RU2060500C1 - Устройство для контроля сорных примесей в пробе волокнистого материала - Google Patents

Устройство для контроля сорных примесей в пробе волокнистого материала Download PDF

Info

Publication number
RU2060500C1
RU2060500C1 SU925052827A SU5052827A RU2060500C1 RU 2060500 C1 RU2060500 C1 RU 2060500C1 SU 925052827 A SU925052827 A SU 925052827A SU 5052827 A SU5052827 A SU 5052827A RU 2060500 C1 RU2060500 C1 RU 2060500C1
Authority
RU
Russia
Prior art keywords
sample
impurities
weed
sensor
light
Prior art date
Application number
SU925052827A
Other languages
English (en)
Inventor
М. Шофнер Фредерик
К. Болдвин Джозеф
Дж. Таунс Марк
Чу Ю-Ти
И. Гэйлон Майкл
Original Assignee
Цельвегер Устер, Инк.,
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Цельвегер Устер, Инк., filed Critical Цельвегер Устер, Инк.,
Application granted granted Critical
Publication of RU2060500C1 publication Critical patent/RU2060500C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G31/00Warning or safety devices, e.g. automatic fault detectors, stop motions
    • D01G31/003Detection and removal of impurities
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G31/00Warning or safety devices, e.g. automatic fault detectors, stop motions
    • D01G31/006On-line measurement and recording of process and product parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B11/043Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/36Textiles
    • G01N33/362Material before processing, e.g. bulk cotton or wool
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • G01N2015/0057Investigating dispersion of solids in liquids, e.g. trouble of filaments in liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N2015/0238Single particle scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1027Determining speed or velocity of a particle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1497Particle shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/36Textiles

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Использование: изобретение относится к устройствам для контроля посторонних веществ в пробах волокна. Сущность изобретения: устройство для контроля сорных примесей в пробе, состоящей из волокон и сорных частиц, содержит весы для определения веса пробы, который передается в компьютер. Затем проба подается в чувствительный объем, и оптический датчик вырабатывает выходной сигнал, соответствующий по меньшей мере наличие сорной частицы в чувствительном объеме. В первом варианте реализации изобретения выходной сигнал представляет ослабление света, возникающее из-за наличия частицы в чувстительном объеме. Во втором варианте реализации осуществляется анализ изображения сорных частиц, присутствующих в чувствительном объеме, в результате получается выходной сигнал, соответствующий размерам, форме или составу частиц. Весовая информация вместе с выходным сигналом оптического датчика подается в компьютер, который вырабатывает выходную информацию в виде количества по меньшей мере некоторой доли сорных частиц на единицу веса пробы. Компьютер также выводит информацию в виде эффективного диаметра, проецируемой площади и веса сорных частиц и количества и веса волокон или соответствующей им информации. В частности компьютер классифицирует сорные частицы и выводит информацию по конкретной категории частиц. 1 с. п., 5 з. п. ф-лы, 14 ил.

Description

Изобретение относится к измерению посторонних веществ в пробах волокна.
Известно устройство для контроля сорных примесей в пробе волокнистого материала, содержащее процессор для обработки данных, включающий вычислительный блок, а также взвешивающее устройство для определения в веса пробы, и по меньшей мере один датчик контроля примесей в пробе, электрически соединенные со входами процессора обработки данных.
Недостатком известного устройства является отсутствие информации о размерах, типах или категориях сорных примесей, о способности к очищению, отсутствует информация о том, в какой степени сорные примеси или какая-либо их конкретная разновидность негативно повлияет на данный процесс текстильного производства.
Целью изобретения является устранение указанных недостатков.
С этой целью в устройстве для контроля сорных примесей в пробе волокнистого материала, содержащем процессор для обработки данных, включающий вычислительный блок, а также взвешивающее устройство для определения веса пробы и по меньшей мере один датчик контроля примесей в пробе, электрически соединенные со входами процессора обработки данных, дополнительно содержит сепаратор для отделения волокон от сорных примесей, имеющий выходы для сорных примесей и выход для волокон, по меньшей мере один оптический датчик для волокон сепаратора и соединенный с входом процессора обработки данных, датчик контроля примесей в пробе, установленный на выходе для сорных примесей сепаратора выполнен оптическим, процессор содержит блок памяти, входы которого являются входами процессора, а выход подключен к блоку вычисления количества сорных частиц и количества волокон на единицу веса пробы.
Устройство также содержит средство формирования пряди из пробы волокнистого материала. Оптический датчик контроля примесей в пробе, содержащий источник генерирования светового пучка и фотоприемник, установлен с возможностью пропускания сорных примесей между источником света и фотоприемником в направлении перпендикулярном направлению светового пучка и пересечением его сорными примесями. Оптический датчик примесей в пробе выполнен в виде двух детекторов света, рабочие оси первого детектора и второго детектора, определяющего рассеяние света вперед, расположены перпендикулярно направлению перемещения сорных частиц, выходы оптических детекторов света являются выходами датчика контроля примесей в пробе, и вычислительный блок выполнен с возможностью вычисления дополнительно величины проецируемого эффективного диаметра каждой сорной частицы.
Оптический датчик примесей в пробе выполнен в виде двух детекторов света, рабочая ось первого детектора света, расположена перпендикулярно направлению перемещения сорных частиц, а рабочая ось второго детектора света с фокусирующими линзами, определяющего рассеяние света назад, расположена под углом к направлению перемещения сорных частиц, выходы оптических детекторов света, являются выходами датчика контроля примесей в пробе, а вычислительный блок выполнен с возможностью вычисления дополнительно величины проецируемого эффективного диаметра каждой сорной частицы.
Угол между рабочими осями первого и второго детекторов света составляет 40о.
На фиг.1 изображена блок-схема устройства для контроля сорных примесей; на фиг. 2 малая сорная частица и датчик; на фиг.3 крупная сорная частица и датчик; на фиг.4 сорная частица, вид сбоку; на фиг.5 то же, план; на фиг.6 то же, вид спереди; на фиг.7 график, у которого по оси Y отложена вероятность, а по оси Х нормализованная проецируемая площадь сорной частицы; на фиг.8 график, где на оси Х отложен диаметр сорной частицы, на оси Y напряжение, получаемое при проходе частицы перед датчиком; I размеры сорных частиц, мкм; II размеры стеклянных шариков, мкм; на фиг.9 график, на котором показана информация, аналогичная той, что представлена на фиг.8; на фиг.10 и 11 график и таблица соответственно, на которых показана корреляция между проецируемой площадью на грамм при замере согласно изобретению и определенной вручную процентной долей видимого постороннего вещества; на фиг.12 и 13 соответственно таблица и график (пример типовой выходной информации, получаемой от устройства; на фиг. 14 вариант осуществления с использованием видеокамеры, просматривающей тонкий волоконный слой с сорными примесями.
На фиг.1 изображено устройство 1 для контроля сорных примесей в пробе 2 волокна, где содержится как волокно, так и примеси. Вначале пробу помещают на весы 3, при этом преобразователь 4, чувствительный к давлению (или к весу), вырабатывает в линии 5 сигнал, соответствующий весу пробы. Сигнал в линии 5 передается в компьютер 6, где имеются соответствующие аналого-цифровые преобразователи, на которые и поступает аналоговый сигнал веса. Компьютер 6 по сигналу, поступающему по линии 5, рассчитывает и запоминает вес пробы.
Затем проба вручную или с помощью механического приспособления 7 формируется в удлиненную конфигурацию, называемую прядью, которая по каналу 8 подается в сепаратор 9. Там проба волокна входит в контакт с сепараторными барабанами 10 и 11 и чесальными шляпками 12, а также другими известными элементами, которые отделяют волокна от сорных примесей. Примеси собираются в каналах 13 и 14, внутри которых существуют воздушные потоки, идущие к барабанам 10 и 11 в направлении, противоположном движению частиц, поступающих в каналы 13 и 14.
Подобные воздушные потоки обычно называют противотоками, а канал называют противоточным. Воздушный противоток возвращает назад волокна, втянутые в каналы 13 и 14, однако скорость сорных частиц оказывается достаточной, чтобы преодолеть противоток и достичь точек поворота 15 и 16, откуда сорные частицы увлекаются воздушным потоком в каналы 13 и 14 в направлении, противоположном движению противотока. Точки поворота представляют собой небольшие объемы пространства внутри каналов, откуда сорные частицы либо возвращаются назад к барабанам 10, 11, либо уносятся от них. Размер уносимых сорных частиц можно регулировать.
В канале 17 собирается линт (пух), откуда он подается к каналу 18, где за счет разрешения создается воздушный поток. Аналогичный воздушный поток создается внутри канала 19, куда сорные частицы увлекаются из каналов 13 и 14. Сепаратор 9 сконструирован таким образом, чтобы все сорные частицы отделялись от волокон и сразу поступали в канал 19, тогда как все волокна сразу подаются в канал 18. Наиболее предпочтительна аэромеханическая сепарация частиц сорных примесей от волокон с подачей их в различные воздушные потоки, однако объекты, образующие пробу 2, могут не только разделяться механически, но и совместно подаваться в едином воздушном потоке, а затем разделяться на типы или категории с помощью оптического средства. Иными словами, эти объекты можно разделять на категории сорных примесей и волокна с помощью оптических средств.
По каналу 19 сорные частицы подаются к оптическому датчику 20, куда они поступают через сопло 21 и проходят через свет, создаваемый источником света 22, в результате чего они обнаруживаются фотоприемником 23. Затем частицы собираются всасывающим соплом 24 и увлекаются всасывающим воздушным потоком в канал 25. По мере того, как сорные частицы поступают к датчику 20, они проходят через чувствительный объем 26, где присутствуют при случайной ориентации. Т. е. хотя сопло 21 ускоряет частицы, а сопло 24 их замедляет, однако они сконструированы так, что частицы присутствуют внутри чувствительного объема 26 при практически случайной ориентации.
По восприятии света датчик 23 передает в линию 27 сигнал напряжения, откуда он поступает в компьютер 6, где имеются соответствующие аналого-цифровые преобразователи, принимающие и преобразующие этот сигнал. В соответствии с предпочтительным вариантом реализации датчик 23 и источник света 22 сконструированы так, чтобы обнаруживать ослабление света, возникающее при прохождении сорной частицы через чувствительный объем. Также можно воспользоваться рассеянием света и его различными сочетаниями. Хотя предпочтительный вариант реализации рассматривается прежде всего в случае обнаружения ослабления света, однако датчик 23 может представлять собой комбинированный детектор, обнаруживающий рассеяние света вперед, рассеяние света назад и его ослабление, возникающее при прохождении частиц через чувствительный объем 26.
В канале 18 предусмотрен аналогичный электрооптический датчик 28, воспринимающий оптические характеристики волокон во время прохода через датчик 28. При использовании такой конструкции можно подавать в нее одиночную пробу и получать различную информацию по волокнам и сорным примесям. Датчики 28 и 20 практически одинаковы за тем исключением, что датчик 28 содержит нагнетающее сопло 29 и всасывающее сопло 30, сконструированные таким образом, чтобы правильно сориентировать волокно при его проходе через датчик 28. Возможность правильной ориентации волокна весьма полезна при проведении его измерений, однако она не является абсолютно обязательной, что же касается сорных примесей, то необходимость их строгой угловой ориентации до входа в чувствительный объем 26 отсутствует. Желательно, чтобы сорные примеси присутствовали при случайной ориентации.
Вакуумный насос 31, соединяющийся с датчиком 20 через канал 25, с датчиком 28 через канал 32, обеспечивает всасывание или вакуум, необходимый для создания воздушного потока. В канале 25 перед насосом 31 размещен фильтр 34, где собираются частицы сорных примесей, и кроме того, в канале 32 размещен фильтр 33, где собираются все волокна. Полученные от пробы волокна и сорные примеси можно отдельно извлечь из фильтров 34 и 43 и подвергнуть ручному анализу, например взвесить на весах 3. Ручной анализ производится в первую очередь для калибровки инструмента, связанной с замерами и вычислениями, производимыми на основе выходных сигналов от датчиков 20 и 28, а также для проверки оптических измерений и для их дополнения.
На фиг. 2 изображена небольшая сорная частица 35, приближающаяся к оптическому датчику 23. Площадь частицы существенно меньше ширины датчика, поэтому во время прохода частицы перед датчиком она вызовет ослабление света, которое будет связано с проецируемой площадью этой частицы.
На фиг.3 изображена крупная частица 36, приближающаяся к оптическому датчику 23. Когда частица 36 пройдет перед датчиком 23, то оно перекроет его, поэтому количество света, поглощенного частицей 36, которое могло бы попасть на датчик 23, будет пропорционально эффективному диаметру частицы.
Сборные частицы 37 (фиг.4-6) имеют аналогичную форму и потому их вид или представление будет зависеть от того, как будет сориентирована подобная частица или чешуйка при прохождении перед датчиком. Поэтому получаемая от датчика 20 информация и особенно данные, связанные с ослаблением света, будут иметь ограниченную полезность.
На фиг.7 изображен график, на котором представлена вероятность того, что сорная частица вроде чешуйки 37 предстанет при нормализованной или перпендикулярной ориентации вроде той, что показана на фиг.5. Из кривой 38 видна вероятность различной ориентации сорной частицы при ее свободном вращении вокруг одной оси, и можно заранее прогнозировать, что нормальная проекция такой частицы будет существовать чуть больше 14% времени. Вместе с тем можно прогнозировать, что проекция в одну десятую нормализованной проецированной площади будет существовать лишь приблизительно 3% времени.
Если сорная частица может свободно вращаться по двум перпендикулярным осям, то из кривой 39 видно, что нормальная проекция сорной частицы 37 согласно прогнозу займет менее 2% времени, тогда как проекция приблизительно 10% от нормализованной проецируемой площади согласно прогнозу составит приблизительно 9% времени. Аналогичным образом проекция в 15% от нормализованной проецируемой площади займет приблизительно 7,5% времени, тогда как проекция в 200% займет приблизительно 7% времени.
На основании кривой 39, построенной для случая случайной ориентации сорной частицы, можно сделать вывод о том, что частица будет редко видна в нормальной проекции. Отсюда вывод, что в сигнале, получаемом с выхода оптического датчика при случайной ориентации сорных частиц, будет содержаться мало полезной информации об их размере, поскольку вероятность нормального падения света на частицу мала.
Однако из результатов, представленных на фиг.8, видна хорошая корреляция выходного сигнала датчика 23 с эффективным диаметром частицы и следовательно хорошая корреляция с проецируемой площадью. На фиг.8 по оси Y отложены средние значения пиковых напряжений от датчика 23, а по оси Х диаметр частицы. Определение действительного эффективного диаметра частиц осуществлялось вручную пропусканием частиц через сита с постепенно уменьшающимися ячейками. Кружками графически изображена информация, полученная по стеклянным шарикам, имеющим форму сферы, а ромбиками информация по сорным частицам. Из графиков видно, что среднее значение пиковых напряжений хорошо коррелируется с диаметром как сорных частиц, так и стеклянных шариков. (Изображенные на фиг.8 сигналы напряжения на самом деле снимаются с двух усилителей, причем коэффициент усиления у более чувствительного каскада в 2,5 раза больше, чем у другого. Отсчеты нормализованы для каскада с большим коэффициентом усиления. Необходимость в двух каскадах связана с потребностью перекрыть большой динамический диапазон).
Показанные на фиг.9 участки кривых 40 и 41 аналогичны кривым на фиг.8. Из фиг.9 видно, что функциональная взаимосвязь между выходными сигналами датчика 23 и размерами частиц является различной для мелких и для крупных частиц. Если частицы малы, то связь между выходным напряжением (V) датчика 23 и размером частицы описывается уравнением V a + bX + cX2, где Х размер частицы в одном измерении, например, ее эффективный диметр. Так, для хлопковых сорных частиц размером менее 488 мкм взаимосвязь можно описать таким уравнением: V 0,0000303Х2 + 0,00475Х 0,0403. Если частицы крупные, то взаимосвязь описывается уравнением в виде V mХ + b. В частности, для хлопковых сорных частиц диаметром более 488 мкм такая взаимосвязь описывается следующей формулой: V 0,0313Х- 5,78.
Прохождение отдельных сорных частиц типа тех, что изображены на фиг.2-6 через оптический датчик 20, приводит к появлению в линиях 27 сигналов. Компьютер 6 по меньшей мере подсчитывает сигналы, представляющие сорные частицы, и в сочетании с весом пробы вырабатывает новый информационный продукт в виде количества частиц на грамм пробы.
Однако, в сигналах, поступающих по линиям 27, кроме того содержится информация по размерам, форме и ориентации сорных частиц. Подобную детальную электрооптическую информацию можно использовать для определения веса каждой частицы. Так, чтобы найти суммарный вес сорных частиц, можно перемножить найденные количества на грамм в каждом специфичном размером диапазоне и просуммировать все размерные диапазоны. Если разделить на вес пробы, то можно прогнозировать содержание видимых веществ в процентах.
На фиг.8 и 9 представлены необходимые и достаточные калибровочные результаты по пробам с известными размерами, формами и составом. В калибровку также входит информация по ориентации.
Первый этап измерения неизвестной пробы заключается в вычислении эффективного диаметра D для каждого сигнала напряжения от сорной частицы. В частности, компьютер 6 пользуется выходным сигналом датчика 20 для вычисления одномерного размерного критерия D (эффективный диаметр) для каждой частицы. Пусть к примеру из фиг.8 или 9 найдем, что пиковое напряжение в 9,5 В соответствует в среднем частицам с эффективным диаметром D 488 кмк. В среднее значение входят все эффекты, связанные с размером, формой, составом и ориентацией. Преобразование напряжения в эффективный диаметр D (фиг.8) производится компьютером с помощью справочной таблицы или квадратного и линейного уравнений.
Второй этап заключается в вычислении электрооптических единиц согласно определению: электрооптические единицы (D/1000)2.
Тем самым для каждой сорной частицы осуществляется интерпретация проецируемой площади в квадратных миллиметрах. Третий этап заключается в суммировании вкладов от электрооптических единиц для всех частиц в пробе.
На фиг. 10а по оси Y отложен гравиметрический вес видимых посторонних веществ в процентах, представлены сорные частицы, уловленные фильтром 34.
По оси Х отложены электрооптические единицы (Е-О), при этом прослеживается хорошая корреляция с весом видимых посторонних веществ в широком диапазоне измерений. Представленный результат подтверждает предположение о том, что вес сорных частиц пропорционален их электрооптическим единицам. И наконец суммарное количество электрооптических единиц на грамм имеет интуитивно удовлетворительную интерпретацию, а именно суммарные электрооптические единицы в квадратных миллиметрах представляют проецируемую площадь сорных частиц, удаленных из одного грамма пробы.
На фиг. 12 представлена типовая выходная информация для пяти повторных проб хлопкового волокна: в первом столбце номер пробы или номер повтора; в столбце вес пробы указан вес исходной хлопковой пробы, в столбце "Итоговая сумма" количество сорных частиц на грамм исходной пробы; далее в столбце "средний размер" средний эффективный диаметр всех сорных частиц для каждой пробы в микрометрах; затем в столбце "Пыль" информация о количестве на грамм. Чтобы найти это количество, компьютер подсчитывает, сколько всего имеется частиц меньше некоторого размера (когда выходное напряжение датчика меньше некоторого порога) и делит найденное число на суммарный вес исходной пробы в граммах. В столбце примеси указано, сколько частиц на грамм имеют размеры больше заранее определенной величины (когда выходное напряжение датчика больше порогового значения). В случае хлопка частицы размером в среднем менее 500 мкм обычно рассматривают как пыль, а частицы больших размеров как сорные примеси.
Следовательно, выходной сигнал указывает как на наличие пыли, так и сорных частиц. Однако термин "сорные частицы" означает вообще любое неволоконное вещество, имеющееся в пробе, и потому в него включаются и понятия пыли, и понятия сора. В последнем столбце представлено расчетное процентное содержание видимых посторонних веществ (ВПВ), представляющее единицу измерения количества сорных примесей в хлопковых волокнах. Расчеты проводились на основе описанных электрооптических единиц.
Три последних числа в каждой колонке представляют среднее от пяти повторов, стандартное отклонение и CV в процентах.
На фиг. 13 показано, как данные выводятся на экран, при этом изображены два графика, где по оси Х отложены количества частиц на грамм, а по оси Y размер частиц (эффективный диаметр). Для первого графика, находящегося в левом верхнем углу, используются шкалы, изображенные с левой и верхней стороны графика. Для второго графика, находящегося в нижнем углу, используются шкалы, изображенные с нижней и правой стороны экрана. На графиках представлено размерное распределение сорных частиц в пробе волокон, однако приведенная информация была нормализована для каждого размера по количеству на грамм пробы. В верхнем правом углу изображен квадрат, представляющий электрооптические единицы, которые представляют проецируемую площадь сорных примесей в пробе.
Подобный вывод информации приведен в качестве примера вывода данных из устройства, при этом количество частиц на грамм было приведено как для всей пробы, так и для различных категорий сора, а именно для размерных категорий. Аналогичным образом подсчет количества сора на грамм можно выполнять и для других категорий или типов сорных примесей или пробы. К примеру, на компьютер также поступают электрооптические данные от датчика 28 чистых волокон, при этом электрооптическим образом определяется количество и вес. Следовательно, устройство 1 способно вывести количества сорных примесей на количество чистых волокон или количество примесей на грамм чистых волокон, что является различными вариантами вывода выходной информации.
На фиг.12 показан пример, где волокна 42 и сорные примеси 43 присутствуют в тонкопланарном формате. При этом волокна и сорные частицы должны быть в достаточной степени рассеяны с тем, чтобы можно было идентифицировать сорную частицу, а чтобы просмотровая камера смогла увидать все сорные частицы в чувствительном объеме, волоконный слой должен быть достаточно тонким. В данном варианте реализации чувствительный объем ограничивается площадью пробы 44, просматриваемой камерой 45, и глубиной пробы, при этом камера видит практически все сорные частицы в чувствительном объеме, представленном в пробе. От камеры должна поступать информация об изображении, охватывающая как видимый участок спектра, так и за его пределами. В частности, предусматриваются средства для работы в ближней инфракрасной области, а также средства для получения изображений при свете самой различной длины. Для освещения используется один или несколько источников света 46, находящихся над пробой, а также один или несколько источников света 47 под пробой. В этом случае применяются типовые методы цифрового анализа изображений, которые позволяют идентифицировать все объекты, геометрическая конфигурация и проецируемая площадь достаточны, чтобы представлять сорные примеси. Узелки тоже обычно соответствуют этим критериям, и потому приходится анализировать все встреченные объекты, чтобы отклонить блестящие или матовые узелки. Как только узелки отбрасываются, производится подсчет всех оставшихся объектов, и компьютер определяет проецируемую площадь каждой частицы, подсчитывая отдельные элементы изображения (пиксели), занимаемые сорными частицами 43. По завершении подсчета количества и нахождения проецируемой площади можно рассчитывать другую требуемую информацию по изложенной методике.
Кроме того, получая новый информационный продукт в виде количества сорных частиц на грамм пробы, также можно электрооптически найти вес волоконный пробы с помощью датчика волокна 28.

Claims (6)

1. Устройство для контроля сорных примесей в пробе волокнистого материала, содержащее процессор для обработки данных, включающий вычислительный блок, а также взвешивающее устройство для определения веса пробы и по меньшей мере один датчик контроля примесей в пробе, электрически соединенные с входами процессора обработки данных, отличающееся тем, что оно содержит сепаратор для отделения волокон от сорных примесей, имеющий выходы для сорных примесей и выход для волокон, по меньшей мере один оптический датчик для определения чистых волокон, размещенный на выходе для волокон сепаратора и соединенный с входом процессора обработки данных, датчик контроля примесей в пробе, установленный на выходе для сорных примесей сепаратора, выполнен оптическим, процессор содержит блок памяти, входы которого являются входами процессора, а выход подключен к блоку вычисления количества сорных частиц и количества волокон на единицу веса пробы.
2. Устройство по п.1, отличающееся тем, что оно содержит средство формирования пряди из пробы волокнистого материала.
3. Устройство по пп. 1 и 2, отличающееся тем, что оптический датчик контроля примесей в пробе, содержащий источник генерирования светового пучка и фотоприемник, установлен с возможностью пропускания сорных примесей между источником света и фотоприемником в направлении, перпендикулярном к направлению светового пучка, с пересечением его сорными примесями.
4. Устройство по пп. 1 3, отличающееся тем, что оптический датчик примесей в пробе выполнен в виде двух детекторов света, рабочие оси первого детектора и второго детектора, определяющего рассеяние света вперед, расположены перпендикулярно к направлению перемещения сорных частиц, выходы оптических детекторов света являются выходами датчика контроля примесей в пробе, а вычислительный блок выполнен с возможностью вычисления дополнительно величины проецируемого эффективного диаметра каждой сорной частицы.
5. Устройство по пп. 1 3, отличающееся тем, что оптический датчик примесей в пробе выполнен в виде двух детекторов света, рабочая ось первого детектора света расположена перпендикулярно к направлению перемещения сорных частиц, а рабочая ось второго детектора света с фокусирующими линзами, определяющего рассеяние света назад, расположена под углом к направлению перемещения сорных частиц, выходы оптических детекторов света являются выходами датчика контроля примесей в пробе, а вычислительный блок выполнен с возможностью вычисления дополнительно величины проецируемого эффективного диаметра каждой сорной частицы.
6. Устройство по п.5, отличающееся тем, что угол между рабочими осями первого и второго детекторов света составляет 40o.
SU925052827A 1991-09-19 1992-09-18 Устройство для контроля сорных примесей в пробе волокнистого материала RU2060500C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/762,905 US5321496A (en) 1990-03-14 1991-09-19 Apparatus for monitoring trash in a fiber sample
US07/762905 1991-09-19

Publications (1)

Publication Number Publication Date
RU2060500C1 true RU2060500C1 (ru) 1996-05-20

Family

ID=25066353

Family Applications (1)

Application Number Title Priority Date Filing Date
SU925052827A RU2060500C1 (ru) 1991-09-19 1992-09-18 Устройство для контроля сорных примесей в пробе волокнистого материала

Country Status (10)

Country Link
US (1) US5321496A (ru)
EP (1) EP0533079B1 (ru)
JP (1) JP3218411B2 (ru)
KR (1) KR930006441A (ru)
CN (1) CN1039364C (ru)
AU (1) AU662554B2 (ru)
DE (1) DE69223109T2 (ru)
ES (1) ES2108721T3 (ru)
RU (1) RU2060500C1 (ru)
TW (1) TW206264B (ru)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469253A (en) 1990-03-14 1995-11-21 Zellweger Uster, Inc. Apparatus and method for testing multiple characteristics of single textile sample with automatic feed
US5430301A (en) * 1990-03-14 1995-07-04 Zellweger Uster, Inc. Apparatus and methods for measurement and classification of generalized neplike entities in fiber samples
DE69327840T2 (de) * 1993-01-11 2000-05-25 Zellweger Uster, Inc. Vorrichtung und Verfahren zur Messung und Klassifizierung von Trashteilen in Faserproben
AT399400B (de) * 1993-03-15 1995-04-25 Binder Co Ag Verfahren und einrichtung zur bestimmung der reinheit von aufbereitetem altglas
AT400906B (de) * 1994-10-25 1996-04-25 Binder Co Ag Verfahren und einrichtung zur bestimmung der reinheit von aufbereitetem altglas
GR960100084A (el) * 1995-04-13 1996-12-31 Trutzschler Gmbh & Co Kg Μηχανισμος για ενα λαναρι για τον εντοπισμο οχλουντων σωματιδιων, ιδιαιτερως σωματιδιων προς απορριψη, κομβων, θυλακωτων κομβων, θηλειων και παρομοιων.
US6029316A (en) * 1997-01-08 2000-02-29 Premier Polytronics Limited Environmental conditioning methods and apparatus for improved materials testing: rapidcon and rapidair
US5890264A (en) * 1997-10-06 1999-04-06 Premier Polytronics Limited Aeromechanical individualizer
US5929460A (en) * 1997-10-06 1999-07-27 Premier Polytronics Limited High throughput nep measurement
US6088094A (en) * 1997-12-23 2000-07-11 Zellweger Uster, Inc. On-line sliver monitor
WO2001044545A1 (de) * 1999-12-16 2001-06-21 Zellweger Luwa Ag Verfahren und vorrichtung zum erkennen und ausschleusen von fremdmaterial in einem faserstrom aus verdichteten textilen fasern
US6924892B2 (en) * 2000-11-27 2005-08-02 Jensen Denmark A/S Apparatus and a method of inspecting pieces of cloth
SE0004523L (sv) * 2000-12-07 2002-06-08 Svante Bjoerk Ab Förfarande och anordning för bestämning av förekomsten av föroreningar i ett material
DE10063861B4 (de) * 2000-12-21 2014-08-28 Trützschler GmbH & Co Kommanditgesellschaft Vorrichtung an einer Spinnereivorbereitungsmaschine, z. B. Reiniger, Öffner, Karde o. dgl. zur Erfassung von ausgeschiedenem Abfall
DE10214657A1 (de) * 2001-10-05 2003-04-10 Rieter Ag Maschf Verfahren und Prüfgerät zum Prüfen von Fasermaterial auf dessen Kennwerte
WO2003031699A1 (de) * 2001-10-05 2003-04-17 Maschinenfabrik Rieter Ag Verfahren und prüfgerät zum prüfen von fasermaterial auf dessen kennwerte.
WO2003042674A1 (en) * 2001-11-14 2003-05-22 Texas Tech University Method for identification of cotton contaminants with x-ray microtomographic image analysis
US7518716B2 (en) * 2002-12-20 2009-04-14 J.M. Canty Inc. Granular product inspection device
DE102007039067A1 (de) * 2007-08-17 2009-02-19 TRüTZSCHLER GMBH & CO. KG Vorrichtung an einer Kämmmaschine zur Überwachung des Kämmlingsanteils
CA2745654A1 (en) * 2008-12-22 2010-07-01 Cotton Catchment Communities Cooperative Research Centre Limited An apparatus and process for measuring properties
US8199319B2 (en) * 2009-06-29 2012-06-12 Uster Technologies Ag Fiber property measurement
CN102234928A (zh) * 2010-05-06 2011-11-09 乌斯特技术股份公司 双刺辊机构的纤维杂质重量分析装置
WO2011137554A1 (en) 2010-05-06 2011-11-10 Uster Technologies Ag Method and apparatus for measuring the weight of impurities in a mixed volume of fibers and impurities
US8301410B2 (en) 2010-05-06 2012-10-30 Uster Technologies Ag Visual weight compensation
US8496114B1 (en) * 2012-06-14 2013-07-30 Uster Technologies Ag Trash separator
JPWO2016140321A1 (ja) * 2015-03-03 2017-04-27 株式会社アルバック 膜厚監視装置用センサ、それを備えた膜厚監視装置、および膜厚監視装置用センサの製造方法
EP3662283A1 (en) 2017-09-14 2020-06-10 Uster Technologies AG Fiber blend identification and/or ratio measurement
IT201900006671A1 (it) * 2019-05-09 2020-11-09 Marzoli Machines Textile Srl Dispositivo e metodo per la misura del peso di scarti di una lavorazione tessile per la preparazione alla filatura
CN111537379A (zh) * 2020-05-09 2020-08-14 广东韶钢松山股份有限公司 一种破碎废钢杂质率的获取方法
CH717716A1 (de) * 2020-08-05 2022-02-15 Rieter Ag Maschf Erfassung des Abganges in einer Faservorbereitungsanlage.
CH718505A1 (de) * 2021-04-01 2022-10-14 Rieter Ag Maschf Verfahren und Vorrichtung zur Analyse von Komponenten einer Fasermasse.
CN114112781B (zh) * 2021-11-10 2024-04-19 广西科技大学 一种生丝纤度检验装置及操作步骤

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2095828B (en) * 1981-03-31 1985-12-18 Wool Dev Int Detection of defects in fibrous arrays
US4631781A (en) * 1982-09-30 1986-12-30 Ppm, Inc. Conditioned gas flow methods for processing and cleaning fiber, including aeromechanical and electrodynamic release and separation
US4512060A (en) * 1982-09-30 1985-04-23 Ppm, Inc. Apparatus and methods for aeromechanical and electrodynamic release and separation of foreign matter from fiber
US4686744A (en) * 1982-09-30 1987-08-18 Ppm, Inc. Methods for aeromechanical and electrodynamic release and separation of foreign matter from fiber
AU6640386A (en) * 1985-12-13 1987-06-18 Unisearch Limited Measurement of foreign matter in fibre assemblies
EP0226430A3 (en) * 1985-12-13 1988-03-23 Unisearch Limited Measurement of foreign matter in fibre assemblies
DE3644535A1 (de) * 1986-12-24 1988-07-14 Truetzschler & Co Verfahren und vorrichtung zum erkennen von fremdkoerpern wie fremdfasern, bindfaeden, kunststoffbaendchen, draehten o. dgl. innerhalb von bzw. zwischen textilfaserflocken
DE58907225D1 (de) * 1988-10-11 1994-04-21 Rieter Ag Maschf Erkennung von Fremdgut in Textilfasern.
DE3928279C2 (de) * 1989-08-26 1998-05-14 Truetzschler Gmbh & Co Kg Verfahren und Vorrichtung zum Erkennen von störenden Partikeln, insbesondere Trashteilen, Nissen, Schalennissen, Noppen u. dgl., in textilem Fasergut, z. B. Baumwolle, Chemiefasern u. dgl.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 1343353, кл. G 01N 33/36, 1987. *

Also Published As

Publication number Publication date
ES2108721T3 (es) 1998-01-01
EP0533079A2 (en) 1993-03-24
AU662554B2 (en) 1995-09-07
EP0533079B1 (en) 1997-11-12
EP0533079A3 (en) 1993-07-28
JPH06213827A (ja) 1994-08-05
US5321496A (en) 1994-06-14
AU2458792A (en) 1993-03-25
DE69223109D1 (de) 1997-12-18
DE69223109T2 (de) 1998-03-12
CN1039364C (zh) 1998-07-29
KR930006441A (ko) 1993-04-21
TW206264B (ru) 1993-05-21
JP3218411B2 (ja) 2001-10-15
CN1071010A (zh) 1993-04-14

Similar Documents

Publication Publication Date Title
RU2060500C1 (ru) Устройство для контроля сорных примесей в пробе волокнистого материала
US5426501A (en) Apparatus and method for particle analysis
JP3211089B2 (ja) 繊維又はその他の試料の単独の存在物を測定する電気光学装置
US9335244B2 (en) System and method for converting optical diameters of aerosol particles to mobility and aerodynamic diameters
US5033602A (en) Device for indentifying coins
US4596464A (en) Screening method for red cell abnormality
GB2236389A (en) Apparatus for detecting undesirable particles in textile fibre material
EP1756546A1 (en) Measurement of an object
US4540286A (en) Apparatus for continuously measuring the degree of milling of grains
EP1408321B1 (en) Pollen sensor and method
US3662176A (en) Photo-optical particle analysis method and apparatus
EP0606619B1 (en) Apparatus and methods for measurement and classification of generalized neplike entities in fiber samples
EP1027594B1 (en) Fiber quality monitor
US4825094A (en) Real time particle fallout monitor with tubular structure
JPH0579970A (ja) 粒子分析装置
US6005662A (en) Apparatus and method for the measurement and separation of airborne fibers
US6122054A (en) Device for measuring the concentration of airborne fibers
Taylor Using high-speed image analysis to estimate trash in cotton
JPH10318908A (ja) 花粉モニター
EP0118897A2 (en) Particle counting system for a fractionating device
JPH04132940A (ja) 穀粒分析装置
JPH0743299A (ja) 微粉粒子モニター
SU1121602A1 (ru) Устройство дл измерени размеров и счетной концентрации аэрозольных частиц
SU957067A1 (ru) Устройство дл определени размера аэрозольных частиц
JP2812991B2 (ja) パーテイクルカウンター