RU2184703C2 - Способ переработки алюминатного раствора при производстве глинозема из нефелина - Google Patents

Способ переработки алюминатного раствора при производстве глинозема из нефелина Download PDF

Info

Publication number
RU2184703C2
RU2184703C2 RU2000117115A RU2000117115A RU2184703C2 RU 2184703 C2 RU2184703 C2 RU 2184703C2 RU 2000117115 A RU2000117115 A RU 2000117115A RU 2000117115 A RU2000117115 A RU 2000117115A RU 2184703 C2 RU2184703 C2 RU 2184703C2
Authority
RU
Russia
Prior art keywords
aluminum hydroxide
soda
classifier
battery
suspension
Prior art date
Application number
RU2000117115A
Other languages
English (en)
Other versions
RU2000117115A (ru
Inventor
И.В. Давыдов
А.А. Кузнецов
Е.А. Беликов
Н.А. Кузьмин
В.Г. Лазарев
В.В. Стряхов
Original Assignee
Акционерное общество открытого типа "Всероссийский алюминиево-магниевый институт"
Открытое акционерное общество "Металлург"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество открытого типа "Всероссийский алюминиево-магниевый институт", Открытое акционерное общество "Металлург" filed Critical Акционерное общество открытого типа "Всероссийский алюминиево-магниевый институт"
Priority to RU2000117115A priority Critical patent/RU2184703C2/ru
Application granted granted Critical
Publication of RU2184703C2 publication Critical patent/RU2184703C2/ru
Publication of RU2000117115A publication Critical patent/RU2000117115A/ru

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение относится к области производства глинозема методом спекания, в частности к производству глинозема из нефелинового сырья. Способ переработки алюминатного раствора при производстве глинозема из нефелина включает выщелачивание, обескремнивание, разделение потока алюминатного раствора на две части, одну из которых подают в содовую батарею и разлагают карбонизацией с получением гидроксида алюминия, вторую - в содощелочную батарею и разлагают карбонизацией и выкручиванием, классифицируют полученную суспензию в классификаторе, фильтруют гидроксид алюминия и маточный раствор. Раствор, поступающий в содощелочную батарею предварительно смешивают с гидроксидом алюминия, отобранным из верхней зоны классификатора и выдерживают при постоянном перемешивании и температуре 87 - 65oС в течение 1-4 ч. Полученную суспензию смешивают с гидроксидом алюминия из содовой батареи и обрабатывают углекислым газом. Количество гидроксида алюминия, отобранное из верхней зоны классификатора и возвращаемое в содощелочную ветвь составляет 0,07 - 0,5 от концентрации Аl2О3 в алюминатном растворе. Суспензию после обработки углекислым газом выдерживают при постоянном перемешивании до достижения каустического модуля 3,1 - 4,1. Данное изобретение позволяет снизить содержание мелких фракций в продукционном гидроксиде алюминия. 2 з.п.ф-лы, 5 табл.

Description

Изобретение относится к области производства глинозема методом спекания, в частности к производству глинозема из нефелинового сырья.
Наиболее близким по технической сущности к заявляемому решению является способ переработки алюминатного раствора, получаемого после выщелачивания нефелинового спека и обескремнивания, включающий разделение потоков на две части, одна из которых разлагается в содовой батарее путем карбонизации, вторая в содощелочной батарее путем карбонизации и выкручивания, классификацию полученной суспензии, фильтрование осадка и растворов и использование в качестве затравки в содощелочной ветви гидроксида алюминия, выделенного в содовой ветви (Справочник металлурга по цветным металлам. Производство глинозема. - М.: Металлургия, 1970, с. 150 - 163).
К недостаткам этого способа следует отнести получение мелкого гидроксида алюминия, содержащего большое количество частиц размером <10 мкм - 5 - 7 %; < 25 мкм - 12 - 15 %; < 40 мкм - 35 %, что не соответствует современным требованиям, т. к. используемый в процессе электролиза глинозем, полученный из такого гидроксида алюминия, пылит и ухудшает работу автоматического питания электролизеров.
Данный способ по основному признаку, связанному с разделением потока алюминатного раствора на две части, одна из которых перерабатывается в содовой, а другая в содощелочной ветвях и использование в последней в качестве затравки гидроксида алюминия, полученного в содовой ветви, принят нами за прототип.
Технической задачей изобретения является уменьшение количества мелких фракций в продукционном гидроксиде алюминия и улучшение качества конечного продукта по дисперсному составу.
Решение поставленной задачи заключается в том, что при производстве глинозема из нефелина, включающем выщелачивание, обескремнивание, разделение потока алюминатного раствора на две части, одну из которых подают в содовою батарею и разлагают карбонизацией с получением гидроксида алюминия, вторую - в содощелочную батарею и разлагают карбонизацией и выкручиванием, классифицируют полученную суспензию в классификаторе, фильтруют гидроксид алюминия и матовый раствор, раствор, поступающий в содощелочную батарею, предварительно смешивают с гидроксидом алюминия, отобранным из верхней зоны классификатора, и выдерживают при постоянном перемешивании и температуре 87 - 65oС в течение 1 - 4-х часов, полученную суспензию смешивают с гидроксидом алюминия из содовой батареи и пульпу обрабатывают углекислым газом.
Количество гидроксида алюминия, отбираемого из классификатора и возвращаемого в содощелочную батарею, составляет 0,07 - 0,5 от концентрации Al2O3 в растворе, поступающем на переработку, а пульпу после обработки углекислым газом выдерживают при постоянном перемешивании до достижения каустического модуля 3,1 - 4,1.
Смешение раствора, поступающего в содощелочную ветвь, с гидроксидом алюминия, отобранным из верхней части классификатора или гидроциклона и содержащем, в основном, мелкие частички, размером -10, -20 и -40 мкм, и выдержка полученной суспензии в течение 1 - 4-х часов при температуре 87 - 65oС позволяет осуществить процесс агрегатирования с образованием крупных агломератов. При этом повышается каустический модуль перерабатываемого раствора, что, в свою очередь, обеспечивает преимущественный рост частиц твердой фазы в процессе смешения полученной пульпы с гидроксидом алюминия (затравкой) из содовой ветви и последующим разложением суспезии методом карбонизации. Отношение количества твердой фазы гидроксида алюминия, отбираемого из верхней части классификатора и возвращаемое в содощелочную ветвь, к содержанию Al2O3 в растворе, поступающем на переработку в эту ветвь, должно быть не более 0,5 и не менее 0,07, т.к. в первом случае ухудшается показатель агрегатирования мелких частиц, во втором - возникает большой избыток мелкодисперсного гидрата, что снижает качество готовой продукции. Кроме того, для уменьшения пересыщения маточного раствора, суспензию после обработки углекислым газом целесообразно выдерживать при постоянном перемешивании до достижения модуля 3,1 - 4,1.
Пример 1. Опыты проводились на алюминатном растворе следующего состава: Nа2Оку - 76,3 г/л; Na2Oу - 15,4 г/л; Al2O3 - 77,0 г/л; αку-1,63.
Весовое отношение мелкого гидроксида алюминия, отобранного из верхней части классификатора и возвращаемого в содощелочную ветвь, к концентрации Al2O3 в алюминатном растворе, поступающем в эту же ветвь (Δ), менялось от 0,1 до 0,5. Время выдержки суспензии составляло 2 - 6 часов. Температура варьировалась в пределах 65 - 85oС. Дисперсный состав гидроксида алюминия, отобранного из верхней части классификатора (исходного гидрата) и получаемого после опытов приведен в таблицах 1-3. Как видно из этих данных, повышение температуры от 65oС до 85 - 87oС приводит к укрупнению исходного гидроксида алюминия, используемого в качестве затравки. Так, например, если при toС = 65o содержание частиц менее 10 мкм через два часа снизилось от 1,8 до 1,2 %, содержание частиц -25 мкм и -40 мкм уменьшилось соответственно от 25,1 до 21,9 % и от 54,9 до 38,6 % (табл.1), то при температуре процесса 77oС (табл. 2) аналогичные показатели выглядят следующим образом: -10 мкм - исх. 1,2 %, продукт 0 %; -25 мкм - исх. 25,1 %, продукт 3,0 %; -40 мкм - исх. 54,9 %, продукт 21,7 %. Данные при t oС = 85 - 87o представлены в табл.3.
Из данных табл.2 можно проследить влияние количества возвращаемого гидроксида алюминия на процесс укрупнения твердой фазы. Видно, что при изменении указанного показателя от 0,1 до 0,5 процесс укрупнения твердой фазы идет достаточно успешно. Однако повышение количества возвращаемого гидроксида алюминия (≥ 0,5) ухудшает агрегатирование мелких частиц.
Пример 2. Переработке подвергался алюминатный раствор следующего состава: Na2Oку ~ 76,3 г/л; Na2Oy ~ 15,1 г/л; Al2O3 ~ 77,0 г/л; αку≃1,63.
В начале процесса раствор смешивался с мелкодисперсным гидроксидом алюминия, отобранным из верхней части классификатора. При этом весовое отношение количества гидроксида алюминия, вводимого в процесс к концентрации Al2O3 в растворе составило 0,1. Время перемешивания суспензии - 2 часа, температура смеси - 77oС. Затем полученную суспензию вводился гидроксид алюминия из содовой ветви, используемый в качестве затравки и суспензия подвергалась карбонизации газом, содержащим 15 - 16 % СО2. При снижении концентрации каустической щелочи (Na2Oк) до ~ 43,0 г/л карбонизация прекращалась и суспензия "выкручивалась" в течение 4 - 5 часов. Каустический модуль маточного раствора при этом достигал 3,5 - 3,9. Полученные данные, представленные в табл. 4 и 5, убедительно показывают, что мелкий гидроксид алюминия, отобранный из верхней зоны классификатора, значительно укрупняется. Так, например, содержание частиц размером менее 10 мкм снижается от 1,8 до 0% ; -25 мкм соответственно от 25,8 до 1,7%; а -40 мкм от 54,0 до 34,0%. Продукционный гидроксид алюминия практически не содержит частиц размером -10 мкм и -25 мкм, что значительно лучше современных требований.

Claims (3)

1. Способ переработки алюминатного раствора при производстве глинозема из нефелина, включающий выщелачивание, обескремнивание, разделение потока алюминатного раствора на две части, одну из которых подают в содовую батарею и разлагают карбонизацией с получением гидроксида алюминия, вторую - в содощелочную батарею и разлагают карбонизацией и выкручиванием, классифицируют полученную суспензию в классификаторе, фильтруют гидроксид алюминия и маточный раствор, отличающийся тем, что раствор, поступающий в содощелочную батарею, предварительно смешивают с гидроксидом алюминия, отобранным из верхней зоны классификатора, и выдерживают при постоянном перемешивании и температуре 87 - 65oС в течение 1-4 ч, полученную суспензию смешивают с гидроксидом алюминия из содовой батареи и обрабатывают углекислым газом.
2. Способ по п. 1, отличающийся тем, что количество гидроксида алюминия, отобранное из верхней зоны классификатора и возвращаемое в содощелочную ветвь, составляет 0,07 - 0,5 от концентрации Аl2O3 в алюминатном растворе.
3. Способ по п. 1, отличающийся тем, что суспензию после обработки углекислым газом выдерживают при постоянном перемешивании до достижения каустического модуля 3,1 - 4,1.
RU2000117115A 2000-06-27 2000-06-27 Способ переработки алюминатного раствора при производстве глинозема из нефелина RU2184703C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000117115A RU2184703C2 (ru) 2000-06-27 2000-06-27 Способ переработки алюминатного раствора при производстве глинозема из нефелина

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000117115A RU2184703C2 (ru) 2000-06-27 2000-06-27 Способ переработки алюминатного раствора при производстве глинозема из нефелина

Publications (2)

Publication Number Publication Date
RU2184703C2 true RU2184703C2 (ru) 2002-07-10
RU2000117115A RU2000117115A (ru) 2002-11-10

Family

ID=20237037

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000117115A RU2184703C2 (ru) 2000-06-27 2000-06-27 Способ переработки алюминатного раствора при производстве глинозема из нефелина

Country Status (1)

Country Link
RU (1) RU2184703C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771681B2 (en) 2006-12-29 2010-08-10 Nalco Company Method for improved aluminum hydroxide production
US8282689B2 (en) 2009-07-01 2012-10-09 Nalco Company Composition and method for enhancing the production of crystal agglomerates from a precipitation liquor
RU2599295C2 (ru) * 2014-12-12 2016-10-10 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ разложения алюминатных растворов при переработке нефелинового сырья

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
А.А. АГРАНОВСКИЙ И ДР. Справочник металлурга по цветным металлам. Производство глинозема. - М., 1970, с. 150-163. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771681B2 (en) 2006-12-29 2010-08-10 Nalco Company Method for improved aluminum hydroxide production
US8282689B2 (en) 2009-07-01 2012-10-09 Nalco Company Composition and method for enhancing the production of crystal agglomerates from a precipitation liquor
US8784509B2 (en) 2009-07-01 2014-07-22 Nalco Company Composition for enhancing the production of crystal agglomerates from a precipitation liquor
RU2599295C2 (ru) * 2014-12-12 2016-10-10 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ разложения алюминатных растворов при переработке нефелинового сырья

Similar Documents

Publication Publication Date Title
US3120426A (en) Process for the production of aragonite crystals
JP2939659B2 (ja) 沈澱炭酸カルシウム
US5342600A (en) Precipitated calcium carbonate
CN101020579A (zh) 一种由电石渣制备高纯轻质碳酸钙微粉的方法
EP0480587B1 (en) Precipitated calcium carbonate
WO2024141117A1 (zh) 锂辉石提锂同时回收低铁低硫硅铝微粉、高纯石膏、钽铌精矿和富锂铁料的方法
CN112028095A (zh) 超细氢氧化铝晶种及其制备方法、亚微米氢氧化铝及其制备方法和应用
JPH0336767B2 (ru)
CN109824076B (zh) 气泡膜法制备碳酸钙工艺及其应用
RU2184703C2 (ru) Способ переработки алюминатного раствора при производстве глинозема из нефелина
CN109467112A (zh) 一种文石型晶种及文石型轻质碳酸钙及其制备方法
US3265466A (en) Process for the manufacture of trihydrate of alumina
CN111943240B (zh) 超低晶种量的铝酸钠溶液分解制备粗粒氢氧化铝的方法
US4051222A (en) Coarsening of partially calcined alumina dust
US2493752A (en) Process of producing magnesium hydroxide
KR100404970B1 (ko) 탄산칼슘과수산화나트륨의공동제조방법
JP2730660B2 (ja) 紡錘状炭酸カルシウムの製造方法
RU2152904C2 (ru) Способ получения глинозема из высокосернистого и высококарбонатного боксита
CN114291836B (zh) 碳酸钙晶型控制剂、其应用、及立方形碳酸钙的制备方法
AU594035B2 (en) Process for the production of aluminium hydroxide with low content of impurities, especially of iron, and with high degree of whiteness
RU2612288C1 (ru) Способ разложения алюминатных растворов
JP2001270713A (ja) アラゴナイト結晶系炭酸カルシウムの製造方法
US3607140A (en) Preparation of alumina of improved purity by iron removal
US2413492A (en) Method of producing iron oxide and for production of powdered iron
CN113371742A (zh) 一种超细氢氧化铝的工业生产方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090628