RU2296403C2 - Микроэлектромеханические устройства - Google Patents

Микроэлектромеханические устройства Download PDF

Info

Publication number
RU2296403C2
RU2296403C2 RU2005103707/09A RU2005103707A RU2296403C2 RU 2296403 C2 RU2296403 C2 RU 2296403C2 RU 2005103707/09 A RU2005103707/09 A RU 2005103707/09A RU 2005103707 A RU2005103707 A RU 2005103707A RU 2296403 C2 RU2296403 C2 RU 2296403C2
Authority
RU
Russia
Prior art keywords
conductors
switch
sealed chamber
dielectric
substrate
Prior art date
Application number
RU2005103707/09A
Other languages
English (en)
Other versions
RU2005103707A (ru
Inventor
Нолан С. ЛЕРЧ (US)
Нолан С. ЛЕРЧ
Джеймс Э. БРУКС (US)
Джеймс Э. БРУКС
Энтони Ф. ВЕНЕРУСО (US)
Энтони Ф. Венерусо
Original Assignee
Шлюмбергер Холдингз Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмбергер Холдингз Лимитед filed Critical Шлюмбергер Холдингз Лимитед
Publication of RU2005103707A publication Critical patent/RU2005103707A/ru
Application granted granted Critical
Publication of RU2296403C2 publication Critical patent/RU2296403C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • E21B43/1185Ignition systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T2/00Spark gaps comprising auxiliary triggering means
    • H01T2/02Spark gaps comprising auxiliary triggering means comprising a trigger electrode or an auxiliary spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/20Bridging contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/20Bridging contacts
    • H01H1/2083Bridging contact surfaces directed at an oblique angle with respect to the movement of the bridge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Micromachines (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

Изобретение относится к электротехнике и может использоваться в качестве электрических включателей в составе пусковых механизмов, предназначенных для включения скважинных устройств. Устройство содержит переключатель, содержащий микроэлектромеханические элементы, причем микроэлектромеханические элементы содержат: герметизированную камеру, содержащую диэлектрический элемент и проводники в герметизированной камере. Проводники выполнены так, что при приложении напряжения, большего предварительно заданного напряжения, по меньшей мере, к одному из проводников вызывает ионизационный пробой диэлектрического элемента для обеспечения электропроводящего пути между проводниками. В другом варианте осуществления переключатель содержит нанотрубчатый электронный излучатель или изотопный электронный излучатель. Технический результат - повышение эффективности переключателей за счет их уменьшенного сопротивления и индуктивности, обеспечиваемых благодаря их уменьшенным габаритам, а также обеспечение возможности интегрирования с другими компонентами и повышение надежности и безопасности. 6 н. и 33 з.п. ф-лы, 17 ил.

Description

ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Изобретение относится к микроэлектромеханическим устройствам.
ПРЕДПОСЫЛКИ К СОЗДАНИЮ ИЗОБРЕТЕНИЯ
При сооружении скважины может выполняться множество различных типов операций, включая бурение, каротаж, освоение скважины и эксплуатационные операции. Для выполнения требуемых операций используют различные типы устройств. Примерами таких устройств могут служить: скважинные перфораторы для осуществления операций по перфорированию; устройства для регулирования потока для регулирования потока жидкости (при закачивании или добыче); пакеры для изолирования различных участков скважины и другие устройства.
Пусковые механизмы, предназначенные для включения таких устройств, могут содержать механические, гидравлические и электрические включатели. Для электрического включения скважинного устройства источник энергии соединяют со скважинным устройством. Это обычно производят путем использования переключателей, расположенных либо на поверхности земли, либо в скважинном модуле. Переключатель в исходном положении находится в разомкнутом состоянии, для изолирования источника энергии от скважинного устройства. Когда требуется произвести включение, переключатель замыкают для подачи электрической энергии к скважинному устройству.
Один тип переключателя, предназначенного для использования в стволе скважины, изготавливают из газоразрядной трубки, известной также как искровой разрядник, триггерного типа или перегрузочного по напряжению типа. В переключателе триггерного типа используют внешние средства для замыкания переключателя или его включения. Переключатель перегрузочного по напряжению типа приводится в действие тогда, когда уровень напряжения на клеммах переключателя превышает пороговое значение.
В некоторых переключателях используют газонаполненную трубку, на каждом конце которой имеется электрод. Для инициирования переключателя для проведения электрического тока либо подают отпирающее напряжение на третий электрод, либо переключатель активизируют к включению в результате возникновения режима превышения установленного напряжения. Так как типичный разрядник с газонаполненной трубкой имеет трубчатую геометрию, он обычно ассоциируется с относительно высокой индуктивностью из-за относительно длинной токопроводящей дорожки. К тому же из-за трубчатой формы газонаполненной трубки сложно обеспечить требуемое уменьшение общего размера переключателя. Кроме того, может оказаться сложной задача компоновки, или монтажа, переключателя с газонаполненной трубкой с другими компонентами.
Другой тип переключателя содержит переключатель взрывного действия. Переключатель взрывного действия изготавливают путем использования плоского гибкого кабеля, содержащего верхний токопроводящий слой, средний изоляционный слой и нижний токопроводящий слой. Небольшое количество взрывчатого вещества может быть детонировано на верхнем слое, чтобы вызвать образование изоляционным слоем токопроводящего трека ионизации между двумя токопроводящими слоями. Один вариант осуществления такого переключателя представляет собой переключатель типа «чертежной кнопки», в котором используют острый металлический стержень для прокола насквозь изоляционного слоя для электрического соединения верхнего токопроводящего слоя с нижним токопроводящим слоем. Переключатель типа «чертежной кнопки» подобен переключателю взрывного действия, но он может быть не очень надежным, потому что при проколе отверстия в переключателе типа «чертежной кнопки» изоляционный слой может быть просто прогнут «чертежной кнопкой», в результате чего переключатель типа «чертежной кнопки» может не сработать и не соединить между собой токопроводящие слои.
Переключатели могут также использоваться в других областях и отраслях промышленности, например в военной, медицинской, обрабатывающей отраслях; в средствах связи, компьютерах, бытовой электронике, строительстве, сносе сооружений, в сейсмической области, горнодобывающей отрасли, для защиты электронных компонентов путем быстрого шунтирования опасного напряжения и сброса тока на землю; для включения электрических устройств или детонации взрывных устройств. Многие такие переключатели характеризуются различными недостатками, упомянутыми выше.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Согласно одному варианту осуществления изобретения устройство содержит переключатель, в состав которого входят микроэлектромеханические элементы, причем микроэлектромеханические элементы содержат герметизированную камеру, в которой имеются диэлектрический элемент и проводники. Проводники выполнены таким образом, что при приложении напряжения, большего предварительно заданной величины, происходит пробой диэлектрического элемента с образованием токопроводящего пути между проводниками.
Согласно другому варианту осуществления изобретения предусмотрен переключатель, который содержит, по меньшей мере, два проводника и нанотрубчатый электронный излучатель для образования по меньшей мере части токопроводящего пути между по меньшей мере двумя проводниками.
Другие отличительные особенности и варианты осуществления изобретения станут понятными при ознакомлении с последующим описанием, чертежами и формулой изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На Фиг. 1 изображен вариант осуществления скважинного инструмента, предназначенного для использования в стволе скважины;
на Фиг. 2А изображена схема триггерного контура инициатора взрыва фольги (ИВФ), выполненного согласно варианту осуществления, применимому в инструментальной колонне, согласно Фиг. 1;
на Фиг. 2В представлен вид сбоку триггерного контура ИВФ, представленного на Фиг. 2А;
на Фиг. 3 изображен вариант осуществления микропереключателя, содержащего микроэлектромеханическую кнопку;
на Фиг. 4А-4В представлен другой вариант осуществления микропереключателя, содержащего электрод, прикрепленный посредством хрупкого элемента;
на Фиг. 5 представлен еще один вариант осуществления микропереключателя, содержащего параллельные пластины и диэлектрический слой, который может быть пробит в результате приложения электрического тока;
на Фиг. 6 представлен еще один вариант осуществления микропереключателя, содержащего двухпозиционный элемент;
на Фиг. 7А-7D изображен еще один вариант осуществления микропереключателя, содержащего камеру, заполненную газом с высокой диэлектрической постоянной;
на Фиг. 8 изображен другой вариант осуществления микропереключателя, содержащего подвижный электрод;
на Фиг. 9 изображено поперечное сечение микропереключателя согласно другому варианту осуществления, содержащего искровой промежуток и расположенные в одной плоскости и отстоящие друг от друга проводники, которыми ограничен участок искрового промежутка;
на Фиг. 10 представлен вид сверху микропереключателя, изображенного на Фиг. 9;
на Фиг. 11 представлен другой вариант осуществления микропереключателя, подобного микропереключателю, изображенному на Фиг. 9, за исключением того, что в микропереключатель добавлен поджигающий электрод;
на Фиг. 12 представлено поперечное сечение микропереключателя согласно еще одному варианту осуществления, который имеет диэлектрический слой с ограниченными отверстиями для определения искрового промежутка;
на Фиг. 13 представлено поперечное сечение другого микропереключателя, подобного микропереключателю, изображенному на Фиг. 12, за исключением того, что микропереключатель, изображенный на Фиг. 13, содержит поджигающий электрод;
на Фиг. 14 изображен вид сверху микропереключателя, изображенного на Фиг. 13;
на Фиг. 15 представлено поперечное сечение микропереключателя согласно еще одному другому варианту осуществления, в котором использован нанотрубчатый электронный излучатель;
на Фиг. 16 представлено поперечное сечение микропереключателя согласно еще одному другому варианту осуществления;
на Фиг. 17 изображены нанотрубчатые электронные излучатели, выполненные на несущей структуре.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В последующем описании представлено множество деталей для более четкого пояснения настоящего изобретения. Однако специалистам в данной области следует иметь ввиду, что настоящее изобретение может быть использовано без этих деталей и что возможно множество вариантов или модификаций описанных вариантов осуществления изобретения. Например, хотя в описании сделаны ссылки на микропереключатели, используемые в стволах скважин, такие же микропереключатели (или другие типы микроэлектромеханических устройств) могут быть использованы в других областях, например в сейсмической, горнодобывающей, военной, медицинской, обрабатывающей отраслях, в системах связи, в компьютерной технике, бытовой электронике, в строительстве и средствах для сноса сооружений и т.д.
Термины: «вверх» и «вниз»; «верхний» и «нижний»; «вверху» и «внизу»; «над» и «под» и другие подобные термины, определяющие относительное положение сверху или снизу данной точки или элемента, в настоящем описании употребляются для более понятного пояснения некоторых вариантов осуществления изобретения. Однако в приложении к оборудованию и способам, применяемым при сооружении скважин, направленных под наклоном или горизонтально, или к оборудованию, находящемуся в наклонном или горизонтальном положении, эти термины могут быть заменены такими терминами, как: «слева направо», «справа налево», или другими подходящими терминами, определяющими расположение деталей.
Скважинный инструмент 10 (см. Фиг. 1), который может содержать скважинный перфоратор 15, в качестве одного из примеров, опускают через систему труб 7, расположенную в стволе 8 скважины, укрепленной обсадной колонной 9. Между системой труб 7 и обсадной колонной 9 устанавливают пакер 6 для изоляции кольцевого пространства между системой труб и обсадной колонной. Скважинный инструмент 10 опускают на несущем средстве 12, в качестве которого можно использовать талевый канат, гладкую штангу, систему труб и другие несущие средства. Некоторые типы несущих средств 12 (например, каротажные кабели) могут содержать один или большее число электрических проводников 13, по которым можно передавать электрическую энергию или сигналы к скважинному инструменту 10. Перфоратор 15, показанный на Фиг. 1, содержит множество кумулятивных зарядов 20. В одном варианте осуществления детонацию таких кумулятивных зарядов 20 можно вызывать путем использования инициирующих устройств 22, которые приводят в действие по команде, посылаемой с поверхности земли в месте расположения скважины, и эти сигналы могут быть в форме электрических сигналов, посылаемых по одному или большему числу электрических проводников 13 в несущем средстве 12. В альтернативном варианте осуществления команда может быть в форме импульсов давления или гидравлических команд. Инициирующие устройства 22 могут быть электрическим способом приведены в действие от сигналов, передаваемых по одной или большему числу электрических линий 24.
Другие варианты осуществления скважинного инструмента 10 могут содержать пакеры, клапаны, заглушки, режущие элементы или другие устройства. Таким образом, в этих вариантах осуществления с помощью команды, посланной с поверхности земли в месте расположения скважины, можно привести в действие модули управления для того, чтобы установить пакеры, открыть или закрыть клапана или привести в действие или отключить другие устройства. Для приведения в действие устройства, расположенного в скважинном инструменте 10, могут быть предусмотрены переключатели для передачи электрического сигнала или электрической энергии к этому устройству. Например, для того чтобы вызвать взрыв, инициирующее устройство 22 может содержать переключатель и триггерный контур инициатора взрыва фольги (ИВФ).
Согласно некоторым вариантам осуществления переключатели могут содержать микроэлектромеханические элементы, которые могут быть основаны на микроэлектромеханической системе (МЭМС). Элементы МЭМС содержат механические элементы, которые могут быть приведены в движение под воздействием входной энергии (электрической энергии или энергии другого типа). Элементы МЭМС - это элементы микроскопического размера, изготавливаемые по микротехнологии, которые могут содержать микрообработку полупроводниковой подложки (например, кремниевой подложки). В процессе микрообработки могут быть использованы различные операции травления и формирования рисунков для образования требуемых микромеханических частей. Некоторые достоинства элементов МЭМС заключаются в том, что они занимают малые пространства, требуют относительно малых затрат энергии, являются относительно жесткими и могут быть относительно недорогими.
Переключатели согласно другим вариантам осуществления могут быть изготовлены по микроэлектронной технологии, аналогичной той, которую применяют при изготовлении устройств на интегральных схемах. Переключатели, изготовленные с использованием МЭМС или других микроэлектронных технологий, в настоящем описании обычно называют «микропереключателями». Элементы в таких микропереключателях могут быть названы «микроэлементами», которые обычно являются элементами, изготовленными по МЭМС или микроэлектронной технологии. Обычно переключатели или устройства, выполненные по МЭМС технологии, называют «микроэлектромеханическими переключателями».
В одном варианте осуществления изобретения микропереключатели могут быть выполнены заодно с другими компонентами, например контурами ИВФ для инициирования взрывных веществ. Интегрированные компоненты собирают в виде более маленьких пакеров, применение которых позволяет более эффективно использовать пространство в стволе скважины. В данной заявке компоненты называют «интегрированными», если они выполнены на общей несущей опоре, смонтированной в пакере относительно малого размера, или собраны каким-либо другим способом при плотном расположении друг относительно друга. Таким образом, например, микропереключатель может быть изготовлен на той же несущей структуре, что и контур ИВФ, для получения более эффективного переключателя, благодаря меньшему эквивалентному последовательному сопротивлению (ЭПС) и меньшей эквивалентной последовательной индуктивности (ЭПИ). Микропереключатель может быть также выполнен на общей подложке с другими компонентами для достижения более эффективной компоновки.
Со ссылкой на фиг. 2А, согласно одному варианту осуществления изобретения узел разряда конденсатора (УРК) содержит энергонакопительный конденсатор 202, который можно заряжать до уровня отпирающего напряжения. Конденсатор 202 используют в качестве локального источника энергии для обеспечения активирующей энергии. Конденсатор 202 соединен с микропереключателем 204, который может быть переведен в активно замкнутое, или токопроводящее, положение за счет отпирающего напряжения Vtrigger или отпирающего тока Itrigger. Когда переключатель 204 замкнут, активирующая энергия поступает в контур ИВФ 206 для приведения в действие контура ИВФ 206.
Контур ИВФ обычно содержит металлическую фольгу, соединенную с источником электрического тока, например, энергонакопительным конденсатором 202. В фольге сформирован участок шейки очень маленькой ширины, и изоляционный слой расположен поверх части фольги, включая и участок шейки. Когда через участок шейки фольги пропускают соответствующий сильный ток, участок шейки взрывается или испаряется. Это приводит к тому, что малая порция материала, называемая «летающей частью», вырывается из изоляционного слоя. Летающая часть затем пролетает через «барабанчик» и ударяет по взрывчатому веществу, что вызывает детонацию.
На Фиг. 2В показан вид сбоку контура, изображенного на Фиг. 2А. Конденсатор 202 установлен на первой поверхности 210 подложки 216, а микропереключатель 204 и ИВФ 206 установлены на противоположной стороне 212 подложки 216. В альтернативном варианте осуществления изобретения конденсатор 202 может быть установлен на той же поверхности, что и микропереключатель 204 или контур ИВФ 206. Конденсатор 202, микропереключатель 204 и ИВФ 206 электрически соединены между собой электропроводящими путями, или трактами, проложенными в подложке 216.
В других вариантах осуществления изобретения вместо ИВФ 206 могут быть использованы другие типы инициаторов, приводимых в действие электрически, например взрывные мостиковые инициаторы (ВМИ), полупроводниковые мостиковые инициаторы (ППМИ) и т.п. К тому же альтернативно вместо конденсатора 202 могут быть использованы другие типы локальных источников энергии. Микропереключатели, описанные здесь, могут также быть использованы в других скважинных устройствах, например в управляющих устройствах, сенсорных устройствах, аналоговых и цифровых схемах, сетях передачи данных. В альтернативных вариантах осуществления изобретения микропереключатели могут быть использованы в сейсмических средствах, в горнодобывающем оборудовании и т.п.
Ниже описаны различные варианты осуществления микропереключателей. Такие микропереключатели применимы в УРК, изображенном на Фиг. 2А, или, альтернативно, их можно использовать для подачи электрической энергии к другим типам компонентов, либо там, где используются в условиях скважины, либо в других областях применения (например, в сейсмической или горнодобывающей областях).
Со ссылкой на фиг. 3, согласно варианту осуществления изобретения переключатель МЭМС 300 (Фиг. 3) может быть приведен в действие с помощью «кнопки» МЭМС 302. В этом варианте осуществления кнопка МЭМС 302 заменяет пускатель типа «чертежной кнопки», используемый в некоторых обычных кнопочных переключателях. Переключатель 300 содержит верхний и нижний токопроводящие слои 304 и 308, наложенные с двух сторон на изоляционный слой 306. Проводники (токопроводящие слои) 304 и 308 могут (каждый) быть изготовлены из металла или некоторых других подходящих токопроводящих материалов. Изоляционный слой 306 может содержать полимерный материал, например полиимидную пленку. Кнопка МЭМС 302 может быть расположена поверх верхнего токопроводящего слоя 304. При приведении в действие, например путем приложения отпирающего напряжения Vtrigger, имеющего предварительно заданную амплитуду, исполнительный механизм 303 высвобождает кнопку МЭМС 302, чтобы она перемещалась сквозь слои 304 и 306 так, чтобы она контактировала с нижним токопроводящим слоем 308. При этом происходит электрическое замыкание верхнего и нижнего токопроводящих слоев 304 и 308, в результате чего приводится в действие переключатель 300. Таким образом, напряжение на токопроводящем слое 304 может быть доведено до напряжения возбуждения Vdrive, а токопроводящий слой 308 соединяют с компонентом, который следует привести в действие (например, контур ИВФ 206 на Фиг. 2).
В одном варианте осуществления изобретения в слоях 304 и 306 может быть уже подготовлено сквозное отверстие 307, сквозь которые может проходить кнопка МЭМС 302. В другом варианте осуществления кнопка МЭМС 302 может быть снабжена острым кончиком для прокалывания насквозь слоев 304 и 306 для достижения слоя 308.
В одном варианте осуществления изобретения исполнительный механизм 303 содержит подвижные несущие элементы 315, которыми поддерживают кнопку 302 снизу под увеличенную часть 312 фланца. Вытаскивая несущие элементы 315 из фланцевой части 312 кнопки, позволяют кнопке 302 попасть в отверстие 307. Несущие элементы 315 можно перемещать в радиальном направлении, воздействуя МЭМС редуктором 303. При подаче электрической энергии МЭМС редуктор 303 оттягивает в радиальном направлении несущие элементы 315 из кнопки 302 для того, чтобы предоставить возможность ей упасть в сквозное отверстие 307, чтобы электрически соединить проводники 304 и 308. В альтернативном варианте осуществления устройства вместо оттягивания опоры из кнопки 302, МЭМС редуктор 303 может быть использован для перемещения кнопки 302 в сквозное отверстие 307.
Слоистая конструкция, из которой образован микропереключатель 300, может быть сформирована на подложке 310, в качестве которой может быть использован полупроводник, изолятор или другая подложка. В одном примере подложка 310 может быть изготовлена из кремния. Токопроводящий слой 308 является первым слоем, наложенным на подложку 310, вслед за ним идет изоляционный слой 306, а затем - токопроводящий слой 304. В слоях 304 и 306 может быть выполнен анизотропным травлением сквозной канал 307. МЭМС структура, содержащая кнопку 302 и исполнительный механизм 303, может быть затем сформирована на токопроводящем слое 304 поверх сквозного отверстия 307.
Со ссылкой на фиг. 4А-4В согласно другому варианту осуществления микропереключатель 500 содержит первую подложку 502 и вторую подложку 504. Первая подложка 502 и слои, сформированные на ней, в действительности показаны на Фиг. 4А-4В верхней стороной вниз. При изготовлении микропереключателя 500 на двух подложках 502 и 504 независимо наносят рисунок, причем один перевернут верхней стороной вниз лицом к другой подложке.
Изоляционный слой 506 (например, слой нитрита, или SxNy) формируют на поверхности подложки 502. Токопроводящее покрытие 510 (например, слой металла, изготовленный с использованием металла, например алюминия, никеля, золота, меди, вольфрама или титана) образуют на изоляционном слое 506. Множество связей 516, каждую из которых изготавливают из полупроводникового материала, например легированного кремния с выбранным удельным сопротивлением, можно затем сформировать в подложке 502 для поддержания токопроводящей пластины 514, которая может быть изготовлена из металла, например алюминия, никеля, золота, меди, вольфрама или титана. Связи 516 прикрепляют к токопроводящей пластине 514 в точках контакта между связями 516 и пластиной 514. Связи 516 при воздействии электрического тока относительно большой силы распадаются или каким-либо другим способом ломаются, в результате чего обеспечивается возможность падения токопроводящей пластины 514, преодолевая зазор 515, и она входит в контакт с токопроводящим слоем 512, сформированным на подложке 504. Таким образом, связи 516 являются эффективными хрупкими элементами, ломающимися в ответ на приложение электрического напряжения или тока.
Как показано на Фиг. 4В, пластина 514, прикрепленная связями, снабжена отогнутой частью 517, посредством которой обеспечивают ее электрическое соединение с соединительной прокладкой 519, сформированной на подложке 502. Соединительная прокладка 519 может контактировать, например, со свинцовым пальцем, посредством которого обеспечивают подачу напряжения Vdrive возбуждения на токопроводящую пластину 514, прикрепленную связями. Связи 516 присоединены к токопроводящему покрытию 510, которое, в свою очередь, может быть присоединено к другой соединительной прокладке 521, к которой подают отпирающий ток Itrigger.
Устройство действует следующим образом. На токопроводящую пластину 514 подают напряжение Vdrive возбуждения. Когда микропереключатель 500 следует замкнуть (или привести в действие), через токопроводящее покрытие 510 подают отпирающий ток Itrigger, под воздействием которого ломается, или разрушается, по меньшей мере часть связей 516. Этим обеспечивают возможность падения токопроводящей пластины 514 (которая находится под напряжением Vdrive возбуждения) и контактирование с токопроводящим слоем 512, в результате чего напряжение Vo изменяется до напряжения Vdrive возбуждения. Токопроводящий слой 512 (и напряжение Vo) может быть присоединен к устройству, которое следует приводить в действие, например к ИВФ контуру 206, изображенному на Фиг. 2.
Со ссылкой на фиг. 5 еще один вариант осуществления микропереключателя 600 содержит две параллельные пластины 602 и 604 с диэлектрическим слоем 610 между параллельными пластинами. Диэлектрический слой является электроизоляционным слоем. Диэлектрические свойства диэлектрического слоя 610 можно регулировать с помощью электрической энергии в форме отпирающего напряжения или тока для обеспечения токопроводящего пути между двумя токопроводящими пластинами 602 и 604. Токопроводящая линия 606 может быть выполнена над токопроводящей пластиной 604, при этом между линией 606 и токопроводящей пластиной 604 располагают изоляционный слой 607. Диэлектрический слой 610, которым отделяют токопроводящие пластины 602 и 604, может быть твердым, жидким или газообразным диэлектриком. Когда по линии 606 подают отпирающий ток, это вызывает пробой диэлектрического слоя 610 и обеспечивает токопроводящий путь между токопроводящими пластинами 602 и 604.
Устройство функционирует следующим образом. Напряжение Vdrive возбуждения подают на токопроводящую пластину 602, находящуюся в сочетании с токопроводящей пластиной 604, присоединенной к устройству, которое следует активизировать. Когда по токопроводящей линии 606 подают отпирающий ток Itrigger, диэлектрический слой 610 пробивается и напряжение Vdrive возбуждения передается по токопроводящему пути от токопроводящей пластины 602 к другой токопроводящей пластине 604, что вызывает повышение напряжения Vo до напряжения Vdrive возбуждения.
Со ссылкой на фиг. 6 микропереключатель 700 согласно другому варианту осуществления содержит двухпозиционный микроэлектромеханический переключатель 700. Переключатель 700 содержит контактную пластину 706, удерживаемую в нейтральном положении (т.е. пассивном положении), когда подают напряжение Vdrive возбуждения. Контактная пластина 706 расположена по существу в средней плоскости между пластинами 702 и 704. На каждую пластину 702 и 704 подают напряжение Vdrive возбуждения, что поддерживает контактную пластину 706 в ее нейтральном положении. Когда требуется привести в действие микропереключатель 700, на одну из пластин 702 или 704 подают добавочное отпирающее напряжение Vtrigger для повышения напряжения до значения (Vdrive + Vtrigger). Это приводит к возникновению электростатической силы, вызывающей дисбаланс в переключателе, под влиянием которого пластина 706 перемещается и вступает в контакт с пластиной 704. Контактная пластина 706 вблизи ее основания прикреплена к несущей стойке 710. В одном варианте осуществления контактная пластина 706 и несущая стойка выполнены за одно целое из металла с образованием консоли. Консоль приспособлена к изгибу при приложении электростатической силы. Когда консольная пластина 706 контактирует с пластиной 704, напряжение (Vdrive + Vtrigger) передается на консольную пластину 706.
На Фиг. 7А-7D представлен другой вариант осуществления микропереключателя 800. На Фиг. 7А изображен вид сбоку микропереключателя 800, содержащего верхнюю подложку 802 и нижнюю подложку 804. Определенные структуры могут быть сформированы на каждой из подложек 802 и 804. На Фиг. 7В показан вид сверху нижней подложки 804, а на Фиг. 7С - вид снизу верхней подложки 802. Токопроводящая пластина 806 и верхний диэлектрический слой 810 расположены на верхней подложке 802. Нижняя токопроводящая пластина 808 выполнена поверх нижней подложки 804, а нижний диэлектрический слой 812 выполнен поверх нижней токопроводящей пластины 808. Кроме того, поджигающий электрод 814 выполнен поверх диэлектрического слоя 812.
Как показано на Фиг. 7С, в диэлектрическом слое 810 вырезана часть для образования окна, открывающего верхнюю токопроводящую пластину 806. Аналогично этому, как показано на Фиг. 7В, в диэлектрическом слое 812 вырезана часть для образования окна, открывающего нижнюю токопроводящую пластину 808.
Как показано на Фиг. 7А, верхняя подложка 802 повернута верхней стороной вниз. Когда верхняя и нижняя подложки 802 и 804 и присоединенные к ним структуры вводят в электрический контакт друг с другом, получается конструкция, изображенная на Фиг. 7D. Изготовление конструкции может производиться в камере, заполненной инертным газом (например, аргоном) таким образом, чтобы зазор 816, полученный в результате сведения двух подложек 802 и 804 вместе, был тоже заполнен инертным газом. Зазор 816 может быть также заполнен другим газом, например азотом, гелием, неоном, ксеноном, кислородом, воздухом или другими газами. Зазор 816 может быть также заполнен смесью различных газов. В альтернативном варианте осуществления зазор 816 может быть заполнен другим диэлектрическим элементом, например жидким или твердым диэлектриком. Диэлектрический материал выбирают таким образом, чтобы его можно было пробить при приложении напряжения или тока в виде сигнала предварительно заданной величины.
Устройство функционирует следующим образом. На пусковую токопроводящую пластину 814 подают отпирающее напряжение, которое пробивает изолятор в зазоре 816 для обеспечения токопроводящего пути между верхней токопроводящей пластиной 806 и нижней токопроводящей пластиной 808, таким образом замыкая микропереключатель 800.
Со ссылкой на фиг. 8 согласно другому варианту осуществления МЭМС переключатель 400 может содержать электрические контакты 404, 406, 408 и 410, отделенные зазорами 420 и 422. Контакты 404 и 406 электрически соединены с линиями 416 и 418 соответственно, которые оканчиваются на электродах 412 и 414 соответственно. Электроды 412 и 414 могут быть электрически соединены с соответствующими компонентами, например с источником энергии и устройством, которое следует инициировать посредством этого источника энергии. Контакты 404 и 406 расположены наклонно так, чтобы они плотно прилегали к контактам 408 и 410 соответственно, когда контакты 408 и 410 перемещают вверх посредством исполнительного механизма 402. Исполнительный механизм 402 может быть перемещен путем приложения, например, пускового напряжения. При контактировании контактов 404, 406, 408 и 410 друг с другом между электродами 412 и 414 образуется токопроводящий путь. Перемещение исполнительного механизма 402 может быть выполнено путем использования МЭМС передачи (не показана).
Контакты 404, 406, 408 и 410 могут быть изготовлены из металла или какого-либо другого токопроводящего материала. Переключатель 400 может быть сформирован в полупроводниковой подложке, например, из кремния.
На Фиг. 9 изображен микропереключатель 900 согласно еще одному другому варианту осуществления изобретения. Микропереключатель 900, подобный микропереключателю, изображенному на Фиг. 7А-7D, содержит зазор 902 (называемый «искровым промежутком»), в котором находится электроизоляционный, или диэлектрический, материал (т.е. газ, жидкость или твердое вещество). Эффективно, когда зазор 902 в микропереключателе представляет герметизированную камеру согласно одному варианту осуществления изобретения. В другом варианте осуществления зазор 902 не герметизирован, а скорее может быть открыт по отношению к другим частям инструмента или узла, в котором расположен микропереключатель 900.
Если искровой промежуток 902 заполнен газом, газ может быть представлен азотом, аргоном, гелием, ксеноном, кислородом, неоном, воздухом или некоторой смесью газов. В отличие от устройства, изображенного на Фиг. 7А-7D (где токопроводящие пластины 806 и 808 расположены одна над другой против искрового промежутка 816 с каждой его стороны, как показано на Фиг. 7D), в микропереключателе 900, изображенном на Фиг. 9, используют проводники 904 и 906, расположенные в одной плоскости. Каждый проводник 904 и 906 представляет собой токопроводящую пластину, расположенную на изоляционной опорной структуре (подложке 910). Участок искрового промежутка 902 расположен между боковыми сторонами 907 и 908 соответствующих проводников 904 и 906. Подложка 910, на которой расположены проводники 904 и 906, может быть изготовлена из электроизоляционного, или диэлектрического, материала, например керамики, кремния, стекла и т.д.
Сверху, по меньшей мере, части проводников 904 и 906 и подложки 910 предусмотрена крышка 912. Между нижней поверхностью крышки 912 и верхними поверхностями проводников 904 и 906 установлены уплотнительные элементы 914 и 916. Уплотнительные элементы 914 и 916 устанавливают в тех вариантах осуществления, в которых в искровом промежутке 902 используют газ или жидкость. Уплотнительные элементы 914 и 916 могут быть исключены в вариантах осуществления, в которых в искровом промежутке 902 используют твердый диэлектрик.
В дополнение к области между боковыми сторонами 907 и 908 проводников 904 и 906 искровой промежуток 902 содержит также участок между уплотнительными элементами 914 и 916 и между нижней стороной 912 крышки и верхними поверхностями проводников 904 и 906.
Проводник 904 соединен с источником входного напряжения, а проводник 906 соединен с компонентом, который следует активировать при замыкании микропереключателя 900. В контексте примера, проиллюстрированного на Фиг. 2А, источник входного напряжения, подаваемого на микропереключатель 900, снабжают конденсатором 202, тогда как выход (проводник 206) микропереключателя 900 соединяют с ИВФ 206. Вообще, посредством микропереключателя 900 соединяют источник электроэнергии с компонентом, который следует привести в действие с помощью источника электроэнергии, где микропереключатель 900 выполнен так, чтобы он замыкался (проводил ток через искровой промежуток 902) в ответ на электроэнергию, превышающую предварительно заданное пороговое значение (например, большее предварительно заданного напряжения).
Для приведения в действие микропереключателя 900 на проводник 904 подают достаточно высокое входное напряжение. Поданное напряжение, величина которого больше предварительно заданного порогового значения, вызывает ионизацию (пробой) газа в искровом промежутке 902, что ведет к передаче электрической энергии через микропереключатель от одного проводника, 904, к другому, 906. В некоторых вариантах осуществления уровень предварительно заданного напряжения, при котором происходит пробой, составляет около 700 В. Таким образом, приложение входного напряжения, большего или равного 700 В, вызывает пробой газа. Использование относительно высокого напряжения пробоя является подходящим условием для применения в скважине, а также в сейсмическом и горнодобывающем оборудовании. Напряжение пробоя зависит от типа используемого газа и его давления, расстояния между проводниками в области искрового промежутка и других факторов, о которых сказано ниже.
Пробой газа с высокой диэлектрической постоянной в искровом промежутке 902 происходит согласно вероятностному процессу. Вероятностный процесс может варьироваться в зависимости от: (1) шероховатости поверхности или дефектности проводников 904 и 906, на которых накапливается заряд; (2) накопления нелокализованного заряда; и (3) изменений или повреждений поверхностей, вызванных эрозией, при испытаниях микропереключателя 900 до его использования. Эти погрешности ведут к изменчивости точного положения конечных точек ионного разряда, что влияет на длину пути электрической дуги, проходящей через искровой промежуток 902. Это, в свою очередь, ведет к колебаниям точности значения напряжения разряда. К тому же загрязнения, например влага, химические загрязняющие вещества или загрязняющие агенты, внутри или на поверхности проводника и другие материалы могут также приводить к росту колебаний напряжения разряда. Кроме того, имеют место колебания свойств газа с высокой диэлектрической постоянной, вызываемые загрязнением самого газа, а также хаотическим движением и температурой молекул газа.
Колебания свойств газа с высокой диэлектрической постоянной можно стабилизировать различными способами, например включением радиоактивного материала в/или вокруг искрового промежутка 902. Наличие радиоактивного материала побуждает молекулы к более определенному и прогнозируемому движению (т.е. ионизирующее излучение или возбуждение излучением бета-частиц). Одним примером этого способа может служить использование небольшого количества радиоактивного газа, например трития, который может быть примешан к газу в искровом промежутке 902. В альтернативном варианте осуществления твердые радиоактивные материалы могут быть нанесены в виде крапинок внутри или снаружи искрового промежутка 902. Примерами радиоактивных материалов могут служить изотопы хрома, тория, калия, урана, никеля или материалы, содержащие в большой пропорции такие вещества, как, например, торит (Th(SiO4)), уранит или некоторые каменные соли (KCl). Сравнительно небольшие количества тория или калия (или встречающиеся в природе минералы или каменные соли, содержащие в большой пропорции такие материалы) обладают дополнительным преимуществом, заключающимся в ограниченной, в приемлемых пределах, радиоактивности, что может быть квалифицировано как освобождение от специальных требований, предъявляемых правилами защиты окружающей среды, связанных с транспортировкой этих материалов и обращением с ними.
На Фиг. 10 изображен вид сверху микропереключателя 900. На этом виде предполагается, что крышка 912 прозрачна, благодаря чему конструкция, расположенная под крышкой 912, видна. Каждый из проводников 904 и 906 имеет закругленную боковую сторону 930 и 932 соответственно. Эта криволинейная геометрия (боковых сторон 930 и 932) проводников 904 и 906 позволяет локализовать точки разряда на проводниках 904 и 906 для повышения степени прогнозируемости пути электрической дуги в искровом промежутке 902. Как показано на Фиг. 10, закругленные боковые стороны 930 и 932 проводников 904 и 906 обращены друг к другу на протяжении участка искрового промежутка 902. Вместо использования радиоактивных материалов или в дополнение к ним закругленные боковые стороны 930 и 932 проводников 904 и 906 могут быть использованы для уменьшения степени изменчивости точек разряда на проводниках 904 и 906.
На Фиг. 11 изображен другой вариант осуществления микропереключателя 920, по существу подобного по конструкции микропереключателю 900, изображенному на Фиг. 9 (компоненты микропереключателя 920, аналогичные компонентам микропереключателя 900, обозначены теми же позициями). Отличие микропереключателя 920 заключается в наличии поджигающего электрода, показанного в различных положениях 922А, 922В или 922С. Для эффективного действия переключателя должен присутствовать только один из поджигающих электродов 922А, 922В и 922С. В альтернативном варианте осуществления можно использовать более одного из поджигающих электродов 922А, 922В и 922С. Поджигающий электрод 922В располагают в искровом промежутке 902 и устанавливают на поверхности подложки 910 между боковыми сторонами 907 и 908 соответствующих проводников 904 и 906. Поджигающий электрод 922А располагают на верхней поверхности крышки 912 (вне искрового промежутка 902). Поджигающий электрод 922С располагают на нижней поверхности подложки 910 также вне искрового промежутка 902.
Устройство функционирует следующим образом. Напряжение, подаваемое на проводник 904, меньше напряжения пробоя, которое могло бы вызвать ионизацию газа в искровом промежутке 902. Для приведения в действие микропереключателя 920 подают импульс напряжения на поджигающий электрод 922 (на один или большее число электродов 922А, 922В и 922С). Этот импульс напряжения вызывает пробой газа, содержащегося в искровом промежутке 902, таким образом обеспечивая возможность прохождения электрического тока между проводниками 904 и 906. В альтернативных вариантах осуществления вместо газа в искровом промежутке 902 можно использовать жидкий диэлектрик или твердое диэлектрическое вещество.
Другой способ стабилизации для снижения изменчивости положения точек разряда на проводниках в искровом промежутке заключается в обеспечении ограниченных отверстий, например ограниченных отверстий 942 и 944 в микропереключателе 940, изображенном на Фиг. 12. Микропереключатель 940 содержит проводники 946 и 948, являющиеся токопроводящими пластинами, сформированными на подложке 950. Помимо этого поверх проводников 946 и 948 расположен твердый диэлектрический слой 952 (с отверстиями 942 и 944, сформированными в диэлектрическом слое 952). Средняя часть диэлектрического слоя 952 выполнена выступающей и заполняющей зону между боковыми сторонами 954 и 956 проводников 946 и 948 соответственно. Крышка 957 расположена поверх конструкции из диэлектрического слоя 952 и проводников 946 и 948. Между крышкой 957 и диэлектрическим слоем 952 установлены уплотняющие элементы 958 и 959 для обеспечения герметизации газа с высокой диэлектрической постоянной или жидкого диэлектрика в искровом промежутке 941, ограниченном крышкой 957, уплотняющими элементами 958 и 959 и проводниками 946 и 948.
Искровой промежуток 941 микропереключателя 940 частично заполнен слоем 952 твердого диэлектрика. Наличие отверстий 942 и 944, выполненных в диэлектрическом слое 952, позволяет повысить прогнозируемость точек разряда на проводниках 946 и 948.
Устройство функционирует следующим образом. Если на проводник 946 подают достаточное напряжение, происходит ионизация газа, в результате чего путь разряда проходит от проводника 946 через отверстие 942. Путь разряда проходит через пространство (которое содержит газ с высокой диэлектрической постоянной или жидкий диэлектрик) в искровом промежутке 941 над диэлектрическим слоем 952, но под крышкой 957 и через другое отверстие 944 к другому проводнику 948.
На Фиг. 13 изображен другой микропереключатель 960, аналогичный микропереключателю 940, изображенному на Фиг. 12, за исключением того, что поджигающий электрод 962 установлен в пространстве, ограниченном частью диэлектрического слоя 952. Для приведения в действие микропереключателя 960 на проводник 948 подают напряжение, используя напряжение, поддерживаемое на уровне, меньшем напряжения пробоя для газа с высокой диэлектрической постоянной или жидкого диэлектрика в искровом промежутке 941. На поджигающий электрод 962 подают импульс напряжения, чтобы вызвать пробой газа с высокой диэлектрической постоянной или жидкого диэлектрика в искровом промежутке 941.
На Фиг. 14 представлен вид сверху микропереключателя 960, изображенного на Фиг. 13. Условно принято, что крышка 957 и диэлектрический слой 952 на Фиг. 14 прозрачные, для того чтобы в данном случае можно было видеть конструкцию, расположенную под этими слоями. На виде сверху видно расположение отверстий 942 и 944, а также положение поджигающего электрода 962, который проходит между проводниками 946 и 948. Проводники 946 и 948 имеют закругленные боковые стороны 947 и 949, обращенные навстречу друг другу на участке искрового промежутка 941.
Согласно другому варианту осуществления в микропереключателе 970 (Фиг. 15) используют нанотрубчатые электронные излучатели 972 и 974. В альтернативном варианте осуществления вместо нанотрубчатых электронных излучателей могут быть использованы изотопные электронные излучатели. Микропереключатель 970 подобен по конструкции микропереключателю 940, изображенному на Фиг.12, за исключением того, что микропереключатель 970 дополнительно содержит нанотрубчатые электронные излучатели 972 и 974. Нанотрубчатые электронные излучатели 972 и 974 сформированы на поверхности соответствующих проводников 946 и 948 в соответствующих отверстиях 942 и 944. Применение нанотрубчатых электронных излучателей 972 и 974 способствует стабилизации расположения и повышения степени прогнозируемости пути разряда через искровой промежуток 941. Устройство функционирует следующим образом. Нанотрубчатые электронные излучатели 972 и 974 действуют как микроминиатюрные световые стержни. Концы нанотрубок концентрируют и усиливают градиент локального электрического поля, таким образом стимулируя ионизацию соседних молекул газа. Электроны испускаются очень легко из концов нанотрубчатых электронных излучателей. Нанотрубчатые электронные излучатели 972 и 974 являются также электропроводными и сформированы на проводниках 946 и 948 таким образом, что нанотрубчатые электронные излучатели 972 и 974 электрически контактируют с проводниками 946 и 948 соответственно.
Углеродные нанотрубки (УНТ) - это бесшовные трубки из графитовых листов. Структура нанотрубки представляет собой в основном очень маленькую трубку, толщина стенки которой соизмерима с масштабом атомов. Например, УНТ - это трубка, в которой стенки выполнены из молекул углерода, где толщина стенки может быть в одну молекулу. УНТ были впервые открыты как многослойные концентричные трубки (т.е. углеродные нанотрубки с множеством стенок - УНТМС). Позже были изготовлены одностенные углеродные нанотрубки (УНТОС) в присутствии катализатора из переходного металла. В вариантах осуществления изобретения можно использовать УНТМС и УНТОС или смесь из этих двух структур. Исследования показали, что УНТ обладают многообещающими потенциальными возможностями при их применении, включая, например, их применение в электронных устройствах наномасштаба, в виде высокопрочных материалов, в автоэлектронной эмиссии, в щупах для сканирующей микроскопии и в структурах для хранения газа.
Основные способы синтезирования УНТ включают: лазерную абляцию углерода; электродуговой разряд графитового стержня; химическое осаждение (ХО) углеводорода из газовой фазы. Было установлено, что среди этих способов химическое осаждение (ХО) в сочетании с фотолитографией является наиболее универсальным способом изготовления различных УНТ устройств. В способе химического осаждения катализатор из переходного металла осаждают в виде требуемого рисунка на кремневую подложку, которому может быть придана форма путем использования фотолитографии, после чего следует этап травления. Кремневую подложку, содержащую осажденный катализатор, затем помещают в печь в присутствии смеси пара и газа, например ксилола и ферроцена. Нанотрубки из углерода обычно выращивают на осажденном катализаторе в направлении, перпендикулярном поверхности подложки. В настоящее время различные материалы и устройства из углеродных нанотрубок могут выпускаться в коммерческих масштабах различными компаниями, включая компании «Molecular Nanosystems» (Palo Alto, CA) и «Bucky», USA (Houston, TX).
Другие способы химического осаждения включают способы изготовления углеродных нанотрубок на кварцевых (SiO2) и кремневых поверхностях без использования катализаторов из переходных металлов. Согласно таким способам участкам кварца (SiO2) придают определенный рисунок на кремневой подложке путем фотолитографии и травления. Углеродные нанотрубки затем выращивают на кварцевых (SiO2) участках способом химического осаждения или способом химического осаждения, улучшенным применением плазмы. Этими способами можно изготавливать пучки углеродных нанотрубок различных форм. Углеродные нанотрубки, пригодные для вариантов осуществления изобретения, могут быть изготовлены согласно этому способу.
Как было сказано выше, углеродные нанотрубки обладают уникальными физическими и электрическими свойствами. Как автоэлектронные излучатели углеродные нанотрубки обладают характеристиками низкой работы выхода, долговечностью и термостабильностью. В соответствии с этим автоэлектронным излучателем на основе УНТ можно управлять, используя относительно низкие напряжения. Кроме того, химическая стойкость таких устройств к реакциям с газами, которые могут быть генерированы во время работы устройства, повышена, благодаря чему повышена продолжительность срока службы излучателей.
Благодаря применению нанотрубчатых электронных излучателей 972 и 974 обеспечивают надежное зажигание искрового промежутка 941 путем использования эффективных и стабильных свойств электронной эмиссии нанотрубчатых электронных излучателей. В одном варианте осуществления нанотрубчатые электронные излучатели представляют собой углеродные нанотрубчатые электронные излучатели. В альтернативном варианте осуществления можно использовать нанотрубчатые электронные излучатели из бора. Электроны могут очень легко испускаться из концов нанотрубчатых электронных излучателей.
На Фиг. 16 изображен еще один микропереключатель, аналогичный микропереключателю, изображенному на Фиг. 7D, за исключением того, что здесь введены диэлектрический слой 980 (на поверхности токопроводящей пластины 806) и диэлектрический слой 982 (на поверхности токопроводящей пластины 808). Каждый диэлектрический слой 980 и 982 содержит отверстие, в котором созданы соответствующие нанотрубчатые электронные излучатели 984 и 986. Применение нанотрубчатых электронных излучателей 984 и 986 обеспечивает более прогнозируемый путь тока дуги в искровом промежутке 816.
На Фиг. 17 изображен массив из множества нанотрубчатых электронных излучателей, которые могут быть сформированы на каждом из проводников 946 и 948 (см. Фиг.15). Нанотрубчатые электронные излучатели могут быть равномерно и точно расположены на каждом из проводников 946 и 948. Высокая степень равномерности в наномасштабе приводит к очень высокой точности электронного потенциала или пробивного порогового напряжения нанотрубчатых электронных излучателей в сравнении с микронными дефектами на поверхности металла или других электропроводящих электродов.
Нанотрубчатые электронные излучатели ориентированы таким образом, что их самые большие размеры (длина) совмещены с электрическим полем, обеспечивают наилучшие условия использования. Нанотрубчатые электронные излучатели могут быть также использованы в микропереключателях 900, 920 и 960, изображенных на Фиг. 9, 11 и 13 соответственно.
Различные микропереключатели, описанные в настоящей заявке, могут обладать следующими достоинствами. Вообще, микропереключатели могут быть выполнены в виде сборок относительно малых габаритов, благодаря чему можно повысить эффективность переключателей из-за их уменьшенного сопротивления и индуктивности. Кроме того, некоторые микропереключатели могут быть интегрированы с другими компонентами, например конденсаторами для хранения энергии, и другими устройствами, например ИВФ, для образования единого узла уменьшенных размеров. Надежность и безопасность переключателей повышается, так как исключается введение в действие взрывным или механическим способами, которые используют в некоторых обычных переключателях.
Хотя изобретение описано со ссылками на ограниченное количество вариантов осуществления, специалисты в данной области техники могут предложить ряд их модификаций и вариаций. Предполагается, что прилагаемая формула изобретения охватывает все такие модификации и вариации, которые подпадают под действие сущности и объема изобретения. Например, могут быть использованы конфигурации переключателей, в которых могут применяться микроэлементы.

Claims (38)

1. Устройство, содержащее
переключатель, содержащий микроэлектромеханические элементы, причем микроэлектромеханические элементы содержат
герметизированную камеру, содержащую диэлектрический элемент;
подложку, имеющую поверхность; и
проводники, сформированные на поверхности подложки и находящиеся в контакте с указанной поверхностью подложки;
при этом проводники выполнены таким образом, что приложение напряжения, большего предварительно заданного напряжения, вызывает ионизационный пробой диэлектрического элемента для обеспечения электропроводящего пути между проводниками.
2. Устройство по п.1, в котором диэлектрический элемент в герметизированной камере содержит, по меньшей мере, один из газов: аргон, неон, гелий, ксенон, азот, кислород и воздух.
3. Устройство по п.2, в котором диэлектрический элемент в герметизированной камере содержит смесь из, по меньшей мере, любых двух газов: аргона, неона, гелия, ксенона, азота, кислорода и воздуха.
4. Устройство по п.1, дополнительно содержащее крышку, при этом крышка, подложка и проводники ограничивают герметизированную камеру.
5. Устройство по п.4, в котором микроэлектромеханические элементы дополнительно содержат уплотнительные элементы, обеспеченные между поверхностью крышки и поверхностями проводников для обеспечения герметизированной камеры.
6. Устройство по п.4, в котором диэлектрический элемент содержит, по меньшей мере, один из газа с высокой диэлектрической постоянной и жидкого диэлектрика.
7. Устройство по п.6, в котором микроэлектромеханические элементы дополнительно содержат диэлектрический слой, сформированный поверх проводников в герметизированной камере, причем диэлектрический слой имеет множество отверстий примыкающих к соответствующим проводникам для обеспечения путей разряда от проводников через, по меньшей мере, одного из газа с высокой диэлектрической постоянной и жидкого диэлектрика, содержащихся в герметизированной камере.
8. Устройство по п.1, в котором микроэлектромеханические элементы дополнительно содержат нанотрубчатые электронные излучатели, расположенные на проводниках в герметизированных камерах.
9. Устройство по п.8, в котором нанотрубчатые электронные излучатели содержат углеродные нанотрубчатые электронные излучатели.
10. Устройство по п.8, в котором нанотрубчатые электронные излучатели содержат нанотрубчатые электронные излучатели из бора.
11. Устройство по п.1, в котором каждый проводник имеет закругленную боковую сторону, причем закругленные боковые стороны проводников обращены друг к другу в зоне участка герметизированной камеры.
12. Устройство по п.1, в котором микроэлектромеханические элементы дополнительно содержат поджигающий электрод для получения импульсного сигнала, чтобы вызвать пробой диэлектрического элемента в герметизированной камере.
13. Устройство по п.12, в котором поджигающий электрод находится в герметизированной камере.
14. Устройство по п.12, в котором поджигающий электрод находится вне герметизированной камеры, но вблизи указанной герметизированной камеры.
15. Устройство по п.1, дополнительно содержащее инициатор, электрически соединенный с переключателем.
16. Устройство по п.15, дополнительно содержащее локальный источник энергии для подачи предварительно заданного напряжения на переключатель.
17. Устройство по п.15, в котором инициатор содержит, по меньшей мере, один из следующих инициаторов: инициатор взрыва фольги (ИВФ), мостиковый инициатор взрыва и полупроводниковый мостиковый инициатор.
18. Устройство по п.1, дополнительно содержащее подложку, проводники, сформированные на поверхности подложки, в котором, по меньшей мере, часть герметизированной камеры находится между боковыми сторонами проводников.
19. Устройство по п.1, в котором диэлектрический элемент содержит, по меньшей мере, один из газа с высокой диэлектрической постоянной и жидкого диэлектрика.
20. Устройство по п.19, дополнительно содержащее корпус, в котором расположен переключатель, причем посредством корпуса обеспечивают герметичность герметизированной камеры.
21. Устройство по п.1, дополнительно содержащее радиоактивный материал вблизи переключателя для улучшения прогнозируемости ионизационного пробоя диэлектрического элемента.
22. Устройство по п.21, в котором радиоактивный материал обеспечивают в герметизированной камере.
23. Устройство по п.21, в котором радиоактивный материал содержит, по меньшей мере, одно из веществ: хром, торий, калий, уран, никель или минерал, содержащий некоторое количество хрома, тория, калия, урана или никеля.
24. Устройство по п.21, в котором радиоактивный материал содержит, по меньшей мере, одно из веществ: торит, уранит и каменную соль.
25. Переключатель, содержащий
электропроводники и
диэлектрический материал между указанными электропроводниками,
в котором каждый из электропроводников имеет закругленную боковую сторону, причем закругленные боковые стороны проводников обращены друг к другу вдоль диэлектрического материала, при этом электропроводники и диэлектрический материал являются микроэлектромеханическими элементами.
26. Переключатель по п.25, дополнительно содержащий герметизированную камеру, содержащую диэлектрический материал, причем диэлектрический материал содержит газ.
27. Переключатель, содержащий
проводники;
диэлектрический материал между указанными проводниками и
нанотрубчатые электронные излучатели, электрически соединенные, по меньшей мере, с одним из проводников,
в котором диэлектрический материал выполнен с возможностью пробоя под воздействием приложенной электрической энергии, приложенной, по меньшей мере, к одному из проводников, для обеспечения токопроводящего пути между проводниками.
28. Переключатель по п.27, в котором диэлектрический материал содержит газ.
29. Переключатель по п.28, дополнительно содержащий герметизированную камеру, содержащую газ.
30. Переключатель по п.29, дополнительно содержащий диэлектрический слой, расположенный поверх проводников в герметизированной камере, причем диэлектрический слой содержит отверстия для экспонирования соответствующих проводников.
31. Переключатель по п.30, в котором нанотрубчатые электронные излучатели расположены, по меньшей мере, в одном из отверстий диэлектрического слоя и находятся в электрическом контакте, по меньшей мере, с одним из проводников.
32. Способ приведения в действие компонента, содержащий следующие этапы:
обеспечение переключателя, имеющего микроэлектромеханические элементы, причем микроэлектромеханические элементы содержат герметизированную камеру, содержащую, по меньшей мере, один из газа с высокой диэлектрической постоянной и жидкого диэлектрика, опорную подложку, имеющую поверхность и проводники, сформированные на поверхности опорной подложки и находящиеся в контакте с поверхностью указанной опорной подложки;
приложение входного напряжения, по меньшей мере, к одному из проводников, чтобы вызвать пробой, по меньшей мере, одного из газа с высокой диэлектрической постоянной или жидкого диэлектрика для обеспечения токопроводящего пути между проводниками;
подачу входного напряжения посредством электрического соединения к компоненту через переключатель.
33. Способ по п.32, в котором подача входного напряжения посредством электрического соединения к компоненту содержит подачу входного напряжения посредством электрического соединения к устройству скважины.
34. Способ по п.32, в котором подача входного напряжения посредством электрического соединения к компоненту содержит подачу входного напряжения посредством электрического соединения к взрывному устройству.
35. Способ по п.32, в котором подача входного напряжения посредством электрического соединения к компоненту содержит подачу входного напряжения посредством электрического соединения, по меньшей мере, к одному из инициаторов: инициатору взрыва фольги (ИВФ), мостиковому инициатору взрыва и полупроводниковому мостиковому инициатору.
36 Переключатель, содержащий,
по меньшей мере, два проводника;
нанотрубчатый электронный излучатель для формирования, по меньшей мере, части электропроводящего пути между, по меньшей мере, двумя проводниками; и
диэлектрический элемент, выполненный с возможностью пробоя под воздействием входной энергии для обеспечения другой части электропроводящего пути.
37. Переключатель по п.36, дополнительно содержащий, по меньшей мере, другой нанотрубчатый электронный излучатель.
38. Способ приведения в действие взрывного устройства, содержащий следующие этапы:
приведение в действие переключателя, содержащего проводники и по меньшей мере один из излучателей нанотрубчатый электронный излучатель, и изотопный электронный излучатель; и
передачу электрического тока между проводниками через электропроводящий путь, содержащий, по меньшей мере, один из излучателей: нанотрубчатый электронный излучатель и изотопный электронный излучатель; и
соединение взрывного устройства с переключателем.
39. Способ по п.38, дополнительно содержащий этап эксплуатации инструмента, содержащего переключатель в скважине, в котором приведение в действие переключателя содержит этап приведения в действие переключателя, когда инструмент находится в скважине.
RU2005103707/09A 2004-02-13 2005-02-11 Микроэлектромеханические устройства RU2296403C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/708,182 US7336474B2 (en) 1999-09-23 2004-02-13 Microelectromechanical devices
US10/708,182 2004-02-13

Publications (2)

Publication Number Publication Date
RU2005103707A RU2005103707A (ru) 2006-07-20
RU2296403C2 true RU2296403C2 (ru) 2007-03-27

Family

ID=34314200

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005103707/09A RU2296403C2 (ru) 2004-02-13 2005-02-11 Микроэлектромеханические устройства

Country Status (7)

Country Link
US (1) US7336474B2 (ru)
CN (1) CN100416735C (ru)
CA (1) CA2496860C (ru)
FR (1) FR2874754B1 (ru)
GB (2) GB2411295B (ru)
NO (1) NO338384B1 (ru)
RU (1) RU2296403C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532684C2 (ru) * 2013-05-23 2014-11-10 Общество с ограниченной ответственностью "СПИНТЕК" Переключатель и коммутатор

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7874250B2 (en) * 2005-02-09 2011-01-25 Schlumberger Technology Corporation Nano-based devices for use in a wellbore
US7402194B2 (en) * 2005-07-27 2008-07-22 International Business Machines Corporation Carbon nanotubes as low voltage field emission sources for particle precipitators
US7744793B2 (en) 2005-09-06 2010-06-29 Lemaire Alexander B Apparatus and method for growing fullerene nanotube forests, and forming nanotube films, threads and composite structures therefrom
US7850778B2 (en) * 2005-09-06 2010-12-14 Lemaire Charles A Apparatus and method for growing fullerene nanotube forests, and forming nanotube films, threads and composite structures therefrom
US7392697B2 (en) * 2005-09-19 2008-07-01 Schlumberger Technology Corporation Apparatus for downhole fluids analysis utilizing micro electro mechanical system (MEMS) or other sensors
US7714240B1 (en) 2005-09-21 2010-05-11 Sandia Corporation Microfabricated triggered vacuum switch
US7629604B2 (en) * 2005-11-10 2009-12-08 Schlumberger Technology Corporation Nano-based device and method
US7615492B2 (en) * 2006-07-21 2009-11-10 Atomic Energy Council - Institute Of Nuclear Energy Research Preparing method of CNT-based semiconductor sensitized solar cell
FR2911719B1 (fr) * 2007-01-19 2009-02-27 Schneider Electric Ind Sas Dispositif d'interruption/enclenchement d'un circuit electrique
US8297351B2 (en) 2007-12-27 2012-10-30 Schlumberger Technology Corporation Downhole sensing system using carbon nanotube FET
US20090200063A1 (en) * 2008-02-08 2009-08-13 Sony Ericsson Mobile Communications Ab Embedded spark gap
US20100058945A1 (en) * 2008-09-10 2010-03-11 Raytheon Company In-situ and ex-situ electrophoresis-based formation of aligned nanostructure triggers for solid explosives
US20100068152A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Ex vivo modifiable particle or polymeric based final dosage form
US8753677B2 (en) * 2008-09-16 2014-06-17 The Invention Science Fund I, Llc Ex vivo modifiable multiple medicament final dosage form
US20100069821A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Ex vivo modifiable medicament release-sites final dosage form
US20100068275A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Personalizable dosage form
US20100068233A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Modifiable dosage form
US20100068153A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Ex vivo activatable final dosage form
US20100068235A1 (en) * 2008-09-16 2010-03-18 Searete LLC, a limited liability corporation of Deleware Individualizable dosage form
US20100069887A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Multiple chamber ex vivo adjustable-release final dosage form
US8601948B2 (en) 2010-04-26 2013-12-10 Schlumberger Technology Corporation Spark gap isolated, RF safe, primary explosive detonator for downhole applications
DE102011102937B4 (de) * 2010-08-17 2017-03-02 DEHN + SÖHNE GmbH + Co. KG. Anordnung zur Zündung von Funkenstrecken
CN102064041B (zh) * 2010-12-16 2013-04-03 东南大学 常关态场发射型射频微机械开关
CN102064042B (zh) * 2010-12-16 2013-04-03 东南大学 一种常开态场发射型射频微机械开关
US8695506B2 (en) 2011-02-03 2014-04-15 Baker Hughes Incorporated Device for verifying detonator connection
WO2013016528A1 (en) * 2011-07-28 2013-01-31 The Board Of Trustees Of The University Of Illinois Electron emission device
DE202012005934U1 (de) 2012-06-18 2012-07-10 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Schalter
US9394766B2 (en) * 2012-10-29 2016-07-19 Halliburton Energy Services, Inc. Subterranean well tools with directionally controlling flow layer
CN103115528A (zh) * 2012-12-30 2013-05-22 李�杰 一种微小型高压放电装置
CN103411487A (zh) * 2013-08-21 2013-11-27 南通迅翔自动化设备有限公司 一种电子***点火能量控制方法
US10670381B1 (en) * 2013-09-17 2020-06-02 The United States Of America, As Represented By The Secretary Of The Navy Electronic thermally-initiated venting system (ETIVS) for rocket motors
CN104899941A (zh) * 2014-03-04 2015-09-09 李孝杰 一种带有电子锁的安全电***
WO2016033471A1 (en) * 2014-08-29 2016-03-03 Hunting Titan, Inc. High voltage explosive assembly for downhole detonations
CA2990014C (en) * 2015-06-26 2023-10-03 Jozef Hubertus Gerardus SCHOLTES Integrated circuit initiator device
CN105178923B (zh) * 2015-09-29 2019-03-22 中石化石油工程技术服务有限公司 多级射孔冗余点火控制装置
RU2661356C1 (ru) * 2017-03-06 2018-07-16 Скальный Владимир Анатольевич Разрядная камера и разрядник с такой камерой
RU2661358C1 (ru) * 2017-03-06 2018-07-16 Скальный Владимир Анатольевич Герметичный разрядник
DE102017118231A1 (de) * 2017-08-10 2019-02-14 Tdk Electronics Ag Triggerbare Funkenstrecke mit flacher Bauform und Verwendung einer Funkenstrecke
EP3743591A4 (en) 2018-01-23 2022-03-23 GeoDynamics, Inc. SWITCH ASSEMBLY THAT IS POSSIBLE TO APPLY FOR DRILLING WELL SYSTEMS AND PROCESS
SI25615A (sl) * 2018-03-14 2019-09-30 Nela Razvojni Center Za Elektroindustrijo In Elektroniko, D.O.O. Alternativno spremenljiv električni tokokrog in postopek spreminjanja poti električnega toka v električnem tokokrogu
US11078763B2 (en) 2018-08-10 2021-08-03 Gr Energy Services Management, Lp Downhole perforating tool with integrated detonation assembly and method of using same
US10858919B2 (en) 2018-08-10 2020-12-08 Gr Energy Services Management, Lp Quick-locking detonation assembly of a downhole perforating tool and method of using same
US11994008B2 (en) 2018-08-10 2024-05-28 Gr Energy Services Management, Lp Loaded perforating gun with plunging charge assembly and method of using same
RU2711002C1 (ru) * 2018-12-20 2020-01-14 Олег Иванович Громов РАЗРЯДНАЯ КАМЕРА С ТРЕМЯ ЭЛЕКТРОДАМИ И ДВУМЯ ИСКРОВЫМИ ПРОМЕЖУТКАМИ (Варианты)
WO2020219435A1 (en) 2019-04-24 2020-10-29 Schlumberger Technology Corporation System and methodology for actuating a downhole device

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE424484A (ru) 1937-11-06
US3181463A (en) * 1961-03-17 1965-05-04 Gen Precision Inc Explosive device containing charge of elongated crystals and an exploding bridgewire
US3691631A (en) * 1970-01-29 1972-09-19 Conductron Corp Method of making a voltage actuatable switch
SE456939B (sv) 1987-02-16 1988-11-14 Nitro Nobel Ab Spraengkapsel
FR2635913B1 (fr) 1988-08-31 1990-11-09 Saint Louis Inst Diode a emission de champ
US5331249A (en) * 1988-09-27 1994-07-19 Yazaki Corporation Discharge tube
JPH02168588A (ja) 1988-09-27 1990-06-28 Yazaki Corp 放電管
US5094167A (en) * 1990-03-14 1992-03-10 Schlumberger Technology Corporation Shape charge for a perforating gun including an integrated circuit detonator and wire contactor responsive to ordinary current for detonation
US5088413A (en) * 1990-09-24 1992-02-18 Schlumberger Technology Corporation Method and apparatus for safe transport handling arming and firing of perforating guns using a bubble activated detonator
US5367878A (en) * 1991-11-08 1994-11-29 University Of Southern California Transient energy release microdevices and methods
US5249095A (en) * 1992-08-27 1993-09-28 The United States Of America As Represented By The Secretary Of The Army Laser initiated dielectric breakdown switch
US5355959A (en) * 1992-09-22 1994-10-18 Halliburton Company Differential pressure operated circulating and deflation valve
US5505134A (en) * 1993-09-01 1996-04-09 Schlumberger Technical Corporation Perforating gun having a plurality of charges including a corresponding plurality of exploding foil or exploding bridgewire initiator apparatus responsive to a pulse of current for simultaneously detonating the plurality of charges
US5347929A (en) * 1993-09-01 1994-09-20 Schlumberger Technology Corporation Firing system for a perforating gun including an exploding foil initiator and an outer housing for conducting wireline current and EFI current
US5444598A (en) * 1993-09-29 1995-08-22 Raymond Engineering Inc. Capacitor exploding foil initiator device
US5833490A (en) * 1995-10-06 1998-11-10 Pes, Inc. High pressure instrument wire connector
US5638946A (en) * 1996-01-11 1997-06-17 Northeastern University Micromechanical switch with insulated switch contact
KR100365444B1 (ko) * 1996-09-18 2004-01-24 가부시끼가이샤 도시바 진공마이크로장치와이를이용한화상표시장치
US5909078A (en) * 1996-12-16 1999-06-01 Mcnc Thermal arched beam microelectromechanical actuators
US5769160A (en) * 1997-01-13 1998-06-23 Pes, Inc. Multi-functional downhole cable system
JP3740295B2 (ja) 1997-10-30 2006-02-01 キヤノン株式会社 カーボンナノチューブデバイス、その製造方法及び電子放出素子
US6100477A (en) * 1998-07-17 2000-08-08 Texas Instruments Incorporated Recessed etch RF micro-electro-mechanical switch
CA2345301C (en) * 1998-09-24 2005-11-01 Schlumberger Technology Corporation Initiation of explosive devices
KR20000074609A (ko) * 1999-05-24 2000-12-15 김순택 카본 나노 튜브를 이용한 전계 방출 어레이 및 그 제조방법
US6333016B1 (en) * 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
US6324979B1 (en) 1999-12-20 2001-12-04 Vishay Intertechnology, Inc. Electro-pyrotechnic initiator
AU2001268742A1 (en) 2000-06-28 2002-01-08 The Regents Of The University Of California Capacitive microelectromechanical switches
DE10143363A1 (de) 2000-09-05 2002-05-16 Schlumberger Technology Corp Mikroschalter zur Verwendung in einer Bohrung
NO319947B1 (no) * 2000-09-05 2005-10-03 Schlumberger Holdings Mikrosvitsjer for nedhulls-anvendelse
EP1315827A1 (en) 2000-09-08 2003-06-04 Dsm N.V. Method for the preparation of enantiomerically enriched amines
US6851370B2 (en) * 2002-04-30 2005-02-08 Kdi Precision Products, Inc. Integrated planar switch for a munition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532684C2 (ru) * 2013-05-23 2014-11-10 Общество с ограниченной ответственностью "СПИНТЕК" Переключатель и коммутатор

Also Published As

Publication number Publication date
GB0611274D0 (en) 2006-07-19
CA2496860A1 (en) 2005-08-13
GB2411295B (en) 2006-10-04
FR2874754B1 (fr) 2012-12-21
CA2496860C (en) 2014-05-13
GB2411295A (en) 2005-08-24
CN100416735C (zh) 2008-09-03
GB2425891A (en) 2006-11-08
NO338384B1 (no) 2016-08-15
RU2005103707A (ru) 2006-07-20
CN1677597A (zh) 2005-10-05
NO20050756L (no) 2005-08-15
GB2425891B (en) 2007-09-05
GB0502183D0 (en) 2005-03-09
FR2874754A1 (fr) 2006-03-03
US20040160726A1 (en) 2004-08-19
US7336474B2 (en) 2008-02-26
NO20050756D0 (no) 2005-02-11

Similar Documents

Publication Publication Date Title
RU2296403C2 (ru) Микроэлектромеханические устройства
CA2535477C (en) Nano-based devices for use in a wellbore
US7116542B2 (en) Micro-switches for downhole use
US8230788B2 (en) Method of fabrication and use of integrated detonators
Shea et al. Effects of electrical leakage currents on MEMS reliability and performance
US5493177A (en) Sealed micromachined vacuum and gas filled devices
US6979947B2 (en) Nanotriode utilizing carbon nanotubes and fibers
US7280014B2 (en) Micro-electro-mechanical switch and a method of using and making thereof
CN101553076A (zh) 中子发生器
BR112018002077B1 (pt) Sistema de perfuração de fundo de poço e capacitor de alta voltagem
KR102513127B1 (ko) 핵융합 반응을 위한 방법, 장치 및 시스템
CN1618722A (zh) 具有三晶片结构的微机电***
CA2412192C (en) Integrated activating device for explosives
CA2356793C (en) Micro-switches for downhole use
JP2010258890A (ja) 静電誘導型変換素子
Tobazeon Streamers in liquids
US20100208408A1 (en) Light-Activated Switch and Circuit for Select-Fire Perforating Guns
KR100877133B1 (ko) 파암장치 및 기폭유니트
GB2379684A (en) Micro-switches for downhole use
Von Allmen et al. Dynamics of an atomic switch computed by first-principles molecular dynamics
US20140083719A1 (en) System And Method For Reducing Particulate Matter In Connectors For A Wellsite Drilling Operation
US10822929B2 (en) Electrohydraulic movement of downhole components and method
Wright Microdischarge-based pressure controlling devices and their applications to chemical sensing in harsh environments
Luo Microtechnologies for discharge-based sensors
John AN OVERVIEW OF ELECTRICAL PROCESSES LEADING TO DIELECTRIC BREAKDOWN OF LIQUIDS