся звено:
Figure 00000001
где n является целым числом от 0 до 9, a R1 является Н, алкилом или алкенилом. Алкильные и алкенильные боковые цепи предпочтительно длиной от С1 до С20 углеродных атомов и могут содержать гетероатомы. Биоразлагаемые полимеры могут быть гомополимерами с одинаковыми повторяющимися мономерными звеньями и/или сополимерами с двумя различными повторяющимися мономерными звеньями. Когда биоразлагаемые полимеры являются ПГА полимерами, то они могут быть получены из растений или микроорганизмов как природных, так и генно-инженерных или полученных синтетически.
Биоразлагаемые полимеры, содержащие два различных случайно повторяющихся мономерных звена. Два случайно повторяющихся звена имеют различную структуру, включающую следующую основную структуру:
Figure 00000002
где n от 0 до 9, а R1 является Н или цепью от С1 до С20.
В соответствии с другим вариантом настоящего изобретения типами биоразлагаемых полимеров, которые могут быть высушены или сконцентрированы методом, описанным в данном изобретении, являются целлюлоза или биоразлагаемые полимеры модифицированной целлюлозы, биоразлагаемые полимеры на основе крахмала, ПВС (поливиниловый спирт), другие полиэфиры, такие как ПМК, ПГК и ПКЛ биоразлагаемые полимеры.
Иллюстрацией типа биомассы, которая может быть высушена методом, описанным в данном изобретении, являются биомассы, выбранные из группы, состоящей из организмов (растений, бактерий) как природных, так и генетически модифицированных.
Данное изобретение относится к способу высушивания или концентрирования раствора, содержащего любой вид биоразлагаемого полимера, который обычно получают в ходе процесса, содержащего хотя бы одну стадию высушивания или концентрирования раствора биоразлагаемого полимера, где раствор содержит любой из полярных растворителей. Данное изобретение также относится к процессу высушивания или концентрирования раствора, содержащего более чем один вид биоразлагаемых полимеров.
Радиационное высушивание может осуществляться на оборудовании любого типа, использующего излучение в качестве источника нагревания. Было обнаружено, что летучее содержимое биомассы или растворов биоразлагаемых полимеров может быть значительно сокращено при использовании радиационного высушивания. Примером методики радиационного нагрева может служить индукционная сушка. Во время процесса индукционной сушки биомассы или раствора биоразлагаемого полимера образец подвергается воздействию СВЧ-излучения. Полярные растворители и вода отвечают за СВЧ-энергию, поэтому они могут быть удалены из образца. Промышленные частоты обычно используемого СВЧ-излучения составляют 915 МГц и 2450 МГц. Некоторые условия могут варьироваться во время процесса высушивания, и несколько подобных примеров приведено ниже. В промышленных условиях раствор биоразлагаемого полимера или биомасса могут быть помещены на лоток или вибрационный лоток, где высушиваются или концентрируются с помощью сочетания нескольких методик с использованием излучения (инфракрасный свет, радиочастоты, СВЧ и электрическое сопротивление, используемые в качестве источников получения тепла). Толщину слоя раствора биоразлагаемого полимера или биомассы на лотке можно регулировать для оптимизации времени и эффективности процесса высушивания. Методики радиационного нагрева можно также использовать в конечном процессе высушивания для удаления последних оставшихся нескольких процентов влаги без перегрева образца. Во время процесса высушивания в оборудование для радиационного нагрева следует также нагнетать сухой воздух, чтобы уменьшить время высушивания и удалить газы (пары воды и растворителей).
Использование способа радиационного нагрева вместо применяемых в настоящее время процессов высушивания (тепловой обработки, вакуумного высушивания, высушивания из аэрозоля, сублимационной сушки, высушивания на лотке в туннельной печи с принудительной циркуляцией воздуха или лиофилизации) значительно сокращает время, требуемое на полное высушивание образца. Например, минимальное требуемое время для процесса лиофилизации биомассы приблизительно составляет 24 часа, а процесс высушивания (в вакуумной печи при 45-50°С), который применяется при извлечении ПГА из растворителя, обогащенного ПГА, занимает приблизительно 12 часов. В отличие от стандартных процессов высушивания способ радиационного нагрева позволяет сократить время высушивания до нескольких минут или часов в зависимости от условий высушивания.
Этот другой подход к высушиванию раствора биоразлагаемых полимеров или биомассы значительно сократит время обработки при производстве биоразлагаемого полимера. Высокая эффективность применения радиационного нагрева для высушивания раствора биоразлагаемого полимера или биомассы позволит сократить затраты на производство биоразлагаемого полимера.
Настоящее изобретение гораздо легче понять, используя приведенные ниже примеры, которые даны для иллюстрации данного изобретения, а не для ограничения его области действия.
ПРИМЕР I
Высушивание биомассы при низком уровне мощности СВЧ (10%)
Биомассу, содержащую ПГБВ (93% гидроксибутират - 7% гидроксивалерианат), получали в наших лабораториях в соответствии с нашим протоколом. Для процесса высушивания использовали микроволновую печь Сильвания (SM81004, с внутренней частью 1 кубический фут, потребляемой мощностью 1600 Вт и максимальной мощностью СВЧ 1100 Вт). 82,2 г биомассы помещали в микроволновую печь, высушивали в течение короткого промежутка времени (2 минуты) при уровне мощности 10%, извлекали из микроволновой печи, перемешивали и взвешивали. Эти стадии повторяли, пока не достигали постоянного веса образца. Кратковременные периоды экспозиции в микроволновой печи требовались для того, чтобы избежать переливания раствора через край. Перемешивание биомассы после каждого кратковременного периода экспозиции в микроволновой печи обеспечивало равномерное высушивание образца. При данных условиях для СВЧ на высушивание 82,2 г биомассы, которая содержала 46,5 вес.% воды, потребовалось 52 минуты (Фиг.1).
ПРИМЕР II
Высушивание ПГБВ латекса при низком уровне мощности СВЧ (10%)
Для процесса высушивания использовали латекс, содержащий ПГБВ (93% гидроксибутират - 7% гидроксивалерианат). Латекс содержал 15 вес.% ПГБВ в воде. Для процесса высушивания использовали микроволновую печь Сильвания (SM81004, с внутренней частью 1 кубический фут, потребляемой мощностью 1600 Вт и максимальной мощностью СВЧ 1100 Вт). 18,49 г ПГБВ латекса помещали в микроволновую печь, высушивали в течение короткого промежутка времени (2 минуты) при уровне мощности 10%, извлекали из микроволновой печи, перемешивали и взвешивали. Эти стадии повторяли, пока не достигали постоянного веса образца.
Кратковременные периоды экспозиции в микроволновой печи требовались для того, чтобы избежать переливания раствора через край. Перемешивание биомассы после каждого кратковременного периода экспозиции в микроволновой печи обеспечивало равномерное высушивание образца. Чтобы оценить воздействие уровня мощности СВЧ на эффективность процесса высушивания, образец подвергали экспозиции в микроволновой печи при максимальном уровне мощности в течение двух минут. Высокая потеря образцом веса после 46 минут высушивания в микроволновой печи объяснялась кратковременной экспозицией в микроволновой печи в течение 2 минут при максимальном уровне мощности вместо 10%. При данных условиях для СВЧ на высушивание ПГБВ латекса потребовалось 88 минут (Фиг.2).
Чтобы проверить, не изменяет ли процесс высушивания с использованием СВЧ свойства полимера, охарактеризовывали ПГБВ полимер до и после процесса высушивания с помощью таких методик, как термогравиметрический анализ (ТГА), дифференциальная сканирующая калориметрия (ДСК) и размер-исключающая хроматография (РИХ). Сравнение физико-химических свойств РГБВ, полученного в процессе высушивания в микроволновой печи и полученного в процессе скоростного высушивания в вакууме, не показало никаких различий.
ПРИМЕР III
Высушивание ПГБВ латекса при высоком уровне мощности СВЧ (50%)
Для процесса высушивания использовали латекс, содержащий ПГБВ (93% гидроксибутират - 7% гидроксивалерианат). Латекс содержал 15 вес.% ПГБВ в воде.
Для процесса высушивания использовали микроволновую печь Сильвания (SM81004, с внутренней частью 1 кубический фут, потребляемой мощностью 1600 Вт и максимальной мощностью СВЧ 1100 Вт). 23,09 г ПГБВ латекса помещали в микроволновую печь, высушивали в течение короткого промежутка времени (от 30 секунд до 2 минут) при уровне мощности 50%, извлекали из микроволновой печи, перемешивали и взвешивали. Когда процесс высушивания в микроволновой печи осуществляли при уровне мощности выше 10%, требовалось уменьшать время экспозиции в микроволновой печи (с минут до секунд), чтобы избежать переливания раствора через край. Эти стадии повторяли, пока не достигали постоянного веса образца. Перемешивание биомассы после каждого кратковременного периода экспозиции в микроволновой печи обеспечивало равномерное высушивание образца. При данных условиях для СВЧ на высушивание ПГБВ латекса потребовалось 40 минут.
Чтобы проверить, не изменяет ли процесс высушивания с использованием СВЧ свойства полимера, охарактеризовывали ПГБВ полимер до и после процесса высушивания с помощью таких методик, как термогравиметричсский анализ (ТГА), дифференциальная сканирующая калориметрия (ДСК) и размер-исключающая хроматография (РИХ). Сравнение физико-химических свойств ПГБВ, полученного в процессе высушивания в микроволновой печи и полученного в процессе скоростного высушивания в вакууме, не показало никаких различий (Фиг.3).
Пример IV
Высушивание ПГБВ латекса при высоком уровне мощности СВЧ (100%)
Для процесса высушивания использовали латекс, содержащий ПГБВ (92% гидроксибутират - 8% гидроксивалерианат). Латекс содержал 28 вес.% ПГБВ в воде. Для процесса высушивания использовали микроволновую печь Сильвания (SM81001, с внутренней частью 1 кубический фут, потребляемой мощностью 1600 Вт и максимальной мощностью СВЧ 1100 Вт). 64,42 г ПГБВ латекса помещали в микроволновую печь, высушивали в течение 20 сек при уровне мощности 100%, извлекали из микроволновой печи, перемешивали и взвешивали в течение 2 минут 10 секунд. Когда процесс высушивания в микроволновой печи выполняется при уровне мощности выше 10%, требуется меньше времени микроволнового воздействия (минуты и секунды) для того, чтобы избежать переливания раствора через край. Эти стадии повторяли, пока не достигали постоянного веса образца. Перемешивание биомассы после каждого кратковременного периода микроволнового воздействия обеспечивало равномерное высушивание образца. При данных условиях требуется 90 минут для высушивания ПГБВ латекса.
Чтобы проверить, не изменяет ли процесс высушивания с использованием СВЧ свойства полимера, охарактеризовывали ПГБВ полимер до и после процесса высушивания с помощью таких методик, как термогравиметрический анализ (ТГА), дифференциальная сканирующая калориметрия (ДСК) и размер-исключающая хроматография (РИХ). Сравнение физико-химичеких свойств ПГБВ, полученного в процессе высушивания в микроволновой печи и полученного в процессе скоростного высушивания в вакууме, не показало никаких различий (Фиг.12).
Пример V
Высушивание суспензии ПГБВ и метанола при высоком уровне мощности СВЧ (50%)
Для процесса высушивания использовали раствор, содержащий ПГБВ (92% гидроксибутират - 8% гидроксивалерианат) и метанол (минимум 99% чистоты). Раствор содержал 42 вес.% ПГБВ в метаноле. Для процесса высушивания использовали микроволновую печь Сильвания (SM81001, с внутренней частью 1 кубический фут, потребляемой мощностью 1600 Вт и максимальной мощностью СВЧ 1100 Вт). 13,8 г ПГБВ раствора помещали в микроволновую печь, высушивали в течение короткого периода времени (30 сек) при уровне мощности 50%, извлекали из микроволновой печи, перемешивали и взвешивали в течение 1 минуты. Когда процесс высушивания в микроволновой печи выполняется при уровне мощности выше 10%, требуется меньше времени микроволнового воздействия (минуты и секунды) для того, чтобы избежать переливания раствора через край. Эти стадии повторяли, пока не достигали постоянного веса образца. Перемешивание биомассы после каждого кратковременного периода микроволнового воздействия обеспечивало равномерное высушивание образца. При данных условиях требуется 15 минут для высушивания ПГБВ раствора (Фиг.13).
Чтобы проверить, не изменяет ли процесс высушивания с использованием СВЧ свойства полимера, охарактеризовывали ПГБВ полимер до и после процесса высушивания с помощью таких методик, как термогравиметрический анализ (ТГА), дифференциальная сканирующая калориметрия (ДСК) и размер-исключающая хромагография (РИХ). Сравнение физико-химичеких свойств ПГБВ, полученного в процессе высушивания в микроволновой печи и полученного в процессе скоростного высушивания в вакууме, не показало никаких различий.
Данное изобретение относится к процессу высушивания или концентрирования раствора, содержащего биоразлагаемые полимеры любого типа, которые обычно получают с помощью процесса, содержащего, по крайней мере, одну стадию высушивания раствора биоразлагаемого полимера или концентрирования раствора биоразлагаемого полимера, раствор которого содержит полярные растворители любого типа или смеси полярных растворителей. Данное изобретение также относится к процессу высушивания или концентрирования раствора, содержащего более чем один тип биоразлагаемых полимеров.
Внешний вид производных ПГА после обработки в микроволновой печи при различных условиях показан на Фиг.4-11.
В то время как данное изобретение было описано в связи со специфическими вариантами, следует понимать, что возможны дальнейшие модификации, и его применение направлено на то, чтобы покрыть любые варианты, области применения и приспособления для данного изобретения, следуя, в общем случае, принципам данного изобретения и включая такие отступления от настоящего изложения, которые находятся среди известных, или являются обычной практикой в областях, к которым принадлежит данное изобретение, и может быть применено к основным характеристикам, изложенным выше, и относится к следующим утверждениям, приведенным в приложении.

Claims (7)

1. Способ высушивания или концентрирования способного к биологическому разрушению полимера, содержащегося в растворе или биомассе, согласно которому вышеупомянутые раствор или биомассу подвергают воздействию СВЧ-излучения на период времени, достаточный для уменьшения концентрации полярного растворителя в вышеупомянутых растворе или биомассе соответственно на 0,0001-100%, при этом указанный полимер выбирают из группы, состоящей из полигидроксиалканоатов, поликапролактона, полимерной молочной кислоты, полигликолевой кислоты, поли(лактогликолевой) кислоты, полимерной янтарной кислоты, или их смеси, или их сополимеров, а указанное воздействие вызывает разрушение указанного полимера от 0 до 25%.
2. Способ по п.1, где вышеупомянутый полимер является синтетическим или природным полимером.
3. Способ по п.1, где вышеупомянутое СВЧ-излучение находится между 915 и 2450 МГц.
4. Способ по п.1, где вышеупомянутое СВЧ-излучение имеет мощность от 100 до 1100 Вт.
5. Способ по п.1, где вышеупомянутое высушивание или концентрирование осуществляются с менее чем 5% разрушения вышеупомянутого биополимера.
6. Способ по п.1, где вышеупомянутый полигидроксиалканоат выбирается из группы, состоящей из поли-3-гидроксибутирата, поли-3-гидроксивалерианата, поли-3-гидроксипентаноата, поли-3-гидроксигексаноата, поли-3-гидроксигептаноата, поли-3-гидроксиоктаноата, поли-3-гидроксинонаноата, поли-3-гидроксидеканоата, поли-3-гидроксидодеканоата, поли-4-гидроксибутирата и полигидроксиалканоата со средней длиной цепи, или их смеси, или их сополимера.
7. Способ по п.1, где вышеупомянутый полярный растворитель выбирается из группы, состоящей из воды, спирта, амина, амида, галогенпроизводного, цианида, альдегида, кислоты, кетона, сложного эфира, тиола и сульфоксида.
RU2004124244/04A 2002-01-22 2003-01-22 Способ высушивания способных к биологическому разрушению полимеров RU2340632C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34943002P 2002-01-22 2002-01-22
US60/349,430 2002-01-22

Publications (2)

Publication Number Publication Date
RU2004124244A RU2004124244A (ru) 2005-05-27
RU2340632C2 true RU2340632C2 (ru) 2008-12-10

Family

ID=27613278

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004124244/04A RU2340632C2 (ru) 2002-01-22 2003-01-22 Способ высушивания способных к биологическому разрушению полимеров

Country Status (11)

Country Link
US (1) US20050223587A1 (ru)
EP (1) EP1468102B1 (ru)
JP (1) JP4323957B2 (ru)
CN (1) CN100406567C (ru)
AT (1) ATE432357T1 (ru)
AU (1) AU2003201573B2 (ru)
BR (1) BRPI0307077A2 (ru)
CA (1) CA2473521C (ru)
DE (1) DE60327737D1 (ru)
RU (1) RU2340632C2 (ru)
WO (1) WO2003062438A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2467029C1 (ru) * 2011-10-25 2012-11-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ получения биоразлагаемых полиэфиров
RU2522564C2 (ru) * 2012-10-30 2014-07-20 Общество с ограниченной ответственностью "Техальцел" (ООО "Техальцел") Способ изготовления дисперсного природного полимера

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11001776B2 (en) * 2007-07-31 2021-05-11 Richard B. Hoffman System and method of preparing pre-treated biorefinery feedstock from raw and recycled waste cellulosic biomass
CN102816811B (zh) * 2011-06-10 2014-11-05 中国科学院过程工程研究所 微波干法或半干法预处理生物质的方法
US8524855B1 (en) * 2011-10-12 2013-09-03 The United States Of America, As Represented By The Secretary Of Agriculture Production of stable polyesters by microwave heating of carboxylic acid:polyol blends
CN106188315A (zh) * 2016-07-13 2016-12-07 段振华 一种马蹄淀粉微波干燥的方法
WO2019063739A1 (en) * 2017-09-28 2019-04-04 Rhodia Operations PROCESS FOR DRYING POLYSACCHARIDES
JP7080437B2 (ja) * 2019-05-29 2022-06-06 兼松エンジニアリング株式会社 連続抽出・乾燥装置
CN114294905B (zh) * 2021-11-19 2023-04-25 中粮生物科技股份有限公司 利用红外或微波干燥聚羟基脂肪酸酯的方法

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2428872A (en) * 1941-09-30 1947-10-14 Standard Oil Co Process and apparatus for contacting solids and gases
US4055001A (en) * 1971-11-18 1977-10-25 Exxon Research & Engineering Co. Microwave drying process for synthetic polymers
US3834038A (en) * 1972-09-14 1974-09-10 Gammaflux Inc Method for drying moldable resins
GB8412053D0 (en) * 1984-05-11 1984-06-20 Shell Int Research Biopolymer formulations
JPH02283772A (ja) * 1989-04-25 1990-11-21 Kanzaki Paper Mfg Co Ltd フレキソ型カプセルインキ組成物
US4971869A (en) * 1989-06-19 1990-11-20 Polaroid Corporation Color encoding photographic film
US4967486A (en) * 1989-06-19 1990-11-06 Glatt Gmbh Microwave assisted fluidized bed processor
US6495656B1 (en) * 1990-11-30 2002-12-17 Eastman Chemical Company Copolyesters and fibrous materials formed therefrom
US5142023A (en) * 1992-01-24 1992-08-25 Cargill, Incorporated Continuous process for manufacture of lactide polymers with controlled optical purity
US5480575A (en) * 1992-12-03 1996-01-02 Lever Brothers, Division Of Conopco, Inc. Adjuncts dissolved in molecular solid solutions
US20030198617A1 (en) * 1993-03-04 2003-10-23 Lawrence Green Pharmaceutical tryptophan containing dipeptide compositions and methods of use thereof
DE4318471A1 (de) * 1993-06-03 1994-12-08 Thomae Gmbh Dr K Eintopf-Mischer-Granulator-Trockner
US5821299A (en) * 1996-02-16 1998-10-13 The Proctor & Gamble Company Solvent extraction of polyhydroxy-alkanoates from biomass facilitated by the use of marginal nonsolvent
ATE196314T1 (de) * 1996-10-25 2000-09-15 Us Health Verfahren und zusammensetzungen zur verhinderung von entzündungen und angiogenese enthaltend säugetieren cd97 alpha untereinheit
US20040013664A1 (en) * 1997-01-14 2004-01-22 Gentz Reiner L. Tumor necrosis factor receptors 6 alpha & 6 beta
US6120751A (en) * 1997-03-21 2000-09-19 Imarx Pharmaceutical Corp. Charged lipids and uses for the same
US6090800A (en) * 1997-05-06 2000-07-18 Imarx Pharmaceutical Corp. Lipid soluble steroid prodrugs
DE19712708A1 (de) * 1997-03-26 1998-10-01 Thueringisches Inst Textil Getrocknete kontaminationsarme Hydrokolloide und Hydrogele
US20020177188A1 (en) * 1998-05-15 2002-11-28 Genentech, Inc. IL-17 homologous polypeptides and therapeutic uses thereof
DE69837914T2 (de) * 1997-04-15 2008-02-21 Metabolix, Inc., Cambridge Hochtemperatur-PHA Extraktion mit schlecht-lösenden Lösungsmittel für PHA
US6548047B1 (en) * 1997-09-15 2003-04-15 Bristol-Myers Squibb Medical Imaging, Inc. Thermal preactivation of gaseous precursor filled compositions
US6123923A (en) * 1997-12-18 2000-09-26 Imarx Pharmaceutical Corp. Optoacoustic contrast agents and methods for their use
WO1999032627A2 (en) * 1997-12-23 1999-07-01 The United States Of America, Represented By The Secretary, Department Of Health And Human Services The protein tyrosine kinase substrate lat and its use in the identification of (ant)agonists of the kinase
JP2002506077A (ja) * 1998-03-11 2002-02-26 アンドルシェルシュ・インコーポレイテッド タイプ5およびタイプ317β−ヒドロキシステロイドデヒドロゲナーゼのインヒビターおよびその使用法
AU752285B2 (en) * 1998-05-07 2002-09-12 University Of Maryland At Baltimore A method for diagnosing and treating chronic pelvic pain syndrome
US20020182673A1 (en) * 1998-05-15 2002-12-05 Genentech, Inc. IL-17 homologous polypedies and therapeutic uses thereof
US7771719B1 (en) * 2000-01-11 2010-08-10 Genentech, Inc. Pharmaceutical compositions, kits, and therapeutic uses of antagonist antibodies to IL-17E
US6175037B1 (en) * 1998-10-09 2001-01-16 Ucb, S.A. Process for the preparation of (meth)acrylate esters and polyester (meth)acrylates using microwave energy as a heating source
US6092301A (en) * 1998-11-13 2000-07-25 Komanowsky; Michael Microwave drying of hides under vacuum in tanning equipment
ATE289205T1 (de) * 1998-12-15 2005-03-15 Takeda Pharmaceutical Verfahren zur herstellung biologisch-abbaubarer polyester
CN1079402C (zh) * 1999-01-04 2002-02-20 白银有色金属公司 一种高分子聚合物胶体的干燥方法
US6960439B2 (en) * 1999-06-28 2005-11-01 Source Precision Medicine, Inc. Identification, monitoring and treatment of disease and characterization of biological condition using gene expression profiles
CA2380924C (en) * 1999-08-13 2008-02-19 University Of Maryland Biotechnology Institute Compositions for treating viral infections, and methods therefor
US20030203451A1 (en) * 2000-08-24 2003-10-30 Genentech, Inc. IL-17 homologous polypeptides and therapeutic uses thereof
US20090035261A1 (en) * 2000-03-21 2009-02-05 Jian Chen IL-17 homologous polypeptides and therapeutic uses thereof
JP2001340095A (ja) * 2000-03-28 2001-12-11 Canon Inc 生体細胞からのポリヒドロキシアルカン酸の分離方法
US20020106348A1 (en) * 2000-07-12 2002-08-08 Peng Huang Cancer therapeutics involving the administration of 2-methoxyestradiol and an agent that increases intracellular superoxide anion
US6818203B2 (en) * 2000-08-11 2004-11-16 Schering Aktiengesellschaft Use of perfluoroalkyl-containing metal complexes as contrast media in MR-imaging for visualization of plaque, tumors and necroses
WO2002044183A2 (en) * 2000-12-01 2002-06-06 Guilford Pharmaceuticals Inc. Benzoazepine and benzodiazepine derivatives and their use as parp inhibitors
US20030004299A1 (en) * 2001-03-02 2003-01-02 Regents Of The University Of Minnesota Production of polyhydroxyalkanoates
US7794994B2 (en) * 2001-11-09 2010-09-14 Kemeta, Llc Enzyme-based system and sensor for measuring acetone
KR20040064275A (ko) * 2001-11-09 2004-07-16 소스 프리시전 메디슨, 인코포레이티드 유전자 발현 프로파일을 이용한 질병의 동정, 모니터링,치료 및 생물학적 상태의 확인
KR20030061675A (ko) * 2002-01-11 2003-07-22 뉴 아이스 리미티드 생분해성 또는 부패성 컨테이너
US6703216B2 (en) * 2002-03-14 2004-03-09 The Regents Of The University Of California Methods, compositions and apparatuses for detection of gamma-hydroxybutyric acid (GHB)
AU2003264077C1 (en) * 2002-08-20 2009-06-11 B.R.A.I.N. Biotechnology Research And Information Network Ag Isolation and cloning of DNA from uncultivated organisms
CA2518150C (en) * 2003-03-03 2015-08-11 Board Of Regents, The University Of Texas System Methods and compositions involving mda-7
US20050026890A1 (en) * 2003-07-31 2005-02-03 Robinson Cynthia B. Combination of dehydroepiandrosterone or dehydroepiandrosterone-sulfate with an antihistamine for treatment of asthma or chronic obstructive pulmonary disease
US20050239998A1 (en) * 2004-03-04 2005-10-27 Koichi Kinoshita Method for producing polyhydroxyalkanoate
US7510813B2 (en) * 2004-06-24 2009-03-31 Canon Kabushiki Kaisha Resin-coated carrier for electrophotographic developer
WO2006031554A2 (en) * 2004-09-10 2006-03-23 Novozymes North America, Inc. Methods for preventing, removing, reducing, or disrupting biofilm
KR101386494B1 (ko) * 2005-05-10 2014-04-24 인사이트 코포레이션 인돌아민 2,3-디옥시게나제의 조절제 및 이의 사용방법
CA2614930A1 (en) * 2005-07-11 2007-01-18 Wyeth Glutamate aggrecanase inhibitors
JP5294874B2 (ja) * 2005-12-20 2013-09-18 インサイト・コーポレイション インドールアミン2,3−ジオキシゲナーゼのモジュレーターとしてのn−ヒドロキシアミジノヘテロ環
CA2637245A1 (en) * 2006-01-17 2007-07-26 Signal Pharmaceuticals, Llc Inhibitors of tnf.alpha., pde4 and b-raf, compositions thereof and methods of use therewith
WO2007087427A2 (en) * 2006-01-25 2007-08-02 Synta Pharmaceuticals Corp. Thiazole and thiadiazole compounds for inflammation and immune-related uses
CN101522687A (zh) * 2006-01-30 2009-09-02 阿雷生物药品公司 用于癌症治疗的杂二环噻吩化合物
EP2001880A2 (en) * 2006-03-07 2008-12-17 Array Biopharma, Inc. Heterobicyclic pyrazole compounds and methods of use
US20080124372A1 (en) * 2006-06-06 2008-05-29 Hossainy Syed F A Morphology profiles for control of agent release rates from polymer matrices
WO2008036642A2 (en) * 2006-09-19 2008-03-27 Incyte Corporation N-hydroxyamidinoheterocycles as modulators of indoleamine 2,3-dioxygenase
CL2007002650A1 (es) * 2006-09-19 2008-02-08 Incyte Corp Compuestos derivados de heterociclo n-hidroxiamino; composicion farmaceutica, util para tratar cancer, infecciones virales y desordenes neurodegenerativos entre otras.
US8779154B2 (en) * 2006-09-26 2014-07-15 Qinglin Che Fused ring compounds for inflammation and immune-related uses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIGHTSEY G. et al. "Evaluation of microwave and radio-frequency drying in the acid hydrolysis of biomass". The Journal of Microwave Power and Electromagnetic Energy, Vol.23, No.1, 1988, p.11-15. RYYNANEN S. et al. "The dielectric properties of native starch solutions - a research note". The Journal of Microwave Power and Electromagnetic Energy, Vol.31, No.1, 1996, p.50-53. ROUSSY G. et al. "A chemical-physical model for describing microwave paper drying". The Journal of Microwave Power, Vol.19, No.4, 1984, p.243-250. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2467029C1 (ru) * 2011-10-25 2012-11-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ получения биоразлагаемых полиэфиров
RU2522564C2 (ru) * 2012-10-30 2014-07-20 Общество с ограниченной ответственностью "Техальцел" (ООО "Техальцел") Способ изготовления дисперсного природного полимера

Also Published As

Publication number Publication date
AU2003201573B2 (en) 2009-02-26
US20050223587A1 (en) 2005-10-13
CN100406567C (zh) 2008-07-30
JP2005514954A (ja) 2005-05-26
RU2004124244A (ru) 2005-05-27
EP1468102A1 (en) 2004-10-20
ATE432357T1 (de) 2009-06-15
CN1643155A (zh) 2005-07-20
BRPI0307077A2 (pt) 2017-06-20
CA2473521C (en) 2014-04-15
JP4323957B2 (ja) 2009-09-02
CA2473521A1 (en) 2003-07-31
DE60327737D1 (de) 2009-07-09
WO2003062438A1 (en) 2003-07-31
EP1468102B1 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
Fredi et al. Recycling of bioplastic waste: A review
Aramvash et al. An environmentally friendly and efficient method for extraction of PHB biopolymer with non-halogenated solvents
RU2340632C2 (ru) Способ высушивания способных к биологическому разрушению полимеров
JP4201834B2 (ja) Phaに対する制限付き非溶媒の使用により容易化されたバイオマスからのポリヒドロキシアルカノエートの溶媒抽出
US6087471A (en) High temperature PHA extraction using PHA-poor solvents
JP4422776B2 (ja) 植物からポリヒドロキシアルカノエートを単離する方法
JPH11511025A (ja) バイオマスからのポリヒドロキシアルカノエートの溶媒抽出
CA2191570C (en) Process for recovering polyhydroxyalkanoates using air classification
US7226765B2 (en) Solvent extraction of polyhydroxyalkanoates from biomass
Furrer et al. Efficient recovery of low endotoxin medium-chain-length poly ([R]-3-hydroxyalkanoate) from bacterial biomass
EP1874996A2 (en) Extracting biopolymers from a biomass using ionic liquids
BR112015026766B1 (pt) método de processamento de ácidos hidroxicarboxílicos
AU2003201573A1 (en) Method of drying biodegradable polymers
US5899339A (en) Process for recovering polyhydroxyalkanoates using centrifugal fractionation
SATHESH et al. Effective Utilization and Management of Coir Industrial waste for the Production of poly-β-hydroxybutyrate (PHB) using the Bacterium Azotobacter Beijerinickii
EP4320256A1 (en) Process for producing polyhydroxyalkanoates for food packages
Aslam et al. Bioconversion of agricultural wastes to polyhydroxybutyrate by Azotobacter vinelandii.

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130123