RU2082809C1 - Деформируемый термически неупрочняемый сплав на основе алюминия - Google Patents

Деформируемый термически неупрочняемый сплав на основе алюминия Download PDF

Info

Publication number
RU2082809C1
RU2082809C1 RU95112960A RU95112960A RU2082809C1 RU 2082809 C1 RU2082809 C1 RU 2082809C1 RU 95112960 A RU95112960 A RU 95112960A RU 95112960 A RU95112960 A RU 95112960A RU 2082809 C1 RU2082809 C1 RU 2082809C1
Authority
RU
Russia
Prior art keywords
alloy
aluminum
strength
aluminium
deformable
Prior art date
Application number
RU95112960A
Other languages
English (en)
Other versions
RU95112960A (ru
Inventor
Ю.А. Филатов
В.И. Елагин
В.В. Захаров
Original Assignee
Акционерное общество открытого типа "Всероссийский институт легких сплавов"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество открытого типа "Всероссийский институт легких сплавов" filed Critical Акционерное общество открытого типа "Всероссийский институт легких сплавов"
Priority to RU95112960A priority Critical patent/RU2082809C1/ru
Application granted granted Critical
Publication of RU2082809C1 publication Critical patent/RU2082809C1/ru
Publication of RU95112960A publication Critical patent/RU95112960A/ru

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Abstract

Изобретение относится к металлургии сплавов, в частности деформируемых термически неупрочняемых сплавов, предназначенных для использования в виде деформированных полуфабрикатов в качестве конструкционного материала. Деформируемый термически неупрочняемый сплав на основе алюминия содержит следующие компоненты, мас. %: магний 5,8 - 6,8, цирконий 0,02 - 0,15, бериллий 0,0001 - 0,01, скандий 0,2 - 0,5, церий 0,001 - 0,01, бор 0,001 - 0,01, по крайней мере один металл из группы, содержащей хром, титан, ванадий 0,02 - 0,2, алюминий остальное. Способ позволяет повысить прочность основного металла и сварных соединений, а также улучшить показатели сверхпластичности, что позволит повысить конструктивную прочность сварных и несварных конструкций из предлагаемого сплава, снизить вес конструкции, расширить номенклатуру деталей, получаемых сверхпластической формовкой, повысить их жесткость и снизить вес. 2 табл.

Description

Изобретение относится к металлургии сплавов, в частности деформируемых термически неупрочняемых сплавов, предназначенных для использования в виде деформированных полуфабрикатов в качестве конструкционного материала.
Известен термически неупрочняемый сплав на основе алюминия следующего химического состава, мас.
Магний 5,8 6,9
Марганец 0,5 0,8
Титан 0,02 0,1
Бериллий 0,0002 0,005
Алюминий Остальное
(см. ГОСТ 4784-74).
Однако существующий сплав имеет низкие прочностные свойства и низкие показатели сверхпластичности при высокой технологической пластичности, высокой коррозийной стойкости и хорошей свариваемости.
Известен деформируемый термически неупрочняемый сплав на основе алюминия следующего химического состава, мас.
Магний 5,5 6,5
Марганец 0,8 1,1
Цирконий 0,02 0,1
Бериллий 0,0001 0,005
Алюминий Остальное
(см. Алюминиевые сплавы. Промышленные деформируемые, спеченные и литейные алюминиевые сплавы. Справочное руководство М. Металлургия, 1972, с. 44, прототип).
Однако прочностные свойства известного сплава невысоки, невысоки и показатели сверх- пластичности, хотя сплав обладает хорошей свариваемостью, достаточно высокой технологической пластичностью, в частности достаточно хорошей прокатываемостью, и высокими эксплуатационными свойствами.
Предлагается деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, цирконий и бериллий, в который дополнительно введены скандий, церий, бор и по крайней мере один металл из группы, содержащий хром, титан, ванадий, и компоненты взяты в следующем соотношении, мас.
Магний 5,8 6,8
Цирконий 0,02 0,15
Бериллий 0,0001 0,01
Скандий 0,2 0,5
Церий 0,001 0,01
Бор 0,001 0,01
По крайней мере один металл из группы, содержащий хром, титан, ванадий - 0,02 0,2
Аалюминий Остальное
Технический результат изобретения повышение прочности сплава и сварных соединений, а также улучшение показателей сверхпластичности, что позволит повысить конструктивную прочность сварных и несварных конструкций из предлагаемого сплава, снизить вес конструкций, расширить номенклатуру деталей, получаемых сверхпластической формовки, повысить их жестокость и снизить вес.
При заявленном содержании и соотношении компонентов в предлагаемом сплаве образуются вторичные выделения дисперсных частиц интерметаллидов, содержащих алюминий и переходные металлы, входящие в состав сплава. Происходит непосредственное упрочнение сплава частицами интерметаллидов и торможение рекристаллизационных процессов при нагреве, что значительно повышает прочность сплава. Деформированные полуфабрикаты из сплава предлагаемого состава имеют нерекристаллизованную /полигонизованную/ структуру с очень мелкими субзернами, характеризующуюся высокой термической стабильностью.
В то же время за счет достаточно пластичной матрицы, представляющей собой, в основном, твердый раствор магния в алюминии, сохраняется достаточно высокая технологическая пластичность сплава.
При сварке плавлением сплава предлагаемого состава интерметаллидные частицы повышают прочность сварного шва, а благодаря высокой устойчивости нерекристаллизованной структуры повышается прочность околошовной зоны, что в итоге приводит к повышению прочности сварных соединений.
Полигонизованная структура с малыми размерами субзерен способствует повышению деформационной способности сплава в режиме сверхпластичности, повышая тем самым показатели сверхпластичности.
Дополнительным фактором, способствующим повышению прочностных свойств сплава и показателей сверхпластичности, является мелкозернистая недендритная структура слитка, образующаяся за счет модифицируемого действия скандия в сочетании с добавками других переходных металлов, входящих в состав сплава, и наследуемая деформированным полуфабрикатом.
Пример. С использованием технического алюминия марки А85, чушкового магния МГ 90, двойных лигатур алюминий-цирконий, алюминий-бериллий, алюминий-скандий, алюминий-церий, алюминий-бор, алюминий-хром, алюминий-титан и алюминий-ванадий в электропечи готовили расплав и методом полунепрерывного литья отливали плоские слитки сечением 165х550 мм из сплава предлагаемого состава, а также из известного сплава /см. табл. 1/.
Слитки гомогенизировали, затем подвергали механической обработке до толщины 140 мм. Полученные таким образом плоские литые гомогенизированные заготовки нагревали до 400oC и прокатывали на стане горячей прокатки до толщины 7 мм. Горячекатанные заготовки толщиной 7 мм прокатывали затем на стане холодной прокатки до конечных толщин 2 и 1 мм. Листы толщиной 2 и 1 мм отжигали при 325oC. Отожженные листы толщиной 2 и 1 мм служили материалом для испытаний.
В качестве показателя технологической пластичности при прокатке брали максимальную длину поперечных трещин lтр, которые образовались на боковых кромках горячекатанной заготовки в процессе горячей прокатки, имея в виду, что чем меньше длина поперечной трещины, тем выше технологическая пластичность.
В качестве прочностных характеристик брали предел прочности σв и предел текучести σ0,2, которые определяли путем испытания на расстоянии при комнатной температуре стандартных плоских образцов, вырезанных из отожженных листов толщиной 2 мм в поперечном направлении.
Для определения прочности сварных соединений карточки размером 100х300 мм, вырезанные из отожженных листов толщиной 2 мм, сваривали аргонодуговой сваркой вольфрамовым электродом, используя в качестве присадного материала узкие полоски /"лапша"/, вырезанные из листьев толщиной 1 мм, при этом состав основного свариваемого сплава и состав присадочного материала был один и тот же. Из сварных пластин вырезали стандартные сварные образцы с поперечным расположением сварного шва, которые испытывали при комнатной температуре с определением предела прочности сварного образца σ в , при этом усиление и проплав сварного шва не удаляли.
В качестве показателя сверхпластичности брали величину относительного удлинения δ до разрыва плоских поперечных образцов с длиной рабочей части 14 мм, вырезанных из отожженных листов толщиной 1 мм. Данные образцы испытывали на растяжение в условиях проявления сверхпластичности, а именно с постоянной скоростью деформации e, равной 6•10-3с-1 при температуре 475oC.
Результаты испытаний приведены в табл.2.
Как видно из табл.2, предлагаемый сплав обладает более высокими прочностными свойствами /предел прочности выше на 60-80 МПа, предел текучести на 90-130 МПа, предел прочности сварных соединений на 37-45 МПа/ и более высокими показателями сверхпластичности /относительное удлинение в условиях проявления сверхпластичности в 2,8-3 раза выше/, чем известный сплав при сохранении технологической пластичности, что позволяет на 15-20% снизить вес конструкции, расширить номенклатуру деталей, получаемых сверхпластической формовкой и за счет увеличения их жесткости снизить их вес на 15-30% Кроме того, в случае применения предлагаемого сплава в качестве присадочного материала при сварке плавлением на 10-15% повышается прочность сварных соединений.

Claims (1)

  1. Деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, цирконий и бериллий, отличающийся тем, что он дополнительно содержит скандий, церий, бор и по крайней мере один металл из группы, содержащей хром, титан и ванадий, при следующем соотношении компонентов, мас.
    Магний 5,8 6,8
    Цирконий 0,02 0,15
    Бериллий 0,0001 0,01
    Скандий 0,2 0,5
    Церий 0,001 0,01
    Бор 0,001 0,01
    По крайней мере один металл из группы, содержащей хром, титан и ванадий
    0,02 0,2
    Алюминий Остальноео
RU95112960A 1995-07-25 1995-07-25 Деформируемый термически неупрочняемый сплав на основе алюминия RU2082809C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95112960A RU2082809C1 (ru) 1995-07-25 1995-07-25 Деформируемый термически неупрочняемый сплав на основе алюминия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95112960A RU2082809C1 (ru) 1995-07-25 1995-07-25 Деформируемый термически неупрочняемый сплав на основе алюминия

Publications (2)

Publication Number Publication Date
RU2082809C1 true RU2082809C1 (ru) 1997-06-27
RU95112960A RU95112960A (ru) 1997-07-10

Family

ID=20170535

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95112960A RU2082809C1 (ru) 1995-07-25 1995-07-25 Деформируемый термически неупрочняемый сплав на основе алюминия

Country Status (1)

Country Link
RU (1) RU2082809C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011231A1 (de) * 1998-08-21 2000-03-02 Daimlerchrysler Ag Neue schweissbare, korrosionsbeständige hochmagnesiumhaltige aluminium-magnesium-legierung, insbesondere für die automobilanwendung
WO2002044433A1 (fr) * 2000-11-30 2002-06-06 Utar International Inc. Alliage de moulage a base d'aluminium et de magnesium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГОСТ 4784-74. Алюминиевые сплавы. Промышленные деформированные, спеченные и литейные алюминиевые сплавы. Справочное руководство. - М.: 1972, с. 44. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011231A1 (de) * 1998-08-21 2000-03-02 Daimlerchrysler Ag Neue schweissbare, korrosionsbeständige hochmagnesiumhaltige aluminium-magnesium-legierung, insbesondere für die automobilanwendung
WO2002044433A1 (fr) * 2000-11-30 2002-06-06 Utar International Inc. Alliage de moulage a base d'aluminium et de magnesium

Similar Documents

Publication Publication Date Title
JP4101749B2 (ja) 溶接可能な高強度Al−Mg−Si合金
US7993474B2 (en) Aircraft structural member made of an Al-Cu-Mg alloy
US11111562B2 (en) Aluminum-copper-lithium alloy with improved mechanical strength and toughness
CA2418079C (en) High strength aluminium-based alloy and the article made thereof
US7211161B2 (en) Al-Mg alloy products suitable for welded construction
US5908518A (en) AlMgMn alloy product for welded construction with improved corrosion resistance
US20050006008A1 (en) New Al-Cu-Li-Mg-Ag-Mn-Zr alloy for use as structural members requiring high strength and high fracture toughness
WO2007009616A1 (en) A wrought aluminum aa7000-series alloy product and method of producing said product
US5122339A (en) Aluminum-lithium welding alloys
EP0953062B1 (en) Al ALLOY AND METHOD
Jin Development of an aluminum brazing sheet product with barrier layer for high-performance automotive heat exchangers
JP7123254B2 (ja) 向上した耐食性を有する、Al-Mg-Mn合金板製品を製造する方法
JPH0380862B2 (ru)
US4113472A (en) High strength aluminum extrusion alloy
US4108691A (en) Aluminium base alloys
US3743549A (en) Thermomechanical process for improving the toughness of the high strength aluminum alloys
RU2082809C1 (ru) Деформируемый термически неупрочняемый сплав на основе алюминия
EP1217085B1 (de) Nichtaushärtbare Aluminiumlegierung als Halbzeug für Strukturen
US20230087605A1 (en) New aluminum alloys having bismuth and/or tin
RU2184165C2 (ru) Сплав на основе алюминия и изделие, выполненное из этого сплава
JPH0121217B2 (ru)
RU2639903C2 (ru) Деформируемый термически неупрочняемый сплав на основе алюминия
RU2268319C1 (ru) Деформируемый термически неупрочняемый сплав на основе алюминия
RU2599590C1 (ru) Конструкционный деформируемый термически неупрочняемый сплав на основе алюминия
RU2085607C1 (ru) Криогенный деформируемый термически неупрочняемый сплав на основе алюминия

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100726