RU2057250C1 - Тампонажный раствор для цементирования газонефтяных скважин и способ его приготовления - Google Patents

Тампонажный раствор для цементирования газонефтяных скважин и способ его приготовления Download PDF

Info

Publication number
RU2057250C1
RU2057250C1 SU4356939A RU2057250C1 RU 2057250 C1 RU2057250 C1 RU 2057250C1 SU 4356939 A SU4356939 A SU 4356939A RU 2057250 C1 RU2057250 C1 RU 2057250C1
Authority
RU
Russia
Prior art keywords
cement
silica
water
silica fume
amount
Prior art date
Application number
Other languages
English (en)
Inventor
Петтер Саргеант Йон
Вонеим Асбьерн
Калвенес Эйстеин
Original Assignee
Норск Хюдро А.С.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Норск Хюдро А.С. filed Critical Норск Хюдро А.С.
Application granted granted Critical
Publication of RU2057250C1 publication Critical patent/RU2057250C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/5045Compositions based on water or polar solvents containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/146Silica fume
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00301Non-porous materials, e.g. macro-defect free [MDF] products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Использование: для крепления газонефтяных скважин. Сущность изобретения: тампонажный раствор содержит тампонажный цемент, микрокремнезем - отход производства феррокремнезема, и воду. При необходимости в раствор можно ввести гипс, утяжелитель, диспергатор и регулятор сроков схватывания. Тампонажный раствор готовят следующим образом. 10% от массы цемента вводят в воду. Затем в полученную суспензию последовательно вводят микрокремнезем, утяжелитель, гипс и оставшуюся часть цемента. 2 с. и 3 з. п. ф-лы, 13 табл.

Description

Изобретение относится к тампонажному раствору и способу приготовления тампонажного раствора, который используют при цементировании газонефтяных скважин, рассчитанных на температуру свыше 110оС.
При цементировании обсадной трубы против проницаемых формаций может возникнуть проблема потерь жидкости из цементного шлама в формацию, если отфильтрованный осадок удаляют перед процессом цементирования. Когда это происходит, существует риск того, что цемент вблизи формации будет обладать повышенной проницаемостью и, следовательно, возникнет риск газовой миграции, а также процесс цементирования окажется неудачным. Для предотвращения такого исхода применяют поставляемые на мировой рынок органические добавки, предотвращающие потери текучей среды, в большинстве своем полимеры, которые в сочетании с диспергаторами образуют растворы с хорошими свойствами в отношении снижения потерь за счет фильтрования.
Такие тампонажные растворы часто являются механически нестойкими, проявляя тенденцию к седиментации. Когда скорость осаждения высока, могут возникнуть серьезные проблемы снижения качества цемента, в особенности при прямом бурении под большим углом, где возможен риск того, что верхняя часть обсадной трубы останется незацементированной. Кроме того, такие добавки очень дороги.
Для цементирования глубоких скважин с высокой температурой требуется цемент с особыми качествами. Плотность его должна быть относительно высокой (ρ≥1,9), он должен обладать хорошими реологическими свойствами, причем как механической, так и термической стойкостью, и высокой прочностью при сжатии.
При цементировании газонефтяных скважин обычно используют портландцемент.
Гидратированный портландцемент, который подвергается воздействию температур свыше 120оС в течение длительного периода времени, перекристаллизовывается и возникают новые фазы. Такое фазовое превращение сопровождается серьезным снижением прочности и нежелательным повышением проницаемости. Для предотвращения такого явления обычно используют в качестве добавки тонкоизмельченный кремнеземный песок в концентрации 35-40% Манипуляции с этим песком на существенном оборудовании сопряжены с проблемами и опасны для здоровья рабочих, поскольку такой песок содержит большие количества тонкодисперсного порошка кремнеземного материала, упакованного в мешки, который может вызвать силикоз. Добавление такого песка приводит к увеличению времени выдержки и замедляет рост прочности.
Целью изобретения является приготовление тампонажного раствора для цементирования газонефтяных скважин с плотностью от нормальной до высокой (1,9-3,5 г/см3), который не дает снижения прочности при высоких температурах. Очень большое значение имеет также создание цементной композиции, у которой предотвращена возможность проницаемости при высокой температуре.
Другой целью является предотвращение потерь текучей среды и получение цемента с хорошими свойствами без применения дорогостоящих добавок. Важны также прочность цемента при сжатии и, кроме того, его реология, время загущения и тому подобное. Существенна также разработка способа простого перемешивания цементного шлама на существующем оборудовании.
Гидравлический тампонажный раствор с плотностью от нормальной до высокой (1,9-3,5 г/см3), приемлемый для цементирования газонефтяных скважин при температурах свыше 110оС, может быть приготовлен на основе стандартного тампонажного цемента. В цемент при этом добавляют 35-44% микрокремнезема (в пересчете на вес цемента) и утяжеляющую среду, если это желательно, например, в форме гематита для цементных шламов самой высокой плотности.
Такой тампонажный раствор содержит воду в количестве 15-40% в пересчете на количество сухого материала. При желании в него можно добавлять диспергатор и добавку для замедления процесса схватывания. Добавление таких количеств микрокремнезема обеспечивает возможность приготовления цементов с хорошими свойствами потерь текучей среды без добавления веществ, уменьшающих потери текучей среды, причем у таких цементов предотвращено снижение прочности при высоких температурах.
Для простоты процедуры смешения, которое можно осуществить на имеющемся оборудовании, существенное значение имеет добавление микрокремнезема в форме шлама. Для возможности перемешивать такие большие количества микрокремнезема в цемент без хлопьеобразования необходимо, чтобы процедура смешения отличалась от стандартной.
При цементировании газонефтяных скважин в районе Норвежского шельфа применяют так называемый сульфостойкий G-цемент, который характеризуются следующим химическим составом (в скобках приведены требования, взятые из спецификации АР1),
MgO 1,6 (максимально 5,00)
SO3 2,07 (максимально 2,50)
Потери при прокаливании 0,37 (максимально 3,00)
Нерастворимый остаток 0,19 (максимально 0,75)
3CaO ·SiO2 54,40 (максимально 65,00)
(минимально 48,00)
3CaO · Al2O3 2,2 (максимально 3,00)
4CaO ·Al2O3 · Fe2O3 + 2,3CaO · Al2O3 20,1 (максимально 24,0)
Общий щелочной эквивалент Na2O 0,60 (максимально 0,75)
При реакции портландцемента с водой продукты гидратации С3S и бета-C2S практически идентичны тем, которые образуются при нормальных температурах, т.е. в интервале 0-100оС.
Такая реакция протекает следующим образом:
1 С3S + 2H2O ____ SCH + 2Ca/OH/2
11 С2S + 2H2O ____ SCH + Ca/OH/2
Но скорость гидратации для трикальцийсиликата в несколько раз превышает скорость гидратации дикальцийсиликата. Эти реакции являются нестехиометрическими. Величины соотношения между С и S в образующемся CSH находятся в интервале от 1 до более 1,5 в зависимости от условий протекания реакции. Гидраты окисей кальция, которые образуются, кристаллизуются в большие формирующие скважину кристаллы, называемые "портландитом", которые легко идентифицируются под микроскопом.
С другой стороны, фазы СSH больше напоминают гель, аморфный в Х-лучах, и поэтому его точный анализ сопряжен со значительными затруднениями. Наиболее приемлемыми методами являются количественные Х-лучевой дифракционный анализ кристаллических фаз и Х-лучевой анализ аморфных фаз.
Конкретные реакционные продукты зависят от скорости реакции и видов других ионов в растворе, в особенности щелочи. Стойкость механической структуры образующихся агрегатов в цементе и бетоне при нормальных температурах обеспечивается именно фазами CSH. Прочность и стойкость структуры конечного продукта со снижением содержания щелочи и скорости реакции повышаются.
Существует большое число кальцийсиликатгидратов, которые могут образовываться в процессе гидратации цемента.
В табл. 1 (взята из работы Гундлаха М. Dampgehartete Baustaffe, изд-во Baueverlag CmbH, 1973) перечислены некоторые из большинства кальцийсиликатгидратов, которые встречаются в природе.
В этой серии кальцийсиликатгидратов способность создавать структуру с высокой прочностью и низкой проницаемостью изменяется в широком диапазоне. Первичные фазы C-S-H (I) и C-S-H (II), которые образуются при низких температурах приблизительно до 100оС. Под действием такой температуры они медленно образуют кристаллический II
Figure 00000001
-Тоберморит. Избыток окиси кальция высвобождается в виде кристаллической гидроокиси кальция (портландит).
Эти фазы обладают превосходными свойствами, если рассматривать высокую прочность, низкие проницаемость и усадку, и являются конечными продуктами в большинстве строительных материалов, включая цемент и бетон.
Тоберморит, как таковой, т.е. продукт, в котором известь и кремниевая кислота содержатся в таких количествах, что они соответствуют формуле C5S6H5, обладает термостойкостью в температурном интервале 100-150оС. При температуре свыше 150оС, когда основа состоит из чистых компонентов в стехиометрических соотношениях, протекают следующие реакции:
0,83C/S
Figure 00000002
CSH-гель
Figure 00000003
Тоберморит C5S6H5
Figure 00000004

Figure 00000005
C
Figure 00000006
Гиролит C2S2H2
Figure 00000007
Ксонолит C6S6H +
При температурах приблизительно 500оС, соответственно, 400оС они превращаются в бета-волластонит и альфа-волластонит. Как ксонотлит, так и трускоттит, обладают приемлемыми физическими свойствами, если иметь в виду прочность и проницаемость, и являются тем, что нужно было бы иметь для цементирования при температурах свыше 150оС.
В том случае, когда имеется избыток извести, т.е. когда величина отношения C/S превышает 0,8-1,0, тоберморит не обладает проч- ностью при температурах свыше примерно 100оС. При этом протекает следующая реакция: Тоберморит C5S6H5+ Ca/OH/2 ____ альфа-C2SH
Образуется альфа-дикальцийсиликатгидрат. Механическая прочность такой фазы составляет приблизительно 10% от прочности тоберморита. Именно такая реакция является главной причиной падения прочности портландцемента при высокой температуре. Эта реакция всегда протекает при температурах, превышающих приблизительно 120оС, когда присутствует избыток извести. С целью предотвращения возможности протекания реакций такого типа избыток извести необходимо удалить регулированием величины соотношения C/S.
На практике это можно сделать добавлением в цементную смесь кремневой кислоты, SiO2 (кремнезема). При температуре в интервале 110-150оС идеальными является отношение C/S, равное 0,83, которое соответствует составу тоберморита. При температуре выше 150оС образуется ксонотлит, а величина отношения C/S для этой фазы равна 1,0. В ходе различных реакций превращения образуются новые кристаллы. Такая перекристаллизация оказывает действие на микроструктуру и приводит к изменению прочностных свойств, но она также воздействует на макроструктуру и приводит к изменению проницаемости. Падение прочности часто сопровождается значительным повышением проницаемости цемента. Такая проницаемость способна обусловить невозможность изолирования в скважине одной зоны от другой, цемент подвергается химическому действию и теряется его способность защищать обсадные трубы от коррозии.
Микрокремнезем представляет собой кремнеземную пыль, которую собирают из печей для плавления феррокремнезема. Такая пыль состоит из очень мелких (средний размер 0,1-0,2 мкм) аморфных частиц, которые поступают на рынок в виде стойких суспензий. Эти суспензии могут быть также приготовлены с использованием обычных диспергаторов, выпускаемых фирмами, которые поставляют производителям цемента вспомогательные продукты, однако микрокремнезем можно также диспергировать без диспергатора как в кислой, так и в щелочной среде. Теоретически микрокремнеземные суспензии обладают свойствами, которые представляют интерес в связи со свойствами целевого цемента.
Размеры частиц представляют интерес в отношении снижения потерь текучей среды и механической стойкости цементного шлама. По этой причине было проведено несколько экспериментов с добавлением микрокремнезема в гидравлический цемент.
Подбирали концентрированные цементные смеси с плотностями ρ 1,9-3,5 г/см3 и добавляли в них 35% микрокремнезема от веса цемента. Для достижения максимальных плотностей в качестве утяжеляющего компонента добавляли гематит. Эксперименты с потерей текучей среды проводили с различными количествами добавляемого микрокремнезема (15-35%), а также проводили эксперименты с содержанием до 44% В смесях с 35-44% микрокремнезема и ρ 1,9 г/см3 содержание воды составляло 31-35% в пересчете на количество сухого вещества.
Температура, при которой проводили эксперименты, 50, 70, 90, 120 и 143оС. Испытания на прочность проводили при температуре 170 и 210оС. Помимо реологии и времени загущения определяли потери за счет фильтрования, механическую прочность и проницаемость. Проверке подвергали ограниченное число диспергаторов и замедлителей процесса схватывания. При этом не применяли ускорители (за исключением морской воды) и агенты, предотвращающие потери текучей среды.
В сравнительных экспериментах использовали процедуру смешения для цементных шламов без добавления микрокремнезема, которую осуществляли в соответствии со спецификацией 10 АР1. В соответствии с этой процедурой в контейнер сначала заливали воду, после чего при перемешивании (1400 + 200 об/мин) добавляли химические вещества. Наконец, в течение 15 с добавляли цемент и скорость перемешивания в течение 35 с повышали до 12000 + 500 об/мин.
В случае цементных смесей высокой плотности и добавления больших количеств микрокремнезема невозможно осуществлять эту процедуру смешения. Было установлено, что при добавлении приблизительно 10% цемента в смеси, основанной на микрокремнеземе и цементе при соотношении 35/100, в смесь микрокремнезема с водой система полностью флокулирует (является твердой, как тесто). Если добавление цемента при интенсивном перемешивании продолжать, система вновь диспергируется. Однако было установлено, что проблем, связанных с флокуляцией, можно избежать, если перед добавлением микрокремнезема добавить примерно 10% цемента, а затем ввести остаток цемента.
Реологию измеряют в вискозиметре Фанна в соответствии со спецификацией 10 АР1. Максимальная температура во время реологических измерений (не НРПТ) составляет 90оС, реологические измерения для цементных смесей, приготовленных при температурном интервале 90-143оС, проводят при температуре 90оС.
Потери текучей среды измеряют в фильтровальном сосуде НРПТ в соответствии со спецификацией 10 АР1, однако как в случае реологических измерений, потери текучей среды измеряют при максимальной температуре 90оС.
Время загущения измеряют в консистометре НРПТ в соответствии со спецификацией 10 АР1.
Измерения прочности при сжатии проводят двумя методами. Прочность измеряют в соответствии со спецификацией 10 АР1. Затем прочность при сжатии измеряют разрушением цементных кубиков размерами 2 х 2 дюйма (50,8 х 50,8 мм) в прессе после выдержки. Прочность при сжатии измеряют также в ультразвуковом цементном анализаторе (УЦА). Осуществление такого метода дает возможность производить непрерывные измерения при фактических температуре и давлении в отличие от камер выдержки, где измерение прочности при сжатии является единственным измерением, проводимым при комнатной температуре (SPE 9283).
Измерения проницаемости.
Проницаемость измеряли в воздушном пермеаметре (категория N 112, фирма "Кор лаборатори инк").
Удельную проницаемость образца сердечника можно определить воздействием на этот образец определенного давления газа с последующим измерением объемной скорости газового потока. Степень проницаемости определяют в единицах "дарси". Проницаемость образца составляет 1 Д, когда несжимаемая текучая среда вязкостью 1 сП проходит через образец с площадью поперечного сечения 1 см2 со скоростью 2 см3/с при перепаде давлений потоков 1 атм. Проницаемость рассчитывают по закону Дарси
Kg=
Figure 00000008
, где Кд газопроницаемость, мД;
qa объемная скорость потока воздуха, см3/с;
L длина образца сердечника, см;
А площадь поперечного сечения, мм2;
С перепад давления между давлением потока внутри и давлением потока, вытекающего из образца (принимается в расчет вязкость воздуха).
Химические агенты:
Продукт EMSAC 460S Микрокремнеземный шлам, 50%-ная суспензия
(Элкем Бремангер Смелтеверн), 50,91 и соответствует
33%-ному добавлению микрокремнезема
Д 31LN Диспергатор (ВГ)
Веллсан Q 70 Диспергатор (Элкем)
Д-604 Диспергатор (Доуэлл)
R-12L Замедлитель процесса схватывания (ВГ)
Д 110 Замедлитель процесса схватывания (ВГ)
Гипс Дигатрад сульфата кальция (Анчор)
Морская вода Ускоритель
Гематит Утяжеляющий компонент (Халлибуртон)
Стальные сферы Утяжеляющий компонент (Авеста Ниби Паудер АВ)
В табл. 2-6 приведены результаты измерений реологии, потерь текучей среды, времени сгущения и прочности при сжатии при температуре 50, 70, 90, 120 и 143оС для различных цементных смесей.
Результаты, приведенные в этих таблицах, показывают возможность приготовления цементного шлака (ρ= 1,9 г/см3) с добавлением 35% микрокремнезема, который сообщает приемлемые реологию, время сгущения, потери текучей среды, стойкость и прочность при сжатии при температуре в интервале 50-120оС. Предел текучести (ПТ) остается положительным также в том случае, когда пластическая вязкость низка, а свойства потерь за счет фильтрования при относительно высоком пределе текучести оказываются наиболее удовлетворительными (ПФ менее 10мл/30 мин). Это дает шлам со стойкими механическими свойствами. Время сгущения можно варьировать при одновременном сохранении очень высокой кратковременной прочности (24 ч, примерно 10000 фунт/дюйм2, 703 кг/см2).
Приведенные в табл. 6 результаты при температуре 143оС также показывают, что с помощью обычных добавок могут быть достигнуты приемлемые значения для потерь текучей среды и времени сгущения. Однако измерение плотности в зависимости от времени показывает, что стойкость микрокремнеземной смеси 1 очень высока в сравнении с этим показателем для обычных смесей 2,3. Состав этих смесей приведен в табл. 7. Эта хорошая стабильность подтверждается пределом текучести в табл. 6.
При температуре 143оС скорость реакции для системы является другой и прочность нарастает медленнее приблизительно от 1200 фунт/дюйм2, 85 кг/см2, по истечении 12 ч до более 10000 фунт/дюйм2, 703 кг/см2, по истечении 8 дней и ночей. Для регулирования времени сгущения необходимо использовать замедлитель процесса схватывания. Однако присутствие замедлителя процесса схватывания замедляет высвобождение окиси кальция в цементе, вследствие чего количество свободной окиси кальция оказывается слишком малым, чтобы образовать те фазы, которые характеризуются высокой прочностью и низкой проницаемостью. Добавление гипса, который является ускорителем высвобождения окиси кальция, позволяет частично компенсировать ее недостаток, благодаря чему достигается удвоение прочности по истечении 12 ч.
Точность измерений проницаемости составляет 0,01 мД.
Процесс нарастания прочности протекает в течение 8 дн, причем в период между 2-м и 8-м дн достигается троекратное возрастание прочности.
У смесей без кремнезема прочность при сжатии снижается до 17% от максимальной прочности, тогда как добавление 35% кремнезема обеспечивает сохранение прочности в течение всего периода.
Добавление микрокремнезема позволяет достичь более высокой прочности при сжатии, чем добавление кварцевого песка. При низких температурах эта разница прочности при сжатии оказывается еще более существенной.
В табл. 8 приведены результаты измерений проницаемости для различных смесей при температуре 120 и 143оС. Из таблицы видно, что по истечении 2 дн эта проницаемость является низкой для всех смесей.
При температурах свыше 200оС может образоваться трускоттит, в результате чего нарастание кратковременной прочности оказывается также большим, чем при температуре 143оС. Это проиллюстрировано в табл. 9, где приведена 24-часовая прочность при температуре 210оС для смеси и 35% микрокремнезема с цементом и замедлителем процесса схватывания совместно с гипсом и без него.
Из табл. 10 очевидно, что количество добавляемого микрокремнезема можно увеличить до 44%
Степень диспергирования мелких частиц микрокремнезема имеет жизненно важное значение для борьбы с потерями текучей среды.
Были также проведены эксперименты с цементными смесями плотностью 2,2 г/см3 (тяжелые цементы). Полученные результаты сведены в табл. 11. Смеси содержат 35% микрокремнезема, количество воды в пересчете на вес сухого вещества составляет 23,4% В качестве утяжеляющего компонента в составе этих смесей используют гематит. Для тяжелых цементов правомерно также использовать те же достоинства, которые описаны для цементных шламов плотностью 1,9 г/см3. Реологические свойства и стабильность тяжелых цементов являются исключительно хорошими в сравнении с соответствующими свойствами "ординарных" смесей, для которых именно реология является одной из основных проблем. По истечении 7 дней прочность при сжатии составляет 17000 фунт/дюйм2, 1195 кг/см2.
В табл. 12 приведены результаты экспериментов, которые были проведены с цементной смесью плотностью 2,4 г/см3. Воду добавляли в количестве 17,8% в пересчете на общее количество сухого вещества. При этом использован более концентрированный (55%-ный) раствор продукта EMSAC.
Можно также приготовить цементные шламы с плотностями до ρ= 3,5 г/см3 путем замены гематита утяжеляющим компонентом более высокого удельного веса. Эти величины плотности могут быть достигнуты, например, с использованием мелких стальных шариков.
В табл. 13 приведены результаты экспериментов с добавлением в цемент стальных шариков.
В соответствии с настоящим изобретением обеспечивается возможность приготовления тяжелого цементного шлама, у которого предотвращается снижение прочности при высоких температурах. В цементную смесь с ρ 1,9-3,5 г/см3 можно добавлять 35-44% кремнезема. Утяжеляющие компоненты добавляют в смеси с высокой плотностью.
Микрокремнезем выполняет функции средства предотвращения потерь текучей среды, поэтому шламы с удовлетворительными свойствами потерь за счет фильтрования (потери за счет фильтрования < 100 мл/30 мин) могут быть приготовлены без добавления других агентов.
Добавление микрокремния также оказывает улучшающее действие на механическую стабильность шлама и предотвращает выпадение в осадок возможно добавляемых утяжеляющих компонентов. В результате получают цементы с очень высокой прочностью при сжатии (например, по истечении 7 дн 17000 фунт/дюйм2, 1195 кг/см2 при ρ= 2,2 г/см3).
Цемент высокой плотности может быть также использован в качестве цементной пробки для инициирования наклонного бурения. Такой цемент может быть также использован в других условиях цементирования, где необходима прочность скважины независимо от температуры. Его можно применять для геотермических скважин.

Claims (5)

1. Тампонажный раствор для цементирования газонефтяных скважин, содержащий тампонажный цемент, кремнеземсодержащую добавку и воду, отличающийся тем, что, с целью повышения эффективности его применения, улучшения структурно-механических и реологических свойств при плотности 1,9 - 3,5 г/см3, в качестве кремнеземсодержащей добавки он содержит микрокремнезем - отход производства феррокремнезема при следующем соотношении ингредиентов, мас. ч.:
Тампонажный цемент - 100
Микрокремнезем - отход производства феррокремнезема - 35 - 44
а воду он содержит в количестве, обеспечивающем водосмесевое отношение 0,15 - 0,40, при этом состав может дополнительно содержать утяжелитель в количестве 0 - 100 мас. ч. и гипс в количестве 0 - 15 мас. ч.
2. Раствор по п. 1, отличающийся тем, что он дополнительно содержит диспергатор и/или регулятор сроков схватывания.
3. Способ приготовления тампонажного раствора для цементирования газонефтяных скважин, включающий смешение тампонажного цемента с кремнеземсодержащей добавкой и водой, отличающийся тем, что предварительно в воду вводят 10% от общего количества тампонажного цемента с последующим введением последовательно кремнеземсодержащей добавки в количестве 0 - 100%, тяжелителя - 35 - 44% и гипса - 0 - 15% от общей массы цемента и остальную часть цемента, при этом в качестве кремнеземсодержащей добавки используют микрокремнезем - отход производства феррокремнезема, а воду используют в количестве, обеспечивающем заданную плотность тампонажного раствора.
4. Способ по п.3, отличающийся тем, что микрокремнезем предварительно смешивают с водой.
5. Способ по п.3, отличающийся тем, что перед введением цемента в воде растворяют диспергатор и/или регулятор срока схватывания.
SU4356939 1987-11-09 1988-11-04 Тампонажный раствор для цементирования газонефтяных скважин и способ его приготовления RU2057250C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO874653A NO165021B (no) 1987-11-09 1987-11-09 Hydraulisk tungvekts-sementoppslemming spesielt til bruk ved sementering av olje/gassbroenner og fremgangsmaate for fremstilling av oppslemmingen.
NO874653 1987-11-09

Publications (1)

Publication Number Publication Date
RU2057250C1 true RU2057250C1 (ru) 1996-03-27

Family

ID=19890380

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4356939 RU2057250C1 (ru) 1987-11-09 1988-11-04 Тампонажный раствор для цементирования газонефтяных скважин и способ его приготовления

Country Status (9)

Country Link
US (1) US5158613A (ru)
CN (1) CN1035814A (ru)
BR (1) BR8805818A (ru)
DE (1) DE3838029A1 (ru)
GB (1) GB2212150B (ru)
IT (1) IT1229864B (ru)
NL (1) NL8802737A (ru)
NO (1) NO165021B (ru)
RU (1) RU2057250C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236099B2 (en) 2006-06-29 2012-08-07 Schlumberger Technology Corporation Cement slurry with low water to cement ratio
RU2513220C2 (ru) * 2012-07-25 2014-04-20 Закрытое акционерное общество "ХИМЕКО-ГАНГ" Высокопроникающий тампонажный раствор

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO165673C (no) * 1987-11-16 1991-03-20 Elkem As Hydraulisk sementoppslemming.
GB8904273D0 (en) * 1989-02-24 1989-04-12 Sandoz Ltd Improvements in or relating to chemical compounds
CH681541A5 (ru) * 1990-03-03 1993-04-15 Sandoz Ag
FR2673140B1 (fr) * 1991-02-21 1993-07-16 Total Petroles Procede pour le melange a sec, sous forme homogene, de ciment et de fumees de silice.
CA2177298C (en) * 1996-05-24 2009-04-07 Henghu Sun Systematic method for making shotcrete and the like cementitious compositions and such compositions
US6230804B1 (en) * 1997-12-19 2001-05-15 Bj Services Company Stress resistant cement compositions and methods for using same
CA2316059A1 (en) 1999-08-24 2001-02-24 Virgilio C. Go Boncan Methods and compositions for use in cementing in cold environments
CA2318703A1 (en) 1999-09-16 2001-03-16 Bj Services Company Compositions and methods for cementing using elastic particles
US6357968B1 (en) * 2000-01-12 2002-03-19 Sandia Corporation Method and apparatus for constructing an underground barrier wall structure
US6729405B2 (en) * 2001-02-15 2004-05-04 Bj Services Company High temperature flexible cementing compositions and methods for using same
GB2389578A (en) * 2002-06-14 2003-12-17 Schlumberger Holdings High temperature cement compositions for use downhole
WO2003068708A1 (en) 2002-02-16 2003-08-21 Services Petroliers Schlumberger Cement compositions for high temperature applications
US6644405B2 (en) 2002-03-21 2003-11-11 Halliburton Energy Services, Inc. Storable water-microsphere suspensions for use in well cements and methods
US20030181542A1 (en) * 2002-03-21 2003-09-25 Vijn Jan Pieter Storable water-silica suspensions and methods
NO324113B1 (no) * 2002-11-08 2007-08-27 West Lab Services As Betongblanding for anvendelse i olje- og gassbronner
GB2407567A (en) * 2003-10-27 2005-05-04 Schlumberger Holdings High temperature resistant cement
US6983800B2 (en) * 2003-10-29 2006-01-10 Halliburton Energy Services, Inc. Methods, cement compositions and oil suspensions of powder
US7156174B2 (en) 2004-01-30 2007-01-02 Halliburton Energy Services, Inc. Contained micro-particles for use in well bore operations
US7004256B1 (en) * 2004-10-11 2006-02-28 Halliburton Energy Services, Inc. Set retarder compositions, cement compositions, and associated methods
CA2565517C (en) * 2005-10-26 2016-06-21 Whitemud Resources Inc. Method of producing metakaolin
US9233874B2 (en) * 2010-07-21 2016-01-12 Halliburton Energy Services, Inc. Cement compositions with a high-density additive of silicon carbide or sintered bauxite
EP2537908B1 (en) * 2010-12-18 2015-07-29 Services Pétroliers Schlumberger Compositions and methods for well completions
US20140209387A1 (en) * 2013-01-29 2014-07-31 Halliburton Energy Services, Inc. Wellbore Fluids Comprising Mineral Particles and Methods Relating Thereto
CN107880862B (zh) * 2017-11-07 2018-08-10 西南石油大学 一种提高承压能力的封堵剂及其制备方法
US11499084B2 (en) * 2018-12-03 2022-11-15 Halliburton Energy Services, Inc. Expansion agents for cement compositions
CN112276102A (zh) * 2019-12-02 2021-01-29 唐山龙源节能科技有限公司 球形金属矿粉及其制备方法与应用以及水泥浆组合物
CN112939527B (zh) * 2021-01-15 2022-12-02 中国石油天然气集团有限公司 一种固井用超高强度韧性水泥浆体系及其制备与应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3145774A (en) * 1963-01-17 1964-08-25 Socony Mobil Oil Co Inc Cement for wells
AT312490B (de) * 1971-01-05 1974-01-10 Sika Ag Zementmischung mit hoher Festigkeit
GB1537501A (en) * 1974-12-28 1978-12-29 Matsushita Electric Works Ltd Compositions for forming hardened cement products and process for producing hardened cement products
RO72773B (ro) * 1976-07-09 1984-03-31 Aksjeselskapet Norcem Procedeu de obtinere a unor compozitii de betoane rezistente la coroziune
JPS53127531A (en) * 1977-03-28 1978-11-07 Kanebo Ltd Light cement composition and method of its production
US4234344A (en) * 1979-05-18 1980-11-18 Halliburton Company Lightweight cement and method of cementing therewith
NO148995C (no) * 1979-08-16 1986-06-12 Elkem As Fremgangsmaate for fremstilling av sementslurry med lav egenvekt for bruk ved sementering av olje- og gassbroenner.
JPS58199780A (ja) * 1982-05-14 1983-11-21 三井鉱山株式会社 耐熱コンクリ−トの施工方法
AT384206B (de) * 1982-12-07 1987-10-12 Elkem As Zusatz fuer zement oder moertel
NO153566B (no) * 1982-12-07 1986-01-06 Elkem As Tilsetningsblanding for betong og moertel, fremgangsmaate til fremstilling av blandingen, samt anvendelse derav.
DE3246387C2 (de) * 1982-12-15 1986-10-16 Bilfinger + Berger Bauaktiengesellschaft, 6800 Mannheim Verwendung von hochdisperser Kieselsäure zur Erhöhung der Erosionsfestigkeit von unter Wasser einzubringendem frischem Filterbeton
NO158499C (no) * 1985-09-03 1988-09-21 Elkem As Hydraulisk sementoppslemming.
ZA873180B (en) * 1986-05-13 1987-10-28 W.R. Grace & Co. Microsilica slurries and method of preparation
NO165673C (no) * 1987-11-16 1991-03-20 Elkem As Hydraulisk sementoppslemming.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Данющевский В.С. Справочное руководство по тампонажным материалам. М.: Недра, 1987, с 135 - 138. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236099B2 (en) 2006-06-29 2012-08-07 Schlumberger Technology Corporation Cement slurry with low water to cement ratio
US8235115B2 (en) 2006-06-29 2012-08-07 Schlumberger Technology Corporation Cement slurry with low water-to-cement ratio
RU2513220C2 (ru) * 2012-07-25 2014-04-20 Закрытое акционерное общество "ХИМЕКО-ГАНГ" Высокопроникающий тампонажный раствор

Also Published As

Publication number Publication date
GB2212150B (en) 1992-04-15
NL8802737A (nl) 1989-06-01
CN1035814A (zh) 1989-09-27
NO874653L (no) 1989-05-10
IT1229864B (it) 1991-09-13
BR8805818A (pt) 1989-08-01
NO874653D0 (no) 1987-11-09
IT8822564A0 (it) 1988-11-09
GB2212150A (en) 1989-07-19
DE3838029C2 (ru) 1991-06-13
NO165021B (no) 1990-09-03
DE3838029A1 (de) 1989-05-18
GB8826063D0 (en) 1988-12-14
US5158613A (en) 1992-10-27

Similar Documents

Publication Publication Date Title
RU2057250C1 (ru) Тампонажный раствор для цементирования газонефтяных скважин и способ его приготовления
US7393814B2 (en) Methods, cement compositions and oil suspensions of powder
EP1213270B1 (en) Well cement fluid loss control additive
US7285166B2 (en) Zeolite-containing cement composition
US7332026B2 (en) Cementitious compositions containing interground cement clinker and zeolite
CA2646172C (en) Cements for use across formations containing gas hydrates
RU2599744C1 (ru) Способная к схватыванию композиция, содержащая невспученный перлит, и способ цементирования в подземных пластах
RU2433970C2 (ru) Цементирующая композиция, содержащая цементную пыль, стекловидный глинистый сланец, цеолит и/или аморфный кремнезем, использующие заполнение относительного объема, и связанные способы
US5263542A (en) Set retarded ultra fine cement compositions and methods
US10793764B2 (en) Low density cementitious compositions for use at low and high temperatures
EP0659702A1 (en) Method of cementing a subterranean zone
WO2015130284A1 (en) Passivated cement accelerator
EP2907862A1 (en) Extended settable compositions comprising cement kiln dust and associated methods
RU2625408C2 (ru) Использование метилгидроксиэтилцеллюлозы в качестве добавки к цементу
EP1348677A2 (en) Storable water-silica suspensions for use in well cements
WO2008001065A1 (en) Improved settable compositions free of portland cement and associated methods of use
CN111040747B (zh) 长水平段水平井固井可固化前置液及其应用
RU2781004C1 (ru) Тампонажная смесь
RU2151271C1 (ru) Облегченный тампонажный раствор
RU2807721C1 (ru) Тампонажная смесь
RU2151267C1 (ru) Облегченный тампонажный раствор
Otaraku et al. Effect of locally synthesized cement retarder on the setting time and rheological properties of cement slurry