RU2148032C1 - Способ и устройство для биологического разрушения вредных веществ в воде - Google Patents

Способ и устройство для биологического разрушения вредных веществ в воде Download PDF

Info

Publication number
RU2148032C1
RU2148032C1 RU97106781/12A RU97106781A RU2148032C1 RU 2148032 C1 RU2148032 C1 RU 2148032C1 RU 97106781/12 A RU97106781/12 A RU 97106781/12A RU 97106781 A RU97106781 A RU 97106781A RU 2148032 C1 RU2148032 C1 RU 2148032C1
Authority
RU
Russia
Prior art keywords
water
ozone
biological
main
harmful substances
Prior art date
Application number
RU97106781/12A
Other languages
English (en)
Other versions
RU97106781A (ru
Inventor
Л йтцке Ортвин (DE)
Ляйтцке Ортвин
Original Assignee
Ведеко Умвельттехнологи Вассер-Боден-Люфт ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6529473&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2148032(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ведеко Умвельттехнологи Вассер-Боден-Люфт ГмбХ filed Critical Ведеко Умвельттехнологи Вассер-Боден-Люфт ГмбХ
Publication of RU97106781A publication Critical patent/RU97106781A/ru
Application granted granted Critical
Publication of RU2148032C1 publication Critical patent/RU2148032C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

Изобретение предназначено для обработки воды, загрязненной вредными веществами, с трудом поддающимися разложению чисто биологическими средствами. Вода проходит по основному контуру, оснащенному средством для постоянного притока загрязненной воды и по ответвленному от него частичному контуру. Вода проходит в частичном контуре через реактор, где она обрабатывается озоном, который вызывает предварительное окисление вредных веществ. Затем вода поступает в резервуар с аэробной биологической средой, где благодаря предварительному окислению вредных веществ происходит их дальнейшее разрушение. Технический результат - повышение степени очистки воды за счет предварительного окисления вредных веществ озоном, снижение себестоимости и энергоемкости процесса. 2 с. и 18 з.п. ф-лы, 1 ил.

Description

Изобретение относится к способу согласно ограничительной части пункта 1 формулы изобретения и к соответствующему устройству согласно ограничительной части пункта 10 формулы изобретения.
Изобретение касается обработки и разрушения содержащихся в воде вредных веществ, которые с помощью чисто биологических методов мало поддаются разрушению или вообще не разрушаются, как, например, ядовитые вещества в просачивающихся водах из складов отходов или из промышленных стоков, такие как хлорированные углеводороды, диоксины, ядохимикаты или красители.
Обычно принято обрабатывать такие промышленные стоки или просачивающиеся воды из складов отходов с помощью комбинации метода биологической обработки и озонирования для достижения предписанных законом величин сброса в водоприемник для CSB (химическая потребность в кислороде), BSB5 (биологическая потребность к кислороде), AOx (абсорбируемые органические галогеноуглеводороды и NH4 - N (азот из аммония). Для этого используются обычные методы биологической очистки активным илом без применения давления или методы биологической очистки активным илом в напорном резервуаре, а также биологические методы в тонком слое, фиксированном на несущих материалах. Неразрушенные при этом биологическим методом вещества пытаются с помощью озона окислить в поддающиеся биологическому разрушению кислоты или в двуокись углеводорода.
Такая обработка озоном, которая может применяться после биологической обработки, известна из EP 478 583 B 1.
Известен также способ, при котором для экономии энергии неразрушенные вещества с помощью озона только предварительно расщепляются и затем подаются на последующую биологическую обработку, во время которой происходит дальнейший процесс биологического разрушения, который происходит с неразрушенными на первой ступени биологической обработки, предварительно расщепленными веществами. Такие устройства применяются заявителем в гаванях Антверпена и Ротердама для обработки промышленных стоков, чтобы они могли направляться в водоприемник.
При использовании комбинаций предварительной биологической обработки, озонирования и последующей биологической обработки в различных резервуарах и ступенях возникают большие строительные объемы. Кроме того, создаются и используются раздельные циркуляционные контуры воды для предварительной и последующей биологической обработки и для озонирования. Поэтому возникают большие расходы по оплате энергии для насосов. Обычно для биологической обработки используется кислород воздуха, при этом для работы устройств подачи газа, то есть компрессоров, снова требуется энергия. Известно, что при применении технического кислорода для биологической обработки технический кислород сначала используется в раздельных установках для получения озона, необходимого для озонирования, и лишь после этого, то есть когда уже больше нет озона, его используют для биологической обработки. Но и в этом случае кислород, не преобразованный в озон и не абсорбированный в водном контуре установки, снова собирается отдельно и заводится в генератор озона, как это следует из EP 478 583, фиг. 3, что связано с работой насосов и с необходимостью строительства установки.
В основе ограничительных признаков пунктов 1 и 10 формулы изобретения лежит выкладка DE 40 00 292 A1, которая своим предметом имеет способ очистки загрязненных тяжело разрушаемыми соединениями вод с применением озона, при котором предварительно очищенная вода подвергается озонированию с такой концентрацией озона, при которой происходит лишь предварительное окисление содержащихся в воде тяжело разрушаемых соединений, которые благодаря этому становятся доступными для биологического разрушения с помощью микробиологически активированного угля. Для достижения достаточной эффективности озонирования необходимо использование сложной многоступенчатой реакторной установки.
В основе изобретения лежит задача устранить недостатки предшествующих технологий, заключающиеся в высокой стоимости резервуаров и агрегатов и в высоких расходах энергии для циркуляционных контуров воды для биологической обработки и отдельного контура воды для озонирования и в неэффективном использовании кислорода.
Эта задача с точки зрения способа решается изобретением, представленным в пункте 1 формулы изобретения.
В данном случае также комбинируются биологическая обработка и озонирование таким образом, что озон используется только для того, чтобы предварительно окислить биологически разрушаемые вещества (предварительно расщепить, кондиционировать) так, чтобы они были доступны биологическому воздействию. Предусмотрен основной контур воды, в котором циркулирует основная масса обрабатываемой биологически воды, и частичный контур воды, в котором в выделенную часть этой воды вносится озон и происходит озонная реакция. Обработанная озоном часть воды постоянно подается снова в главную массу воды, циркулирующую в главном контуре воды, которая по частям снова и снова подвергается озонированию. Объем этой обработки определяется конкретной загрязненностью воды. При этом экономится как на агрегатах, так и на кислороде, так как оба используются одновременно для многих целей, а именно для озонирования и для поддержания биологической среды. Благодаря большому потоку воды в контуре по сравнению с объемом потока газа и постоянно повторяемому воздействию в контуре достигается высокая степень абсорбции озона и кислорода и соответственно интенсивное разрушающее действие.
Наиболее предпочтительный вариант выполнения изобретения является предметом пункта 2 формулы изобретения.
В соответствии с ним проводятся две биологические обработки различного характера в контуре, которые совместно приводят к значительному сокращению содержания вредных веществ. Бактерии для анаэробной биологической обработки нуждаются в O2 и H. O2 бактерии извлекают из присутствующего в воде нитрата, который благодаря этому восстанавливается до безвредного N2. Источником H является CBS в воде, в которую в качестве источника H может добавляться метанол или уксусная кислота. NH4 при аэробной биологической обработке окисляется в нитрат, который вместе с циркуляцией воды в главном контуре попадает в анаэробную биологическую обработку и восстанавливается до N2.
При обратном вводе обработанной озоном воды необходимо следить за тем, чтобы в зону биологической обработки не попадал озон, так как это повлечет отмирание бактерий (пункт 3 формулы изобретения).
Изолирование озона от биологически активных зон может осуществляться различными способами.
Согласно пункту 4 формулы изобретения количество озона может выбираться так, что озон в реакторной установке при предварительном окислении вредных веществ полностью расходуется и в покидающей реакторную установку воде озон больше не содержится.
Однако согласно пункту 5 формулы изобретения возможно также, что оставшийся в воде после прохождения реакторной установки озон в устройстве ультрафиолетового облучения превращается в кислородсодержащие молекулы или радикалы, которые безвредны для биологической среды и даже приводят к более интенсивному разрушению, например, галогеноуглеводородов.
Дальнейшая альтернативная возможность защиты биологической среды от озона состоит в его каталитическом разрушении согласно пункту 6 формулы изобретения.
Согласно пункту 7 формулы изобретения возможно также пропускать воду из контура с оставшимся после прохождения реакторной установки озоном через резервуар оседания ила с излишком или из биологической среды, чтобы предварительно окислить содержащиеся в нем вредные вещества и кондиционировать для последующего биологического разрушения.
Предпочтительный вариант выполнения изобретения является предметом пункта 8 формулы изобретения.
В соответствии с этим вариантом в установку резервуаров биологической обработки постоянно дозированно подводится неозонированная вода с вредными веществами, так что установка резервуаров для аэробной биологической обработки в отличие от предыдущей одновременно выполняет функции предварительной и последующей биологической обработки, так как в нее подается как неозонированная исходная вода, так и предварительно биологически обработанная и затем озонированная вода.
Отличительный признак пункта 9 формулы изобретения на практике очень важен для снижения строительных расходов.
Пункты 10 - 20 формулы изобретения представляют реализацию изобретения в виде соответствующего устройства.
Для эффективной обработки озоном, в особенности если обработка производится в проточной жидкости, требуется значительное количество озона. Для получения озона может применяться источник озона с тихим разрядом (пункт 20 формулы изобретения), так как производное в нем количество озона на два порядка превышает количество озона, производимого другими источниками.
Когда речь идет о воде, то подразумеваются также водные растворы, которые могут содержать определенные количества других жидкостей, если это не вредит биологической среде.
На чертеже показана схема устройства, соответствующего изобретению.
Обозначенное цифрой 100 устройство содержит в качестве составляющих основной контур I с резервуаром 2 для анаэробной биологической обработки и частичный контур II, который на разветвлении А отходит от основного контура I, устройство ввода 16 для озоносодержащего газа и реактор 24, в котором озон взаимодействует с вредными веществами, при этом частичный контур в месте слияния V, соответственно V', снова входит в основной контур, после чего оба потока совместно проходят через резервуар 8 для аэробной биологической обработки.
Вода с биологически трудно разрушаемыми вредными веществами (NH, CSB и AOx) через вход 1 поступает в изображенный штриховыми линиями основной контур. Вначале она через трубу 3 попадает снизу в резервуар 2 для анаэробной биологической обработки. Резервуар 2 схематически изображен в виде прямоугольника и может состоять из одного или нескольких резервуаров. Резервуар 2 имеет обозначенное крестообразной штриховкой заполнение 4 из носителей, например глиняных шаров, на которых закрепляется биологический посев, то есть обширная культура бактерий, которые атакуют содержащиеся в воде вредные вещества. В резервуаре 2 происходит денитрикация в бедной кислородом атмосфере, при которой бактерии получают необходимый для жизни кислород из содержащихся в воде веществ, то есть содержащийся в воде контура, которая попадает описанным ниже способом в трубу 40 и в резервуар 2, при этом NO3 восстанавливается до N2. Кроме того, резервуар 2 имеет также фильтрационный эффект и вызывает определенное биологическое уменьшение CSB до 50%.
Вода контура из резервуара 2 через трубу 7 попадает снизу в резервуар 8 для аэробной биологической обработки, который также может состоять из одного или нескольких резервуаров и имеет заполнение 9 из носителя, на котором закрепляется биологический посев. Здесь происходит процесс нитрификации. Содержащийся в воде NH3 окисляется в NO3, который вместе с проходящей по основному контуру 1 водой затем через трубы 11 и 48 попадает снова в резервуар 2 и там восстанавливается до молекулярного азота.
Применяемые согласно примеру выполнения изобретения в резервуарах 2 и 8 биологические средства являются средствами с твердой основой, хотя могут применяться и биологические средства в виде ила.
Вода из резервуара 8 через трубу 11 попадает в насосное устройство 10, которое обеспечивает циркуляцию в контуре и, как упоминалось, часть выходящей из резервуара 8 воды через обратный трубопровод 48, отходящий в точке 14 от выходной трубы 12 насоса, возвращается в основной контур I к входу 1, где она в точке 13 смешивается с подводимой исходной водой и вместе с ней по трубе 3 подается в резервуар 2.
Насосное устройство 10, включающее один насос, может состоять из нескольких расположенных в различных местах насосов, создает только одно давление, необходимое для поддерживания циркуляции воды в контуре и для преодоления гидравлического сопротивления. Таким образом, нет необходимости в баллонах со сжатым воздухом.
В расположенном после насосного устройства 10 разветвления А от основного контура I (штриховые линии) отходит в трубу 14 частичный контур II, обозначенный штрих-пунктирной линией.
Основная масса отведенной в частичный контур II воды проходит по трубе 14 и по ответвляющейся в месте соединения 45 главной трубе 44, которая относится к частичному контуру II.
В расположенном после насосного устройства 10 месте соединения 45 труб 12 и 44 часть воды через трубу 21 выводится из контура и с помощью насоса 15 подвергается повышенному примерно до 4 бар давлению. Вода проходит через устройство ввода 16 в виде инжектора, в котором в нее через трубу 17 впрыскивается озоносодержащий газ из источника озона 18. Устройство ввода 16 может быть не обязательно инжектором. Если источник озона 18 работает с достаточно высоким давлением, например в 2 бара, то ввод озоносодержащего газа может производиться через простой вход.
Часть контура с насосом 15, инжектором 16 и трубой 21, в котором происходит подмешивание озона и который в точке 46 снова соединяется с параллельной трубой 44, принадлежит также к частичному контуру II.
Если насосное устройство 10 имеет, например, производительность 100 м3/ч, то по трубе 44 может протекать, например, 80 м3/ч, а по трубе 21 примерно 20 м3/ч. То есть возвращаемый через трубу 12 в установку резервуаров 2 для анаэробной биологической обработки поток воды относительно небольшой.
Источник озона 18 производит озон из кислородсодержащего газа, обычно из технического кислорода, который через трубопровод 19 подводится к источнику озона 18. Источник озона 18 работает с тихим электрическим разрядом. Возникающее при этом тепло отводится через охлаждающий контур с холодильным устройством 20.
В источнике озона 18 не весь подводимый кислород преобразуется в озон, а возникает озоносодержащий газ, который наряду с озоном содержит также непреобразованный кислород. Этот озоносодержащий газ в инжекторе 16 подмешивается к воде и вместе с водой через трубу 21 попадает в точку 46, где смесь соединяется с протекающей по главной трубе 44 основной массой, которая затем поступает в смеситель 22, в котором газ и вода активно перемешиваются, чтобы повысить абсорбцию озона и кислорода в воде. Таким образом обработанная вода, содержащая кислород и озон частично в абсорбированном виде и частично в виде пузырьков газа, которые нет необходимости удалять, попадает через трубу 23 в закрытую установку реакторов 24, в которой происходят реакции в основном озона с вредными веществами при незначительно повышенной температуре, примерно 20 - 40oC. Схематично изображенный в виде прямоугольника реактор 24 может состоять из одного или нескольких резервуаров и подробно показан на фиг. 1 в EP 478 583 B 1.
Трудно или неразрушаемые чисто биологической обработкой вредные вещества в воде в реакторе 24 под действием озона окисляются или кондиционируются настолько, что после их возможно подвергать воздействию аэробных биологических средств в резервуаре 8, и могут быть далее разрушены. Обработка озоном в реакторе 24 должна, таким образом, лишь подготовить вредные вещества в воде для последующего воздействия бактерий в резервуаре 8, а не обеспечивать полное разрушение вредных веществ. Без предварительного окисления в реакторе 24 была бы, однако, безрезультатна обработка бактериями в резервуаре 8.
Находящиеся в резервуаре 8 культуры бактерий, как, например, живые организмы, чувствительны к воздействию озона. Поэтому необходимо предотвратить, чтобы выходящая из реактора 24 по трубе 25 и направляемая в резервуар 8 вода содержала озон.
Для этого на схеме изображены условно три возможности, которые могут применяться попеременно или вместе.
Первая возможность состоит во включенном в частичный контур после реактора 24 устройстве облучения ультрафиолетовыми лучами 26, через которое пропускается вода и в котором озон под действием интенсивного ультрафиолетового излучения разлагается в кислородсодержащие молекулы или радикалы, которые не наносят вреда биологической среде в резервуаре 8, если вода через трубу 27 в месте соединения V снова входит в основной контур I и через подводящую трубу 7 попадает в резервуар 8.
Возможно также подавать выходящую из реакторе 24 по трубе 25 воду через трубу 29 в катализаторный блок 28, который разрушает озон. Труба 29 с катализаторным блоком 28 принадлежит в этом случае к частичному контуру II, который в точке соединения V' снова впадает в основной контур I, при этом в месте соединения V' в трубу 7 поступает свободная от озона вода.
Дальнейшая возможность состоит в том, что выходящая по трубе 25 вода, если она содержит еще остаточный озон, подается через трубу 31 в резервуар оседания ила 30, который содержит излишний ил из резервуара 2 и 8. Остаточный озон в подводимой через трубу 31 воде разрушает вредные вещества и при этом расходуется. Возвращаемая по трубе 32 и подаваемая в резервуар 8 вода не содержит больше озона и не может представлять опасность для биологических сред в резервуаре 8.
Если находящийся в резервуаре 30 ил полностью отреагировал, он может быть удален с помощью разгрузочного устройства 33 из резервуара для оседания ила 30. На чертеже штриховыми линиями показана возможность подведения озоносодержащего газа в резервуар оседания ила 30 непосредственно от источника озона 18.
В резервуаре 8, в котором происходит нитрификация, разрушаются, кроме того, остаточные части CSB. Кроме того, происходит сокращение содержания AOx, так как соответствующие части вредных веществ претерпели при обработке озоном предварительное расщепление и стали доступными для биологического воздействия.
Из резервуара 8 выходит по трубам 11, соответственно 34 обработанная вода и по стоку 35 попадает в водоприемник. Часть этой воды отводится по трубе 36 к накопителю чистой воды 37. Вода в этом накопителе циркулирует под действием насоса 38 и насыщается воздухом с помощью вентилятора 39. Через трубы 40 и 41 насыщенная воздухом вода поступает в резервуары 2 и 8. Кислород воздуха может использоваться дополнительно для питания биологической среды.
Время от времени включается насос 38 или повышается его производительность, за счет чего образовавшийся в резервуарах 2 и 8 в результате бактериальных реакций излишний ил через трубы 42, 43 смывается в резервуар оседания ила 30. Таким способом реакционные продукты бактериальной деятельности периодически изымаются и удаляются из контура.

Claims (20)

1. Способ разрушения трудноразлагаемых или неразлагаемых биологической обработкой вредных веществ в загрязненной воде, включающий обработку загрязненной воды озоносодержащим газом, полученным из кислородсодержащего газа, в результате которой происходит частичное окисление содержащихся в воде вредных веществ и последующую биологическую обработку воды, отличающийся тем, что загрязненную воду пропускают по основному циркуляционному контуру, оснащенному средством для постоянного притока загрязненной воды и устройством для удаления образующихся при биологической обработке твердых веществ, озоносодержащий газ непрерывно вводят в частичный циркуляционный контур воды, образованный ответвлением от основного, и обработанную озоном воду снова соединяют с потоком воды, циркулирующим по основному контуру, при этом на биологическую обработку подают воду, свободную от озона.
2. Способ по п.1, отличающийся тем, что воду по ходу циркуляции перед соединением основного и частичного циркуляционных контуров пропускают через зону анаэробной биологической обработки и после соединения основного и частичного циркуляционных контуров - через зону аэробной биологической обработки.
3. Способ по п.2, отличающийся тем, что воду к месту соединения основного и частичного контуров подают в свободном от озона состоянии.
4. Способ по п.3, отличающийся тем, что количество озона в озоносодержащем газе выбирают таким образом, чтобы при взаимодействии с вредными веществами он был полностью израсходован.
5. Способ по п.3, отличающийся тем, что непрореагировавший с вредными веществами озон разрушают с помощью ультрафиолетового облучения с образованием кислородсодержащих молекул и радикалов.
6. Способ по п.3, отличающийся тем, что непрореагировавший с вредными веществами озон разрушают каталитически.
7. Способ по п. 3, отличающийся тем, что воду с непрореагировавшим с вредными веществами озоном направляют в резервуар для осаждения ила, содержащий избыточный ил после биологической обработки, где происходит предварительное окисление находящихся в избыточном иле вредных веществ и создание условий для их дальнейшего биологического разрушения.
8. Способ по одному из пп.2 - 7, отличающийся тем, что на аэробную биологическую обработку постоянно подают содержащую вредные вещества воду основного циркуляционного контура таким образом, что на одной и той же ступени аэробной обработки обрабатывают воду основного и частичного контуров.
9. Способ по одному из пп.1 - 8, отличающийся тем, что обработку проводят по существу при атмосферном давлении, слегка повышенном для циркуляции воды.
10. Устройство для осуществления способа разрушения трудноразлагаемых или неразлагаемых биологической обработкой вредных веществ в загрязненной воде, содержащее трубопровод для пропускания воды, оснащенный средством для ввода загрязненной воды, питаемый кислородсодержащим газом источник озона, создающий озоносодержащий газ, устройство подачи озоносодержащего газа в трубопровод для пропускания воды, установку, содержащую, по меньшей мере, один закрытый реактор для предварительного окисления озоном вредных веществ и резервуар с биологической средой, расположенный после реактора озонирования по ходу движения воды, отличающееся тем, что трубопровод выполнен в виде основного циркуляционного контура, снабженного устройством для удаления образованных при биологической обработке твердых материалов, и частичного циркуляционного контура, образованного ответвлением от основного контура по ходу движения потока после резервуара с биологической средой и соединенного с основным контуром перед резервуаром с биологической средой, при этом устройство дополнительно содержит насосное устройство для циркуляции воды и средство, обеспечивающее подачу в резервуар с биологической средой воды, свободной от озона.
11. Устройство по п.10, отличающееся тем, что в основном циркуляционном контуре перед местом соединения его с частичным контуром расположен резервуар с анаэробной биологической средой, и после места соединения расположен резервуар с аэробной биологической средой.
12. Устройство по п.11, отличающееся тем, что оно снабжено средством, обеспечивающим подачу из частичного контура в основной контур в месте их соединения воды, свободной от озона.
13. Устройство по п.12, отличающееся тем, что указанное средство содержит устройство, дозирующее количество озона, вводимого в устройство подачи озоносодержащего газа.
14. Устройство по п.12, отличающееся тем, что указанное средство содержит расположенное после реактора озонирования устройство для ультрафиолетового облучения.
15. Устройство по п.12, отличающееся тем, что указанное средство содержит расположенный после реактора озонирования катализаторный блок.
16. Устройство по п.12, отличающееся тем, что оно содержит резервуар для осаждения ила, в который смывают излишний ил из резервуара аэробной биологической обработки и подают содержащий остаточный озон газ из реактора озонирования, а также устройство для удаления отработанного ила.
17. Устройство по п.16, отличающееся тем, что резервуар для осаждения ила снабжен трубопроводом для подачи озоносодержащего газа непосредственно от источника озона.
18. Устройство по одному из пп.1 - 17, отличающееся тем, что оно снабжено возвратным смывным устройством, с помощью которого подачей чистой воды периодически смывают ил из анаэробной и аэробной установок биологической обработки в резервуар для осаждения ила.
19. Устройство по п.18, отличающееся тем, что предусмотрен вентилятор, с помощью которого подаваемую для смывания чистую воду обогащают воздухом.
20. Устройство по одному из пп.10 - 19, отличающееся тем, что источник озона работает на тихом разряде.
RU97106781/12A 1994-09-29 1995-09-27 Способ и устройство для биологического разрушения вредных веществ в воде RU2148032C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4434753A DE4434753A1 (de) 1994-09-29 1994-09-29 Verfahren und Anlage zum biologischen Abbau von Schadstoffen in wäßrigen Flüssigkeiten
DEP4434753.7 1994-09-29
PCT/DE1995/001334 WO1996009987A2 (de) 1994-09-29 1995-09-27 Verfahren und anlage zum biologischen abbau von schadstoffen im wasser

Publications (2)

Publication Number Publication Date
RU97106781A RU97106781A (ru) 1999-04-10
RU2148032C1 true RU2148032C1 (ru) 2000-04-27

Family

ID=6529473

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97106781/12A RU2148032C1 (ru) 1994-09-29 1995-09-27 Способ и устройство для биологического разрушения вредных веществ в воде

Country Status (14)

Country Link
US (1) US5851399A (ru)
EP (1) EP0784597B1 (ru)
JP (1) JP3059215B2 (ru)
AT (1) ATE190044T1 (ru)
AU (1) AU692606B2 (ru)
CA (1) CA2200464C (ru)
DE (2) DE4434753A1 (ru)
DK (1) DK0784597T3 (ru)
ES (1) ES2147302T3 (ru)
FI (1) FI971302A0 (ru)
HU (1) HUT77023A (ru)
NO (1) NO313825B1 (ru)
RU (1) RU2148032C1 (ru)
WO (1) WO1996009987A2 (ru)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202471A (ja) * 1999-01-11 2000-07-25 Ebara Corp 内分泌撹乱物質もしくは発ガン性物質を含有する汚水の処埋方法及び処理装置
JP2000301175A (ja) * 1999-04-23 2000-10-31 T & A Engineering:Kk 農薬廃液の無機化方法及び無機化装置
JP3795268B2 (ja) * 1999-08-17 2006-07-12 アタカ工業株式会社 有機塩素化合物含有汚水の処理方法およびその装置
WO2001030704A1 (fr) 1999-10-28 2001-05-03 Kazuto Hashizume Procede ameliore servant au traitement de l'eau
US6365048B1 (en) 2000-07-19 2002-04-02 Board Of Trustees Of Michigan State University Method for treatment of organic matter contaminated drinking water
TWI260309B (en) * 2001-12-12 2006-08-21 Ind Tech Res Inst System and method for removing organic substances in waste water by oxidation
CA2387777C (en) 2002-05-28 2008-04-01 Ms Filter Inc. Potable water treatment plant and method of maintaining same
US7385204B2 (en) * 2003-10-29 2008-06-10 Calgon Carbon Corporation Fluid treatment device
DE102004027574B4 (de) * 2004-06-05 2009-12-10 Siemens Ag Verfahren und Vorrichtung zur Aufbereitung von Badewasser
DE102004058552A1 (de) * 2004-12-03 2006-06-08 Aqua Biotec Gmbh Verfahren zur Abwasseraufbereitung
CN101395091A (zh) * 2006-02-02 2009-03-25 李载宪 用于废水处理的纯氧曝气***
KR20100102634A (ko) * 2008-01-15 2010-09-24 메타워터 가부시키가이샤 조 외부 설치형 막분리 활성 오니법
CN101560039B (zh) * 2009-05-22 2011-04-27 上海同济建设科技有限公司 一种垃圾渗滤液废水处理***及其工艺
CN102400714B (zh) * 2010-09-11 2015-08-26 中国矿业大学 一种高水压、高应力和自动开采的矿井水害综合模拟***及试验方法
CN103508613A (zh) * 2012-06-15 2014-01-15 苏州腾辉环保科技有限公司 一种农药废水的处理工艺
CN106007256A (zh) * 2016-07-28 2016-10-12 黄霞 微气泡臭氧催化氧化-无曝气生化耦合工艺***及其应用
US10844772B2 (en) 2018-03-15 2020-11-24 GM Global Technology Operations LLC Thermal management system and method for a vehicle propulsion system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847803A (en) * 1973-03-22 1974-11-12 P Fisk Process for separating and converting waste into useable products
US4256574A (en) * 1979-09-12 1981-03-17 Sterling Drug Inc. Ozone disinfection system
DE3046707A1 (de) * 1980-12-11 1982-07-15 Linde Ag, 6200 Wiesbaden Verfahren zur aufbereitung von rohwasser
US4824563A (en) * 1985-12-04 1989-04-25 Kabushiki Kaisha Meidensha Equipment for treating waste water
DE3919885C2 (de) * 1989-06-19 1994-06-30 Wedeco Umwelttechnologien Wass Verfahren und Anlage zur Behandlung von mit schwer abbaubaren Schadstoffen belasteten wässrigen Flüssigkeiten
FR2655642B1 (fr) * 1989-12-11 1992-02-28 Anjou Rech Installation de traitement des eaux par une boucle de filtration tangentielle.
DE4000292A1 (de) * 1990-01-08 1991-07-11 Erwin Dr Wessling Verfahren zur reinigung von wasser und vorrichtung zur durchfuehrung des verfahrens
US5240600A (en) * 1990-07-03 1993-08-31 International Environmental Systems, Inc., Usa Water and wastewater treatment system
JP2776983B2 (ja) * 1992-08-10 1998-07-16 プロテック パルトナー フューア ウムヴェルト テヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機物含有排水および有機廃物を生物学的に処理する方法および装置
JP3271326B2 (ja) * 1992-09-24 2002-04-02 栗田工業株式会社 生物脱リン方法および装置
DE4308159A1 (de) * 1993-03-15 1994-09-22 Philipp Mueller Gmbh Verfahren zum Abbau der CSB-Belastung in Abwasser
JP3841446B2 (ja) * 1993-09-10 2006-11-01 栗田工業株式会社 有機窒素化合物含有排液の処理方法
JPH0788495A (ja) * 1993-09-22 1995-04-04 Kurita Water Ind Ltd 有機性排液の好気性処理方法
JP3351047B2 (ja) * 1993-09-27 2002-11-25 栗田工業株式会社 生物汚泥の処理方法
JPH07214093A (ja) * 1994-02-01 1995-08-15 Kubota Corp Cod・窒素除去方法

Also Published As

Publication number Publication date
AU3603395A (en) 1996-04-19
DE59507923D1 (de) 2000-04-06
EP0784597A2 (de) 1997-07-23
NO313825B1 (no) 2002-12-09
JP3059215B2 (ja) 2000-07-04
FI971302A (fi) 1997-03-27
FI971302A0 (fi) 1997-03-27
ES2147302T3 (es) 2000-09-01
CA2200464C (en) 2001-08-14
ATE190044T1 (de) 2000-03-15
AU692606B2 (en) 1998-06-11
DE4434753A1 (de) 1996-04-04
WO1996009987A3 (de) 1996-05-23
CA2200464A1 (en) 1996-04-04
NO971241D0 (no) 1997-03-18
NO971241L (no) 1997-03-18
US5851399A (en) 1998-12-22
DK0784597T3 (da) 2000-08-14
JPH09511448A (ja) 1997-11-18
WO1996009987A2 (de) 1996-04-04
HUT77023A (hu) 1998-03-02
EP0784597B1 (de) 2000-03-01

Similar Documents

Publication Publication Date Title
RU2148032C1 (ru) Способ и устройство для биологического разрушения вредных веществ в воде
US7462288B2 (en) Ozone/UV combination for the decomposition of endocrine substances
CN101376556B (zh) 臭氧氧化消毒与下流式曝气生物滤池结合的废水处理装置
KR100581746B1 (ko) 수처리 장치
JP3440313B2 (ja) 汚染水の処理方法とその装置
JPH05228480A (ja) 生物難分解性物質の処理装置
RU97106781A (ru) Способ и устройство для биологического разрушения вредных веществ в воде
JP2001205277A (ja) 水中の難分解性有機化合物の除去方法および装置
JPH11226587A (ja) 水処理装置
KR20010044325A (ko) 자외선과 오존을 이용한 고도산화처리에 의한 수처리장치
KR20110090747A (ko) 생활용수와 염수의 재활용 장치 및 방법
KR101202906B1 (ko) 하폐수 반송 혼합공정 처리방법 및 장치
KR19990064364A (ko) 고급산화이용 고효율 활성오니 폐수처리장치 및 그 방법
JP4417587B2 (ja) 促進酸化処理装置
JPH0796287A (ja) 有機性汚水の高度処理法
JP3552754B2 (ja) 有機性汚水の高度処理方法およびその装置
KR19990079500A (ko) 방사선과 tio₂를 이용한 하수 및 폐수의 처리방법
JP3547573B2 (ja) 水処理方法
JPH11347576A (ja) 水処理方法及び水処理装置
JPH08155445A (ja) 水処理装置
JPH06328099A (ja) 排水処理装置
JP2003024991A (ja) ホルマリン含有排水の処理システム
KR970059117A (ko) 오폐수 처리 방법 및 장치
JPH0657357B2 (ja) プール水の浄化装置
JPH0796286A (ja) 有機性汚水の高度処理法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050928