RU2317254C1 - Способ переработки содосульфатной смеси - Google Patents

Способ переработки содосульфатной смеси Download PDF

Info

Publication number
RU2317254C1
RU2317254C1 RU2006136337/15A RU2006136337A RU2317254C1 RU 2317254 C1 RU2317254 C1 RU 2317254C1 RU 2006136337/15 A RU2006136337/15 A RU 2006136337/15A RU 2006136337 A RU2006136337 A RU 2006136337A RU 2317254 C1 RU2317254 C1 RU 2317254C1
Authority
RU
Russia
Prior art keywords
solution
neutralization
temperature
sodium sulfate
soda
Prior art date
Application number
RU2006136337/15A
Other languages
English (en)
Inventor
Алексей Евгеньевич Меньков
Владимир Яковлевич Пиввуев
Original Assignee
Общество с ограниченной ответстственностью Торговый дом "Карбалан"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответстственностью Торговый дом "Карбалан" filed Critical Общество с ограниченной ответстственностью Торговый дом "Карбалан"
Priority to RU2006136337/15A priority Critical patent/RU2317254C1/ru
Application granted granted Critical
Publication of RU2317254C1 publication Critical patent/RU2317254C1/ru

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение относится к технологии переработки содосульфатной смеси. Способ переработки содосульфатной смеси заключается в том, что предварительно нагретый до температуры не ниже 93°С раствор содосульфатной смеси нейтрализуют в каскаде химических реакторов в несколько стадий с применением серной кислоты на каждой стадии. После нейтрализации при достигнутой температуре раствор подают в каскад емкостей для завершения нейтрализации и формирования осадка, при этом продолжительность пребывания нейтрализованного раствора в каскаде емкостей составляет не менее 20 мин. Далее отделяют осадок путем фильтрации с последующей сушкой очищенного раствора в аппарате кипящего слоя при температуре в слое наполнителя, равной 100-120°С. Нейтрализацию целесообразно осуществлять, по меньшей мере, в две стадии. Изобретение позволяет снизить затраты за счет упрощения способа, обеспечить его технологичность за счет непрерывной подачи реагентов и исключения вспенивания реакционной массы при сохранении свойств конечного продукта. 1 з.п. ф-лы.

Description

Изобретение относится к технологии переработки содосульфатной смеси.
Известен способ переработки содосульфатной смеси (RU 2188794), выбранный в качестве прототипа, включающий операции по обработке осаждающим реагентом до рН 7,0-5,8 раствора содосульфатной смеси, предварительно нагретого до 60-95°С, при этом обработку раствора осуществляют в течение 15 мин, по окончании процесса обработки полученную суспензию выдерживают при температуре 85-108°С° в течение не менее 20 мин, далее отделяют осадок, полученный раствор упаривают и отделяют кристаллы сульфата натрия. Содосульфатную смесь перед обработкой растворяют в оборотном растворе.
Конечным продуктом, получаемым данным способом, является кристаллический сульфат натрия, отвечающий требованиям ГОСТ 21458-75.
Известный способ является периодическим, в него включены операции, связанные с продолжительностью осуществления процессов: обработки раствора содосульфатной смеси (в течение 15 мин) и выдержки полученной суспензии (в течение 20 мин).
В масштабах алюминиевого производства, осуществляемого на действующем оборудовании заводов, временные параметры существенно отражаются на режиме производства. Так, серная кислота вводится в количестве, необходимом для полной нейтрализации всего приготовленного объема содосульфатной смеси, процесс проводится периодически в одной емкости. Организация массового производства потребует установки оборудования больших размеров либо нескольких технологических линий, отрицательно влияющих на затраты, связанные с проведением способа.
Кроме того, упаривание раствора с последующим отделением кристаллов и циркуляцией оборотных растворов является весьма энергоемким процессом, влияющим на увеличение затрат на переработку содосульфатной смеси. Упаривание раствора осуществляется в выпарных аппаратах, где обогрев осуществляется паром, что отрицательно сказывается на экономичности процесса.
Следует отметить, что содосульфатная смесь содержит ~80% сульфата натрия (Na2SO4) и ~20% соды (карбоната натрия, Na2CO3). Водный раствор карбоната натрия, являясь солью сильного основания (NaOH) и слабой кислоты (Н2СО3), имеет сильную щелочную реакцию, чем и объясняется высокий показатель рН 11 раствора содосульфатной смеси. Нейтрализация раствора содосульфатной смеси серной кислотой происходит по реакции:
Figure 00000001
Реакция между раствором соды и серной кислотой протекает очень бурно, с разогревом и выделением большого количества углекислого газа (CO2), что при быстром смешивании реагентов в требуемых для полной нейтрализации количествах приводит к резкому вскипанию и сильному вспениванию реакционной массы за счет бурного выделения углекислого газа.
В прототипе во избежание вскипания и вспенивания при нейтрализации следует вводить серную кислоту в раствор содосульфатной смеси медленно при перемешивании, длящемся не менее 15 мин и при температурах до 95°С, т.е. ниже температуры кипения, равной 108°С.
При нейтрализации ниже температуры кипения раствора возможно частичное растворение CO2 в реакционной массе, а также неполная реакция, часть исходных компонентов могут остаться в непрореагированном состоянии, что приводит к вспениванию раствора при его дальнейшем упаривании, проводимом при температуре кипения. Ведение процесса при температуре ниже температуры кипения для обеспечения максимально полной нейтрализации также приводит к необходимости подачи серной кислоты в избытке для получения кислотности рН 5,8-7. Таким образом, избыточная подача серной кислоты характеризует известный способ как затратный.
Задача, на решение которой направлено заявляемое техническое решение, заключается в снижении затрат за счет упрощения способа; в обеспечении его технологичности за счет непрерывной подачи реагентов и исключения вспенивания реакционной массы. Перечисленные результаты достигаются при сохранении свойств конечного продукта, соответствующего ГОСТ 21458-75.
Поставленная задача решается тем, что в способе переработки содосульфатной смеси предварительно нагретый до температуры не ниже 93°С раствор содосульфатной смеси нейтрализуют в каскаде химических реакторов в несколько стадий с применением серной кислоты на каждой стадии, после нейтрализации при достигнутой температуре раствор подают в каскад емкостей для завершения нейтрализации и формирования осадка, при этом продолжительность пребывания нейтрализованного раствора в каскаде емкостей составляет не менее 20 мин, далее отделяют осадок путем фильтрации с последующей сушкой очищенного раствора в сушилке кипящего слоя при температуре в слое наполнителя, равной 100-120°С.
В заявляемом способе нейтрализацию целесообразно осуществлять, по меньшей мере, в две стадии.
Использование каскадов химических реакторов и емкостей обусловлено необходимостью обеспечения непрерывности процесса переработки содосульфатной смеси.
Нейтрализацию раствора содосульфатной смеси осуществляют путем введения серной кислоты в непрерывном динамическом режиме в каскад химических реакторов. Такой режим введения серной кислоты обеспечивает снижение кислотности в несколько стадий, определяемых количеством реакторов в каскаде, при этом число стадий не должно превышать число реакторов.
Целесообразно осуществлять нейтрализацию, как минимум, в две стадии, при этом оптимальным является осуществление нейтрализации в три стадии в каскаде трех реакторов, т.к. это решает следующие проблемы.
В первом реакторе происходит первая стадия нейтрализация, заключающаяся в частичной нейтрализации содосульфатной смеси от первоначального значения рН, равного 11, до значения рН, например, в пределах 9-10. Частичная нейтрализация происходит при подаче серной кислоты в небольшом количестве - примерно 1/3 от всего необходимого для полной нейтрализации количества.
Частично нейтрализованная реакционная масса самотеком из первого реактора непрерывно поступает во второй реактор, где происходит нейтрализация на второй стадии. При этом серная кислота подается в том же небольшом количестве, обеспечивающем дальнейшую частичную нейтрализацию, например, до значения рН 8-9. Реакционная масса, нейтрализованная до достигнутого значения кислотности на второй стадии, самотеком перетекает в третий реактор, где происходит завершающая стадия нейтрализации подаваемой серной кислотой, рН на выходе из последнего реактора доводится до оптимального значения, принятого для условий промышленности 7,1-8,0.
Ввиду того что серная кислота на каждой стадии нейтрализации подается в виде части от всего необходимого количества для полной нейтрализации, реакция в одном реакторе протекает не столь бурно и не приводит к вспениванию реакционной массы.
Таким образом, несколько стадий нейтрализации, осуществляемой в каскаде химических реакторов, предопределяет непрерывный режим подачи серной кислоты в оптимальном количестве, исключающем ее избыток и сдвиг рН в сторону кислой среды, а также позволяет избежать вспенивания раствора за счет бурного выделения углекислого газа (СО2) на каждой стадии. Данное обстоятельство позволяет вести процесс с большей скоростью и при более высоких температурах, вплоть до температуры кипения (108°С), что позволяет достичь полной нейтрализации соды и исключить параметр «время обработки». Более высокая температура, т.е выше 95°С, также позволяет избежать значительного растворения углекислого газа в реакционной массе и, соответственно, избежать вспенивания раствора при дальнейших стадиях его переработки. Известно, что с увеличением температуры повышается скорость химических реакций (В.А.Киреев. «Краткий курс физической химии», Госхимиздат, М., 1963, стр.465).
Известны способы, применяемые в химической и металлургической промышленности, содержащие признак «ступенчатая нейтрализация в каскаде реакторов», идентичный признаку заявляемого изобретения «нейтрализуют в несколько стадий». К ним относятся RU 2223249, RU 2174970. В известных способах ступенчатая нейтрализация в каскаде реакторов приводит к постепенному изменению кислотности раствора. Однако в заявляемом изобретении нейтрализация в несколько стадий проявляет дополнительное свойство, а именно: устраняет нежелательное вспенивание реакционной массы.
Для завершения нейтрализации раствор при достигнутой температуре 95-108°С подают в каскад химических аппаратов, применение которых дает преимущество, заключающееся в непрерывности осуществления способа в масштабах производства. При этом количество и объем емкостей рассчитывают исходя из продолжительности пребывания раствора в каскаде, составляющем не менее 20 мин, и значения температуры, не менее достигнутой при нейтрализации.
Указанные параметры времени и температуры дают возможность полностью удалить растворившийся при нейтрализации углекислый газ и, кроме того, позволяют формировать выпадающий из раствора осадок гидроокиси алюминия в легкофильтруемую хлопьевидную форму.
Так, в содосульфатной смеси в качестве примеси содержатся соединения алюминия: до 2% в пересчете на окись алюминия (Al2О3). В полученном нейтральном растворе, при достигнутом значении кислотности, соединения алюминия переходят в нерастворимую гидроокись алюминия Al(ОН)3, которая выпадает в осадок в виде крупных хлопьев, на поверхности которых адсорбируются остальные примеси: соединения кремния и железа. Это позволяет после нейтрализации очистить раствор от примесей путем фильтрации.
В условиях существующего алюминиевого производства оптимально подавать раствор в каскад, состоящий из пяти емкостей.
Операции заявляемого способа: нейтрализация, выдержка и фильтрация с получением очищенного раствора сульфата натрия - предопределяют получение конечного продукта с заданными свойствами, соответствующими ГОСТ 21458-75.
Последующей стадией способа является сушка очищенного раствора в сушилке кипящего слоя. Применение сушилки кипящего слоя позволяет исключить стадии упаривания, отделения кристаллов и их сушку, организацию возврата оборотных растворов в начало процесса, что приводит к упрощению способа.
Значение температуры кипящего слоя 100-120°С является оптимальным для получения готового продукта. При температуре ниже 100°С возможно получение т.н. «точки росы», когда водяные пары начинают конденсироваться и оседать на стенках аппарата (сушилки кипящего слоя), что приводит к налипанию на стенках материала и постепенной забивке и остановке сушилки. При температуре выше 120°С вследствие местных перегревов возможно сплавление высушиваемого материала в сушилке в крупные агломераты и резкое ухудшение работы сушилки.
Сушилка кипящего слоя дает другие преимущества, заключающиеся в том, что, во-первых, обогрев указанного аппарата осуществляется сравнительно дешевым природным газом, а не паром, как в выпарных аппаратах, применяемых в техническом решении прототипа (RU 2188794); во-вторых, сушка раствора в сушилке кипящего слоя с полным выносом высушенного материала позволяет получить более мелкодисперсный продукт, более однородный по размеру частиц.
Способ осуществляют следующим образом.
Сухая содосульфатная смесь в количестве 1000 кг с содержанием 75% (750 кг) сульфата натрия Na2SO4, 19% (190 кг) соды Na2CO3, 6% (60 кг) примесей в виде соединений алюминия, кремния и железа растворяется в воде до получения концентрации сульфата натрия 300-350 кг/м3. Указанная концентрация определяется тем, что при концентрациях ниже 300 кг/м3 раствор получается слишком слабый, что приводит к увеличению расхода газа при использовании сушилки кипящего слоя, при концентрациях выше 350 кг/м3 возможна кристаллизация сульфата натрия на ранних стадиях процесса, ухудшению его качества и возможным забивкам технологических трубопроводов и остановкам на их чистку.
Первоначальное значение рН 11. Полученный раствор разогревается до температуры 95°С и направляется в каскад трех реакторов, где в три стадии происходит нейтрализация серной кислотой H2SO4. При этом раствор за счет теплоты реакции на каждой стадии нейтрализации разогревается до 108°С. Нейтрализация проходит по вышеуказанной реакции (1). Из 190 кг соды по заданной реакции образуется 254 кг сульфата натрия. Суммарное количество сульфата натрия в растворе после нейтрализации составляет: 750+254=1004 кг.
После нейтрализации раствор из каскада реакторов поступает в каскад из пяти емкостей, представляющих собой цилиндрические баки с мешалками, теплоизолированные снаружи, оборудованные (при необходимости) системой подогрева раствора до требуемой температуры (95-108°С). Объем и количество баков выбирают исходя из условий конкретного производства и производительности схемы переработки содосульфатной смеси.
Сквозь каскад пяти баков за 20 мин проходит объем нейтрализованного раствора для завершения нейтрализации с формированием хлопьевидного осадка гидроокиси алюминия с примесями кремния и железа.
После отделения осадка фильтрацией очищенный раствор сульфата натрия поступает в сушилку кипящего слоя, представляющую собой вертикальный цилиндрический аппарат с центральным вводом теплоносителя в виде топочных газов, получаемых при сжигании природного газа в выносной топке. Топочные газы также являются и сжижающим агентом, в потоке которого происходит псевдокипение находящегося в сушилке инертного материала, например фарфоровых или стеклянных шариков, полиамидной крошки. Раствор распыляется сквозь форсунку на «кипящий» слой инертного материала, где за счет интенсивного теплообмена и перемешивания происходит быстрое удаление влаги. Высушенный материал - сульфат натрия измельчается за счет истирания при «кипении» и выносится из аппарата вместе с потоком теплоносителя. В дальнейшем продукт отделяется от газов в системе воздушных фильтров и направляется на упаковку. Испаренная влага вместе с отработанным теплоносителем, очищенным от пыли сульфата натрия, выбрасывается в атмосферу.
Технологические потери продукта при растворении, нейтрализации, сушке и упаковке составляют 3%. Выход готового продукта из 1000 кг содосульфатной смеси составит 1004×0,97=973 кг.

Claims (2)

1. Способ переработки содосульфатной смеси, согласно которому предварительно нагретый до температуры не ниже 93°С раствор содосульфатной смеси нейтрализуют в каскаде химических реакторов в несколько стадий с применением серной кислоты на каждой стадии, после нейтрализации при достигнутой температуре раствор подают в каскад емкостей для завершения нейтрализации и формирования осадка, при этом продолжительность пребывания нейтрализованного раствора в каскаде емкостей составляет не менее 20 мин, далее отделяют осадок путем фильтрации с последующей сушкой очищенного раствора в сушилке кипящего слоя при температуре в слое наполнителя, равной 100-120°С.
2. Способ по п.1, отличающийся тем, что нейтрализацию осуществляют, по меньшей мере, в две стадии.
RU2006136337/15A 2006-10-13 2006-10-13 Способ переработки содосульфатной смеси RU2317254C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006136337/15A RU2317254C1 (ru) 2006-10-13 2006-10-13 Способ переработки содосульфатной смеси

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006136337/15A RU2317254C1 (ru) 2006-10-13 2006-10-13 Способ переработки содосульфатной смеси

Publications (1)

Publication Number Publication Date
RU2317254C1 true RU2317254C1 (ru) 2008-02-20

Family

ID=39267176

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006136337/15A RU2317254C1 (ru) 2006-10-13 2006-10-13 Способ переработки содосульфатной смеси

Country Status (1)

Country Link
RU (1) RU2317254C1 (ru)

Similar Documents

Publication Publication Date Title
JP4537379B2 (ja) 籾殻の灰から沈降シリカを製造するプロセスおよび装置
JPS6031762B2 (ja) 大交換容量を有する無機質結晶性塩基交換物質の製造方法
RU2564806C2 (ru) Способ получения ультрачистого карбоната лития из технического карбоната лития и установка для его осуществления
JP7041728B2 (ja) タウリン最終母液を全回収する方法及び製造システム
CA2929880C (en) Production of red iron oxide pigment
CN106276935B (zh) 水玻璃联产白炭黑清洁化生产工艺
US10421674B2 (en) Process and plant for separating off and/or recovering nitrogen compounds from a liquid or sludge substrate
JP2014530160A (ja) 硫酸マグネシウム
CN205710248U (zh) 一种印染废水的零排放处理***
CN107986305A (zh) 利用烷基化废酸制备硫酸镁的生产工艺
AU4381501A (en) Production process of high-purity gypsum
AU2007221951B2 (en) Water treatment
EA015407B1 (ru) Способ переработки фосфогипса на сульфат аммония и карбонат кальция
RU2317254C1 (ru) Способ переработки содосульфатной смеси
WO2022140931A1 (zh) 蔗糖-6-羧酸酯的氯代方法
US2204777A (en) Apparatus for the recovery of salts from aqueous solutions
US7985396B2 (en) Process for production of sodium bisulfite
CN109422400B (zh) 催化剂生产废水的处理方法
CN106800303A (zh) 一种利用微通道反应器制备碘化钾的方法
US2118272A (en) Recovery of salts from aqueous solutions
JP2004000846A (ja) フッ素含有水の処理方法
JP7042692B2 (ja) 処理液の処理方法および排ガスの処理方法
CN103274921B (zh) 一种利用黄磷尾气制取甲酸钙的装置及方法
CN112250131A (zh) 一种氨氮废水处理方法
RU2388694C2 (ru) Способ получения фторида кальция и устройство для его осуществления

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091014