RU2132635C1 - Способ диагностики онкологических заболеваний и устройство для его осуществления - Google Patents

Способ диагностики онкологических заболеваний и устройство для его осуществления Download PDF

Info

Publication number
RU2132635C1
RU2132635C1 RU96119529/14A RU96119529A RU2132635C1 RU 2132635 C1 RU2132635 C1 RU 2132635C1 RU 96119529/14 A RU96119529/14 A RU 96119529/14A RU 96119529 A RU96119529 A RU 96119529A RU 2132635 C1 RU2132635 C1 RU 2132635C1
Authority
RU
Russia
Prior art keywords
cancer
blood plasma
spectral
diagnosis
light
Prior art date
Application number
RU96119529/14A
Other languages
English (en)
Other versions
RU96119529A (ru
Inventor
С.Г.(RU) Алексеев
С.Г. Алексеев
Н.Б.(RU) Брандт
Н.Б. Брандт
Г.А.(RU) Миронова
Г.А. Миронова
Хироши Акимото (JP)
Хироши АКИМОТО
Кейко Акимото (JP)
Кейко АКИМОТО
Original Assignee
Алексеев Сергей Григорьевич
Брандт Николай Борисович
Миронова Галина Александровна
Хироши АКИМОТО
Кейко АКИМОТО
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алексеев Сергей Григорьевич, Брандт Николай Борисович, Миронова Галина Александровна, Хироши АКИМОТО, Кейко АКИМОТО filed Critical Алексеев Сергей Григорьевич
Priority to RU96119529/14A priority Critical patent/RU2132635C1/ru
Priority to US08/864,239 priority patent/US5817025A/en
Priority to JP16017897A priority patent/JP3195935B2/ja
Publication of RU96119529A publication Critical patent/RU96119529A/ru
Application granted granted Critical
Publication of RU2132635C1 publication Critical patent/RU2132635C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4412Scattering spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к медицине, онкологии. Исследованию подвергают слабый раствор нативной плазмы крови. Определяют спектральную плотность флуктуаций интенсивности светорассеяния в диапазоне 1-1000 Гц. Выявляют спектральное ядро. Диагностику производят по частоте максимума огибающей спектрального ядра и по отношению интенсивности к полуширине его центра тяжести. Устройство содержит нефелометр с лазерным источником света, измерительную кювету, измерительный преобразователь рассеянного света в аналоговый сигнал. Первый приемник света расположен под углом 90° к лазерному лучу. Корреляционно-спектральный анализатор сигнала светорассеяния содержит автокоррелятор и Фурье-преобразователь. На входе корреляционно-спектрального анализатора введены второй измерительный преобразователь, второй приемник счета, перемножитель сигналов. Способ и устройство позволяют производить простую экспресс-диагностику онкологических заболеваний, используя тот же биоматериал, что и при обычном анализе крови. 2 с.п.ф-лы, 1 ил., 1 табл.

Description

Изобретение относится к области медицины, а именно к диагностическим способам, и может быть использовано для скрининговой диагностики онкологических заболеваний.
Известен способ диагностики онкологических заболеваний, основанный на селективном накоплении в опухолях флюорохрома и регистрации его спектра флюоресценции ("Верификация опухолей с помощью лазерной флюоресцентной спектроскопии", А.И.Гордиенко и др., Материалы VIII съезда онкологов УССР, Донецк, 1990 г., с. 183-184).
Известен способ лазерной спектроскопии в диагностике хронических, предопухолевых и опухолевых патологий, при котором спектроскопии подвергают срез ткани (Актуальные проблемы современной онкологии, Томск, 1994 г., с. 37-38).
По совокупности существенных признаков наиболее близким к изобретению аналогом является способ диагностики онкологических заболеваний, включающий исследования плазмы крови методом лазерной корреляционной спектроскопии (ЛКС) (К. И. Мерлич и др., "Субфракционный состав плазмы крови при доброкачественных опухолях и раке молочной железы по данным лазерной корреляционной спектроскопии", Бюллетень экспериментальной биологии и медицины, 1993 г., N 8, с. 193-195).
В данной работе экспериментально показана принципиальная возможность диагностики онкологических заболеваний (на примере рака молочной железы) методом динамического рассеяния света раствором исследуемой плазмы крови. При этом отмечается, что у онкологических больных по сравнению с другими пациентами в распределениях частиц по размерам наблюдается сдвиг распределения в область более мелких частиц с размерами порядка 10-12 нм.
Физическая сущность данного известного способа заключается в следующем (Лебедев А.Д. и др. Лазерная корреляционная спектроскопия в биологии. Киев, 1987 г.).
В простейшем случае раствора малых по сравнению с длиной волны падающего света оптически изотропных тождественных частиц автокорреляционная функция и спектральная плотность сигнала динамического рассеяния света имеют вид
G(τ) = Ae-Г(τ) (1)
S(ω) = [AГ2/π]/[(ω0-qV)22], (2)
где Г = Dtq2 - диффузионное уширение;
Dt - коэффициент трансляционной диффузии;
τ - радиус корреляции;
q = 4π(n0/λ)sin(θ/2) - волновой вектор;
n0 - показатель преломления растворителя;
λ - длина волны падающего света, а ωo - - соответствующая ей частота;
θ/2 - угол наблюдения рассеянного света (=90o);
qV - доплеровское смещение длины волны падающего света на частицах, перемещающихся в процессе трансляционной диффузии;
A - амплитуда (интенсивность) флуктуаций светорассеяния, соответствующая диффузионному уширению Г.
Коэффициент трансляционной диффузии Dt связан с гидродинамическим радиусом Rh рассеивающих частиц соотношением Стокса-Энштейна:
Г = [KT]/[6πξRh], (3)
где K - постоянная Больцмана;
T - абсолютная температура;
ξ - вязкость раствора.
Исходя из этого, оценка распределения макромолекул по размерам в исследуемой плазме крови производится в соответствии с соотношением
N(R) = [AГ(Rh)]/[R (2m+2) h ], (4)
где N(Rh) - количество молекул с гидродинамическим радиусом Rh;
AГ(Rh) - амплитуда (интенсивность) флуктуаций динамического рассеяния света, соответствующая диффузионному уширению Г(Rh);
m - параметр, учитывающий форм-фактор рассеивающих молекул раствора: m=3 - для "глобулярных частиц", m=2 - для "сфер и гауссова клубка".
Существенным недостатком данного подхода является то обстоятельство, что он корректен только для броуновской модели диффузионных процессов, когда коэффициент трансляционной диффузии определяется тепловой энергией KT - без учета достаточно сильного электростатического взаимодействия поверхностно заряженных макромолекул белков, энергия которого может многократно превышать тепловую энергию KT. Электростатическое взаимодействие между макромолекулами влияет на динамику их броуновского движения в растворе, что порождает сдвиг в оценке диффузионного уширения Г, что, в свою очередь, приводит к погрешности в оценке Rh (см. выражение (3)).
Другим недостатком известных методов (в том числе и ближайшего аналога-прототипа) является низкая точность вследствие того, что перед исследованиями образцы исходного биоматериала подвергают специальной обработке, так, например, в прототипе плазму крови замораживают и проводят двойное центрифугирование (при 1500q), что приводит к изменению физических параметров белков плазмы крови. Другим существенным недостатком известных методов является то, что диагностика проводится всего лишь по одному диагностическому признаку.
Известно устройство для реализации способа-прототипа, содержащее последовательно установленные нефелометр и корреляционный спектральный анализатор. Ему присущи все недостатки, которые присущи описываемым ранее способам.
Технический результат, достигаемый изобретением, заключается в определении параметров межмолекулярного взаимодействия белков нативной плазмы крови.
Сущность изобретения заключается в достижении упомянутого технического результата в способе диагностики онкологических заболеваний, включающем исследование плазмы крови методом лазерной корреляционной спектроскопии (ЛКС), в котором для исследования берут слабый раствор нативной плазмы крови, определяют спектральную плотность флуктуаций интенсивности светорассеяния в полосе частот 1-1000 Гц, выявляют спектральное ядро и диагностику проводят по частоте максимума огибающей спектрального ядра и отношению его интенсивности к его полуширине и при значении диагностических параметров ниже соответствующих норм диагностируют онкологическое заболевание, при этом в устройстве для диагностики онкологических заболеваний, содержащем последовательно установленные нефелометр и корреляционный спектральный анализатор, в нефелометр дополнительно введены второй приемник рассеянного света, расположенный симметрично относительно первого, перемножитель сигналов, входами подключенный к выходам первого и второго приемников рассеянного света, фильтр нижних частот, входом подключенный к выходу перемножителя сигналов, а выходом - к коррелятору спектрального анализатора, при этом в качестве измерительной кюветы нефелометра используется стандартная ампула для растворителя.
В настоящем изобретении для определения характеристических молекулярных параметров плазмы крови используется метод динамического рассеяния света разбавленными растворами нативной плазмы крови, приготовленного по стандартной технологии - как для биохимического анализа крови.
Теоретические и экспериментальные исследования данного метода показали, что усредненная спектральная плотность флуктуаций интенсивности светорассеяния тестируемым раствором позволяет выделить характеристическое спектральное ядро, специфика которого может быть представлена частотой максимума огибающей, интенсивностью центра тяжести и полушириной спектрального ядра. При этом у онкологических больных значения частоты максимума и интенсивности меньше, а полуширина больше по сравнению с значениями соответствующих параметров, характерными для неонкологических больных и практически здоровых лиц.
Это обусловлено следующими факторами.
В формировании клеточного состава крови участвуют самые различные органы и системы человеческого организма: печень, костный мозг, лимфатические узлы, селезенка и др. Как известно, кровь состоит из плазмы - 55 вес.% и взвешенных в ней форменных элементов - 45 вес.%: эритроцитов, лейкоцитов, кровяных пластинок. Плазма крови содержит макромолекулы альбумина и глобулинов, фибриногена.
В здоровом организме клеточный состав крови и кроветворные органы образуют сбалансированную биосистему, в которой происходит непрерывный авторегулируемый процесс замены состарившихся клеток крови на новые.
Любые изменения в организме вызывают нарушение этого равновесия, что сразу же отражается на состоянии крови. Различные заболевания, яды, канцерогенные вещества, ионизирующая радиация, воспалительные процессы и т.п. вызывают нарушения процесса кроветворения и приводят к синтезу структурно измененных, незрелых форменных элементов. В результате изменяется состав крови и молекулярные параметры входящих в нее белков, что, в принципе, может быть использовано для диагностических целей. Поэтому основной проблемой при разработке методов диагностики различных заболеваний является определение таких параметров крови, которые с наибольшей вероятностью позволяют различить здорового и больного данным заболеванием пациента. В этой связи представляют интерес специфические изменения непосредственно в макромолекулах плазмы крови при возникновении онкологических заболеваний.
При развитии канцерогенеза в плазме (сыворотке) крови происходят как количественные, так и качественные изменения, практически не зависящие от вида заболевания.
Во-первых, изменяются абсолютные и относительные значения концентраций молекул альбумина и глобулинов. Если у здорового человека концентрация молекул альбумина в три-четыре раза превышает концентрацию глобулинов, то при канцерогенезе отношение концентраций уменьшается и затем меняется на обратное: концентрация макромолекул глобулинов у онкологических больных становится много больше концентрации молекул глобулинов. Следует также иметь в виду, что на развитых стадиях канцерогенеза в плазме крови происходит уменьшение абсолютного значения концентраций макромолекул альбумина и глобулина.
Во-вторых, у молекул альбумина происходят качественные изменения в величине и распределении поверхностного заряда. Молекулы альбумина имеют веретенообразную структуру длиной (80-100)A и около (15-20)A в диаметре центральной части, обладают значительным электрическим дипольным моментом, который может достигать сотен дебай, имеют отрицательный заряд, расположенный в ее поверхностном слое. Причинами возникновения поверхностного заряда являются незаполненные химические связи и сильное сродство к электрону у поверхностных атомных комплексов.
При канцерогенезе происходит уменьшение заряда, что является следствием, с одной стороны, синтеза (по-видимому печенью) и появлением в крови положительно заряженных специфических ингибиторов, присоединяющихся к молекуле альбумина, и, с другой стороны, изменением химического состава поверхностных атомных комплексов.
Изменения в распределении поверхностного заряда у макромолекул альбумина существенным образом меняет характер их взаимодействия в растворе плазмы (сыворотке) крови. При этом преобладающие силы отталкивания (что характерно для состояния плазмы крови пациентов, не имеющих онкологических заболеваний) постепенно трансформируются в силы притяжения (что характерно для состояния плазмы крови онкологических больных пациентов). В результате этого происходит коагуляция молекул альбумина с образованием различных пространственных конфигураций, со значительно большим молекулярным весом.
В-третьих, при канцерогенезе происходит окисление многих клеточных мембран, что, в свою очередь, ведет к изменению физических свойств липопротеинов, а также снижению защитной реакции иммунной системы.
В-четвертых, при канцерогенезе в плазме крови появляются парапротеины и различные фракции альбумина с отличными молекулярными весами и зарядовыми характеристиками, а также происходит разрушение дисульфидных связей цистина в молекулах иммуноглобулина, тем самым разрушаются внутрицепочные связи и третичная структура денатуризируется, превращаясь в первичную. Наличие фрагментов молекул Ig является строгим маркером злокачественного процесса.
В-пятых, развитие канцерогенеза часто сопровождается нарушением водно-электролитного обмена, связанного с распадом опухолевой массы и выходом внутриклеточных элементов (калий, магний, фосфор, сера) во внеклеточное пространство и с потерей их с мочой, а также может сопровождаться сдвигами в кислотно-щелочном состоянии.
При неонкологических заболеваниях изменения в плазме крови происходят только в определенных пределах. Действительно, при развитии неонкологических заболеваний возникают нарушения в работе кроветворных органов, меняется состав плазмы крови, но одновременно с этим вступают в действие механизмы иммунной защиты (интенсивно синтезируются антитела, активизируются ферментные системы, усиливается репродукция ингибиторов вирусов и т.п.), которые подавляют дальнейшее развитие заболевания и ограничивают изменения параметров крови. При этом возникающие по разным причинам раковые клетки эффективно уничтожаются иммунными системами организма.
При онкологических заболеваниях раковые клетки синтезируют антигены с крайне низкой иммуногенностью. Поэтому раковые антигены не вызывают столь необходимую иммунную защитную реакцию. В этой связи неограниченное увеличение числа раковых клеток вызывает непрерывный рост концентрации токсинов в организме, в результате чего, рассмотренные выше, изменения в крови непрерывно возрастают и могут во много раз превышать предельные значения этих изменений при неонкологических заболеваниях. Возникновение онкологических заболеваний с наибольшей вероятностью возможно на этапе значительного и достаточно длительного отклонения иммунных систем и других органов человека от нормального функционирования, т.е. когда изменения параметров плазмы крови достигает определенного критического уровня.
Отсюда следует возможность разделения параметров плазмы крови на три смежные области, характеризующие практически здоровых, больных неонкологическими заболеваниями и онкологических больных пациентов. Когда изменения параметров плазмы крови приближаются к предельным значениям, разделяющим больных обычными заболеваниями и онкологических больных (зоны риска), у исследуемого пациента возникает угроза развития онкологического заболевания. В этом случае необходимо определить динамику этих изменений во времени - смещаются ли параметры плазмы крови в сторону онкологических больных или, наоборот, происходит их нормализация, что указывает на неонкологическую природу заболевания.
Рассмотренные выше изменения молекулярных параметров плазмы крови существенным образом влияют на характер броуновской динамики диффузионных процессов, наблюдаемых в исследуемых растворах плазмы крови, где диссипация энергии в диффузионных процессах определяется диполь-дипольными и диполь-зарядовыми межмолекулярными взаимодействиями, энергия которых может многократно превышать тепловую энергию KT. При этом реализуется так называемый механизм диэлектрического трения.
В этой связи в качестве диагностических признаков используются частота максимума (maxF) и отношение интенсивности (I) к полуширине (dF) огибающей спектрального ядра сигнала светорассеяния раствором тестируемой плазмы крови.
Предлагаемый способ диагностики реализуется следующим образом.
Кровь для получения плазмы крови берется у обследуемых пациентов из вены утром после сна натощак.
Приготавливается образец слабого раствора плазмы крови.
Используя последовательно включенные лазерный нефелометр и корреляционно-спектральный анализатор, получают сигнал флуктуаций интенсивности светорассеяния, который подвергают узкополосной спектральной обработке в диапазоне частот (1-1000) Гц.
Выделяют спектральное ядро и производят оценку численных значений: частотного положения его максимума - maxF, а также отношения интенсивности к его полушарию - I/dF.
При значениях диагностических показателей ниже соответствующих норм диагностируют онкологическое заболевание.
Устройство для реализации данного метода представляет собой последовательно включенные лазерный нефелометр, включающий в себя лазерный источник света, измерительную кювету для размещения тестируемого раствора биологической жидкости, первый первичный измерительный преобразователь рассеянного света в аналоговый сигнал - первый приемник света, расположенный под углом 90o к лазерному лучу, и корреляционно-спектральный анализатор наблюдаемого сигнала светорассеяния, содержащий последовательно включенные стандартные автокоррелятор и фурье-преобразователь с встроенным микропроцессором вторичной обработки спектрограмм, где, с целью улучшения отношения сигнал/шум на входе корреляционно-спектрального анализатора, в нефелометр дополнительно введены второй первичный измерительный преобразователь рассеянного света в аналоговый сигнал - второй приемник света, размещенный по другую сторону под углом 90o к лазерному лучу, а также перемножитель сигналов с выходов первого и второго первичных измерительных преобразователей, своим выходом подключенный к входу фильтра нижних частот, выход которого подключен к входу коррелятора.
Функциональная схема устройства, реализующая данный способ диагностики, представлена на чертеже, где обозначено:
1 - лазерный нефелометр;
2 - корреляционно-спектральный анализатор;
3 - лазерный источник света;
4 - измерительная кювета;
5 - первый первичный измерительный преобразователь рассеянного света в аналоговый сигнал - первый приемник света;
6 - коррелятор;
7 - фурье-преобразователь;
8 - микропроцессор;
9 - дополнительно введенный второй первичный измерительный преобразователь рассеянного света в аналоговый сигнал - второй приемник света;
10 - дополнительно введенный перемножитель сигналов;
11 - дополнительно введенный фильтр нижних частот.
Устройство работает следующим образом.
Рассеянный раствором тестируемой биологической жидкостью свет одновременно попадает на входы первого 5 и второго 9 приемников света, где преобразуются в аналоговые сигналы, которые поступают на первый и второй входы перемножителя сигналов 10. Перемножитель сигналов 10 с последовательно присоединенным фильтром нижних частот 11 образуют двухканальный корреляционный детектор. Наличие двух высокочастотных каналов с одним и тем же полезным сигналом и некоррелированнными внутренними шумами каналов позволяет получить выигрыш в отношении сигнал/шум при детектировании не менее чем в 1,4 раза по сравнению с квадратичным детектором (Поиск, обнаружение и измерение параметров сигналов в навигационных системах. Москва, "Советское радио", 1975 г., стр. 40-41). После детектирования сигнал с улучшенным отношением сигнал/шум поступает на вход коррелятора 6, где вычисляется автокорреляционная функция флуктуаций интенсивности светорассеяния, обусловленных изменением во времени оптической плотности в рассеивающем объеме, задающем лучем лазерного источника света 3 в измерительной кювете 4. Автокорреляционная функция, отражающая во временной области характер динамики молекул в тестируемом растворе, с выхода коррелятора 6 поступает в фурье-преобразователь 7, обеспечивающий получение спектральной плотности динамики светорассеяния. С выхода фурье-преобразователя 7 спектральная плотность поступать в микропроцессор 8, где осуществляется выделение спектрального ядра и определение его характеристических параметров: частотного положения максимума, интенсивности и полуширины, а также определение диагностических параметров, которые затем сравниваются с соответствующими нормами. При значениях диагностических показателей ниже соответствующих норм: (NORMA1/maxF > 1 и (NORMA2/(I/dF) > 1), диагностируют онкологическое заболевание. В отличие от известных схем построения нефелометров данное устройство содержит 2 (вместо одного) приемника света, симметрично расположенных относительно первичного лазерного луча, что обеспечивает существенное улучшение отношения сигнал/шум, что, в свою очередь, повышает точность оценок диагностических показателей.
Предлагаемый метод и устройство для его реализации характеризуются высокой автоматизацией процесса диагностики, экспрессностью, использует тот же исходный биоматериал, что и для биохимического анализа крови, не требует применения дорогостоящих оборудования и препаративного обеспечения, может обслуживаться одним оператором средней квалификации.
Процесс тестирования полностью исключает контакт с исследуемым пациентом и является совершенно безопасным для его здоровья.
Метод позволяет осуществлять текущий контроль эффективности проводимого лечения, а также проводить первичную скрининговую диагностику для формирования групп онкологического риска, в том числе для лиц, находящихся в зонах Чернобыльской катастрофы, а также в других экологически неблагоприятных регионах.
Предлагаемый метод и устройство для его реализации могут быть использованы также для тестирования различных биологических жидкостей (сыворотки крови, лимфы, спинно-мозговой жидкости, мочи и т.п.) с целью выявления нарушений гомеостаза исследуемых пациентов.
Метод и устройство могут быть использованы в диагностических центрах, в клинических и научно-исследовательских лабораториях как самостоятельно, так и в составе проблемно-ориентированных диагностических комплексов, в том числе онкологического профиля.
Пример 1 (неонкологический больной). Больная К., 69 лет, поступила с предварительным диагнозом - рак шейки матки. Рентгенография органов грудной клетки в пределах возрастной нормы. Ренография с гипураном без патологии. Биохимический анализ крови, клинические анализы крови и мочи без патологии. Произведено раздельное выскабливание матки. Цитологически - полип шейки матки, гиперплазия эндометрия. Выписана с диагнозом - гиперплазия эндометрия. При биофизическом исследовании способом согласно изобретению значения первого и второго показателей составили 0.69 и 0.61 соответственно.
Пример 2 (неонкологический больной). Больная Ш., 48 лет, поступила с диагнозом - рак правой молочной железы. Рентгенография органов грудной клетки без патологии. Маммаграфия - киста правой молочной железы. Клинические анализы крови и мочи без патологии. Цитограммы без атипии. Проведена операция - секторальная резекция правой молочной железы. Гистология - фиброзно-кистозная мастопатия. При биофизическом исследовании способом согласно изобретению значения первого и второго показателей составили 0.51 и 0.55 соответственно.
Пример 3 (онкологический больной). Больной К., 56 лет, поступил с диагнозом - рак языка 3 ст. Патологически - плоскоклеточный рак. Рентгенография органов грудной клетки, клинические анализы крови и мочи, биохимический анализ крови без особенностей. Гепатосцинтиграфия - диффузно-очагового поражения печени не выявлено. При УЗИ шеи метастазов в лимфатических узлах не выявлено, обнаружен узел в нижнем полюсе правой доли щитовидной железы. При сканировании щитовидной железы гиперфиксации и холодной зоны нее выявлено. Проведена сочетанная лучевая терапия на первичный очаг. Непосредственное излечение. В настоящее время заканчивается ДЛТ на зоны регионального лимфооттока. До начала лечения проведено биофизическое исследование согласно изобретению. Диагностические показатели составили 1.51 и 2.49 соответственно. В таблице приведен ряд значений первого (maxF) и второго (I/dF) показателей, полученные в процессе проведения предварительных клинических испытаний предлагаемого диагностического метода: для онкологических больных, а также для практически здоровых и неонкологических больных из числа обследованных пациентов.

Claims (2)

1. Способ диагностики онкологических заболеваний, включающий исследование плазмы крови методом лазерной корреляционной спектроскопии (ЛКС), отличающийся тем, что для исследования берут слабый раствор нативной плазмы крови, определяют спектральную плотность флуктуаций интенсивности светорассеяния в полосе частот 1 - 1000 Гц, выявляют спектральное ядро и диагностику проводят по частоте максимума огибающей спектрального ядра и отношению его интенсивности к его полуширине, при значении диагностических параметров ниже соответствующих норм диагностируют онкологическое заболевание.
2. Устройство для диагностики онкологических заболеваний, содержащее последовательно установленные нефелометр и корреляционный спектральный анализатор, отличающееся тем, что в нефелометр дополнительно введены второй приемник рассеянного света, расположенный симметрично относительно первого, перемножитель сигналов, входами переключенный к выходам первого и второго приемников рассеянного света, фильтр нижних частот, входами подключенный к выходу перемножителя сигналов, а выходом к коррелятору спектрального анализатора, при этом в качестве измерительной кюветы нефелометра используется стандартная ампула для растворителя.
RU96119529/14A 1996-09-30 1996-09-30 Способ диагностики онкологических заболеваний и устройство для его осуществления RU2132635C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU96119529/14A RU2132635C1 (ru) 1996-09-30 1996-09-30 Способ диагностики онкологических заболеваний и устройство для его осуществления
US08/864,239 US5817025A (en) 1996-09-30 1997-05-28 Method for diagnosing malignancy diseases
JP16017897A JP3195935B2 (ja) 1996-09-30 1997-06-17 血漿分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU96119529/14A RU2132635C1 (ru) 1996-09-30 1996-09-30 Способ диагностики онкологических заболеваний и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU96119529A RU96119529A (ru) 1999-05-10
RU2132635C1 true RU2132635C1 (ru) 1999-07-10

Family

ID=20186100

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96119529/14A RU2132635C1 (ru) 1996-09-30 1996-09-30 Способ диагностики онкологических заболеваний и устройство для его осуществления

Country Status (3)

Country Link
US (1) US5817025A (ru)
JP (1) JP3195935B2 (ru)
RU (1) RU2132635C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004029623A1 (fr) * 2002-09-30 2004-04-08 Sergei Grigorevich Alekseev Procede et dispositif pour diagnostiquer les maladies oncologiques
WO2008123790A1 (fr) * 2007-04-06 2008-10-16 Viktor Mikhailovich Mushta Procédé de diagnostic d'une maladie cancéreuse
WO2014142710A1 (ru) * 2013-03-12 2014-09-18 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Неинвазивный способ лазерной нанодиагностики онкологических заболеваний
WO2022060243A1 (en) 2020-09-18 2022-03-24 Choi En Dzhun A method for malignant transformation prognosis and early diagnostics of malignant tumors

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385474B1 (en) * 1999-03-19 2002-05-07 Barbara Ann Karmanos Cancer Institute Method and apparatus for high-resolution detection and characterization of medical pathologies
US8234099B2 (en) * 1999-10-15 2012-07-31 Hemopet Computer program for determining a nutritional diet product for a canine or feline animal
CA2387780C (en) 1999-10-15 2011-10-11 W. Jean Dodds Animal health diagnosis
US6730023B1 (en) * 1999-10-15 2004-05-04 Hemopet Animal genetic and health profile database management
US6287254B1 (en) * 1999-11-02 2001-09-11 W. Jean Dodds Animal health diagnosis
US7548839B2 (en) * 1999-10-15 2009-06-16 Hemopet System for animal health diagnosis
US20050090718A1 (en) * 1999-11-02 2005-04-28 Dodds W J. Animal healthcare well-being and nutrition
US6984210B2 (en) * 2002-12-18 2006-01-10 Barbara Ann Karmanos Cancer Institute Diagnostic analysis of ultrasound data
EP1551303A4 (en) 2002-05-16 2009-03-18 Karmanos B A Cancer Inst COMBINED DIAGNOSTIC METHOD AND SYSTEM AND ULTRASONIC TREATMENT SYSTEM INCLUDING NON-INVASIVE THERMOMETRY, CONTROL AND AUTOMATION OF ABLATION
US6837854B2 (en) * 2002-12-18 2005-01-04 Barbara Ann Karmanos Cancer Institute Methods and systems for using reference images in acoustic image processing
US6926672B2 (en) * 2002-12-18 2005-08-09 Barbara Ann Karmanos Cancer Institute Electret acoustic transducer array for computerized ultrasound risk evaluation system
FR2869412B1 (fr) * 2004-04-27 2006-07-14 Centre Nat Rech Scient Cnrse Determination d'une fonction d'autocorrelation
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
JP4958272B2 (ja) * 2007-01-19 2012-06-20 学校法人北里研究所 アルブミン分子のブラウン運動の拡散係数変化に基づく血清または血漿粘度測定方法及び装置
US8877507B2 (en) 2007-04-06 2014-11-04 Qiagen Gaithersburg, Inc. Ensuring sample adequacy using turbidity light scattering techniques
US8355132B2 (en) * 2007-04-06 2013-01-15 Qiagen Gaithersburg, Inc. Sample adequacy measurement system having a plurality of sample tubes and using turbidity light scattering techniques
US8703492B2 (en) 2007-04-06 2014-04-22 Qiagen Gaithersburg, Inc. Open platform hybrid manual-automated sample processing system
US10201324B2 (en) 2007-05-04 2019-02-12 Delphinus Medical Technologies, Inc. Patient interface system
US8870771B2 (en) * 2007-05-04 2014-10-28 Barbara Ann Karmanos Cancer Institute Method and apparatus for categorizing breast density and assessing cancer risk utilizing acoustic parameters
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
EP2178442B1 (en) 2007-07-12 2017-09-06 Volcano Corporation Catheter for in vivo imaging
US7794954B2 (en) * 2008-11-12 2010-09-14 Hemopet Detection and measurement of thyroid analyte profile
US8012769B2 (en) * 2008-11-12 2011-09-06 Hemopet Thyroid analyte detection and measurement
US7799532B2 (en) * 2008-11-12 2010-09-21 Hemopet Detection and measurement of thyroid hormone autoantibodies
US20100151062A1 (en) * 2008-12-16 2010-06-17 Bruno Stefanon Determining nutrients for animals through gene expression
US7873482B2 (en) * 2008-12-16 2011-01-18 Bruno Stefanon Diagnostic system for selecting nutrition and pharmacological products for animals
JP5401115B2 (ja) * 2009-02-13 2014-01-29 興和株式会社 生物由来の生理活性物質の測定方法及び測定装置
US8708907B2 (en) * 2009-05-06 2014-04-29 Elfi-Tech Method and apparatus for determining one or more blood parameters from analog electrical signals
JP2010276380A (ja) * 2009-05-26 2010-12-09 Olympus Corp 蛍光相関分光分析装置及び方法並びにそのためのコンピュータプログラム
WO2011100691A1 (en) * 2010-02-12 2011-08-18 Delphinus Medical Technologies, Inc. Method of characterizing the pathological response of tissue to a treatmant plan
US8876716B2 (en) * 2010-02-12 2014-11-04 Delphinus Medical Technologies, Inc. Method of characterizing breast tissue using muliple ultrasound renderings
US20120130215A1 (en) * 2010-05-05 2012-05-24 Ilya Fine Optical measurement of parameters related to motion of light-scattering particles within a fluid by manipulating analog electrical signals
JP5785267B2 (ja) * 2010-11-10 2015-09-24 エルフィ−テック エルティーディー.Elfi−Tech Ltd. アナログ電気信号の操作による流体内光散乱粒子の運動に関するパラメータの光学的測定
US11141063B2 (en) * 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
WO2013033592A1 (en) 2011-08-31 2013-03-07 Volcano Corporation Optical-electrical rotary joint and methods of use
JP2014025774A (ja) * 2012-07-26 2014-02-06 Sony Corp 光線力学診断装置、光線力学診断方法及びデバイス
US9763641B2 (en) 2012-08-30 2017-09-19 Delphinus Medical Technologies, Inc. Method and system for imaging a volume of tissue with tissue boundary detection
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
CA2887421A1 (en) 2012-10-05 2014-04-10 David Welford Systems and methods for amplifying light
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
CN102890051B (zh) * 2012-10-26 2014-07-16 浙江省计量科学研究院 基于光纤式动态光散射互相关技术的颗粒测量方法及装置
WO2014093374A1 (en) 2012-12-13 2014-06-19 Volcano Corporation Devices, systems, and methods for targeted cannulation
JP6785554B2 (ja) 2012-12-20 2020-11-18 ボルケーノ コーポレイション 平滑遷移カテーテル
WO2014107287A1 (en) 2012-12-20 2014-07-10 Kemp Nathaniel J Optical coherence tomography system that is reconfigurable between different imaging modes
WO2014113188A2 (en) 2012-12-20 2014-07-24 Jeremy Stigall Locating intravascular images
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
CA2895940A1 (en) 2012-12-21 2014-06-26 Andrew Hancock System and method for multipath processing of image signals
US10993694B2 (en) 2012-12-21 2021-05-04 Philips Image Guided Therapy Corporation Rotational ultrasound imaging catheter with extended catheter body telescope
CA2895993A1 (en) 2012-12-21 2014-06-26 Jason Spencer System and method for graphical processing of medical data
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
EP2934280B1 (en) 2012-12-21 2022-10-19 Mai, Jerome Ultrasound imaging with variable line density
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
WO2014100162A1 (en) 2012-12-21 2014-06-26 Kemp Nathaniel J Power-efficient optical buffering using optical switch
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
WO2014099896A1 (en) 2012-12-21 2014-06-26 David Welford Systems and methods for narrowing a wavelength emission of light
WO2014138555A1 (en) 2013-03-07 2014-09-12 Bernhard Sturm Multimodal segmentation in intravascular images
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
EP3895604A1 (en) 2013-03-12 2021-10-20 Collins, Donna Systems and methods for diagnosing coronary microvascular disease
US20140276923A1 (en) 2013-03-12 2014-09-18 Volcano Corporation Vibrating catheter and methods of use
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
JP6339170B2 (ja) 2013-03-13 2018-06-06 ジンヒョン パーク 回転式血管内超音波装置から画像を生成するためのシステム及び方法
US10123770B2 (en) 2013-03-13 2018-11-13 Delphinus Medical Technologies, Inc. Patient support system
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10426590B2 (en) 2013-03-14 2019-10-01 Volcano Corporation Filters with echogenic characteristics
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10143443B2 (en) 2014-05-05 2018-12-04 Delphinus Medical Technologies, Inc. Method for representing tissue stiffness
US10743837B2 (en) 2014-08-04 2020-08-18 Delphinus Medical Technologies, Inc. Ultrasound waveform tomography method and system
US10285667B2 (en) 2014-08-05 2019-05-14 Delphinus Medical Technologies, Inc. Method for generating an enhanced image of a volume of tissue
JP6352750B2 (ja) * 2014-09-26 2018-07-04 シスメックス株式会社 血液分析装置および血液分析方法
JP6889884B2 (ja) 2017-10-31 2021-06-18 国立大学法人東北大学 力測定方法、力測定装置、力測定システム、力測定プログラム及び記録媒体
RU2672534C1 (ru) * 2018-01-19 2018-11-15 Общество с ограниченной ответственностью "Медтехнопарк" Оптический способ измерения концентрации и морфологии частиц в широком диапазоне мутностей и устройство для его реализации
EP3877737B1 (en) 2018-11-27 2022-10-19 West Pharmaceutical Services, Inc. System and method for testing closure integrity of a sealed container at cryogenic temperatures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Мерлич К.И. и др. Субфракционный состав плазмы крови при доброкачественных опухолях и раке молочной железы по данным лазерной корреляционной спектроскопии. Бюллетень экспериментальной биологии и медицины, 1993, N 8, с.193-195. 2. Гордиенко А.И. и др. Верификация опухолей с помощью лазерной флюоресцентной спектроскопии. Материалы 18 съезда онкологов УССР. Донецк, 1990, с. 183-186. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004029623A1 (fr) * 2002-09-30 2004-04-08 Sergei Grigorevich Alekseev Procede et dispositif pour diagnostiquer les maladies oncologiques
WO2008123790A1 (fr) * 2007-04-06 2008-10-16 Viktor Mikhailovich Mushta Procédé de diagnostic d'une maladie cancéreuse
WO2014142710A1 (ru) * 2013-03-12 2014-09-18 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Неинвазивный способ лазерной нанодиагностики онкологических заболеваний
RU2542427C2 (ru) * 2013-03-12 2015-02-20 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Неинвазивный способ лазерной нанодиагностики онкологических заболеваний
EA029562B1 (ru) * 2013-03-12 2018-04-30 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Неинвазивный способ лазерной нанодиагностики онкологических заболеваний
WO2022060243A1 (en) 2020-09-18 2022-03-24 Choi En Dzhun A method for malignant transformation prognosis and early diagnostics of malignant tumors

Also Published As

Publication number Publication date
JPH10111250A (ja) 1998-04-28
JP3195935B2 (ja) 2001-08-06
US5817025A (en) 1998-10-06

Similar Documents

Publication Publication Date Title
RU2132635C1 (ru) Способ диагностики онкологических заболеваний и устройство для его осуществления
Majeed et al. Quantitative phase imaging for medical diagnosis
Banwo et al. New oncofetal antigen for human pancreas
US5200345A (en) Methods and apparatus for quantifying tissue damage, determining tissue type, monitoring neural activity, and determining hematocrit
JPH03113351A (ja) 近赤外スペクトル解析による生物学的材料の特性予知法
WO1997030338A1 (en) System and method for rapid analysis of cells using spectral cytometry
Hanna et al. Cellular localization of estrogen binding sites in human breast cancer
US5296346A (en) Method for determining lipid bound sialic acid in plasma
CN115656083A (zh) 用于肿瘤检测、恶性程度和转移性评估的细胞外囊泡纳米红外光谱检测装置和应用
RU2085946C1 (ru) Способ диагностики онкологического заболевания
RU2085945C1 (ru) Способ диагностики онкологического заболевания
Free et al. Studies with a simple test for the detection of occult blood in urine
US3476514A (en) Cancer cytoscreening
AU590412B2 (en) Separation and method of use of density specific blood cells
RU2105306C1 (ru) Способ дифференциальной диагностики облигатных форм предрака и злокачественных новообразований
Aho et al. Determination of thyroglobulin antibodies using chromic chloride as a coupling reagent
RU2065167C1 (ru) Способ диагностики предракового состояния вульвы
RU2276786C1 (ru) Способ и устройство для диагностики онкологических заболеваний
RU2738563C1 (ru) Способ прогноза малигнизации и ранней диагностики злокачественных опухолей
Waisberg et al. Biliary carcinoembryonic antigen levels in diagnosis of occult hepatic metastases from colorectal carcinoma
US5508201A (en) Method for diagnosing the presence or absence of oncological disease
RU2821769C1 (ru) Способ диагностики глиальных опухолей в дооперационном периоде
RU2124205C1 (ru) Способ диагностики злокачественных новообразований
Kruchinina et al. Investigation of red blood cells from patients with diffuse liver diseases by combined dielectrophoresis and terahertz spectroscopy method
Ax Tumor Diagnosis Using Electrophoretic Mobility Test (EMT) Review on State of the Art with Reference to the Use of Stabilized Erythrocytes as Indicator Particles

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20041001