PL83139B1 - - Google Patents

Download PDF

Info

Publication number
PL83139B1
PL83139B1 PL1971147057A PL14705771A PL83139B1 PL 83139 B1 PL83139 B1 PL 83139B1 PL 1971147057 A PL1971147057 A PL 1971147057A PL 14705771 A PL14705771 A PL 14705771A PL 83139 B1 PL83139 B1 PL 83139B1
Authority
PL
Poland
Prior art keywords
steel
additives
aluminum
grinding
niobium
Prior art date
Application number
PL1971147057A
Other languages
Polish (pl)
Original Assignee
British Railways Board
British Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Railways Board, British Steel Corp filed Critical British Railways Board
Publication of PL83139B1 publication Critical patent/PL83139B1/pl

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B5/00Rails; Guard rails; Distance-keeping means for them
    • E01B5/02Rails
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Heat Treatment Of Steel (AREA)

Description

Uprawniony z patentu: British Steel Corporation, Londyn (Wielka Bry¬ tania), British Railways Board, Londyn (Wielka Brytamia) Stal stopowa, zwlaszcza do wytwarzania szyn kolejowych Przedmiotem wynalazku jest stal stopowa, zwla¬ szcza do wytwarzania szyn kolejowych.Znane stale stopowe do wytwarzania szyn ko¬ lejowych zawieraja przewaznie okolo 0,5% wegla oraz okolo 1% manganu. Przed montazem szyny ze stali walcowanej sa wzmacniane i obrabiane.Typowe rodzaje takich szyn opisane sa miedzy innymii w normach brytyjskich, francusko/eh i amerykanskich. Zgodnie z warunkami tam poda¬ nymi, szyny kolejowe (posiadaja odpowiednia wy¬ trzymalosc na rozciaganie (nie mniejsza niz 69 KG/mm2) i odpornosc na zuzycie. Jednakze, struktura tej stali jest struktura gruboziarnista, perlityczna odznaczajaca sie bardzo mala wytrzy¬ maloscia na uderzenia w temperaturze pokojowej (1,39 KGm) wedlug próby Charpy'ego próbki na¬ cietej 2 mm w ksztalcie litery „V". Stal zwykle ma pierwotnie ziarna austenityczne o wielkosci okolo A.S.T.M.3 oraz ferrytyczne o wielkosci okolo A.S.T.M.4.W ciezkich warunkach pracy, wystepowac mo¬ ga w szynie pekniecia wywolane zmeczeniem ma¬ terialu, zwlaszcza przy otworach na sruby lub w srodku szyny, oraz pekniecia spowodowane wada¬ mi materialu.Gelem wynalazku jest opracowanie skladu stali stopowej, zwlaszcza do wytwarzania szyn, która nie ma wad stali znanych ze stanu techniki.Cel wynalazku zostal osiagniety przez to, ze stal zawiera co najmniej jeden z dodatków utwardza¬ lo 15 30 jacych, takich jak mangan w ilosci od 0,5 do 2,5%, krzem od 0 do 1,5%, chrom od 0 do 1,5%, nikiel od 0 do 1,0% i molibden od 0 do 0,6% w ilosci calkowitej nie przekraczajacej 5%, co naj¬ mniej jeden z nastepujacych dodatków rozdrab¬ niajacych, takich jak aluminium od 0,015 do 0,1%, wanad od 0,05 do 0,2% niob od 0,01 do 0,1% ty¬ tan od 0,015 do 0,3%, cyrkon od 0,15 do 0,3% oraz azot w ilosci od 0,003 do 0,030% zasadniczo w stosunku stechiometrycznym do ilosci dodatków rozdrabniajacych oraz zanieczyszczenia. Stal pod¬ dawana jest albo normalizowaniu albo kontrolo¬ wanemu walcowaniu.Zgodnie z wynalazkiem stal stopowa do wytwa¬ rzania szyn kolejowych zawiera dodatki rozdrab¬ niajace oraz dodatki utwardzajace, przy czym stal ta poddawana jest zarówno normalizowaniu lub walcowaniu kontrolowanemu dla uzyskania struk¬ tury drobnoziarnistej o czasteczkach ferrytu mniej¬ szych niz A.S.T.M.8, a korzystnie mniejszej niz A.S.T.M.9.Uzyty powyzej termin normalizowania stanowi proces obróbki cieplnej, w którym stal jest pod¬ grzewania do temperatury powyzej jej górnego punktu krytycznego, a nastepnie jest ochladzana.Górny punkt krytyczny tej stali wynosi okolo 850°C. Termin kontrolowany odnosi sie do walco¬ wania stali przeprowadzonego w temperaturze 700°C do 900°C, zamiast w temperaturze okolo 1000°C normalnego walcowania koncowego. 831393 83139 4 Dodatkami rozdrabniajacymi sa jeden lub kilka z podanych skladników, takich jak aluminium, niob, wanad, tyttan i cyrkon, korzystnie w propor¬ cji wagowej (odnoszacej sie od ogólnego ciezaru stali) 0,015% — 0,1% aluminium, 0,01, — 0,1% niobu lub 0,05% — 0,2% wanadu.Dodatkami Utwardzajacymi sa: krzem, mangan, chrom, iniMel i/lub molibden. Zawartosc krzemu wynosi w stosunku do calkowitego ciezaru stali okolo 0,05% — 1,5%, chromu od 0,25% do 1,5% oraz manganu od 0,5% do 1,5%.Zawartosc azotu wynosi zwykle okolo 0,003 do 0,030% korzystnie maksymalnie 0,025% wagowo w stosunku* d^cfclafu* oaB^owitego stali.Stal ma szyny kolejowe pa zwykle strukture au¬ stenityczna o wielkosci zi£rn okolo 3 wedlug skali A.S.TJ^; ^uk^fterfytjKi^na 'o ziarnach okolo 4 we¬ dlug As.t\m, ¦¦'*«¦•¦¦¦; Wedlug wynalazku w procesie walcowania nor¬ malizujacego lub sterowanego wytwarzana jest stal poczatkowo o strukturze austenityczno-ferrytycznej o wielkosci ziarn austenitu mniejszych niz 6 we¬ dlug ASTM, oraz ferrytu miniejsizydh niz 8 wedlug ASTM. Stosowanie dodatków rozdrabniajacych w polaczeniu z cieplna obróbka normalizujaca powo¬ duje rozdrobnienie ziaren ferrytu do wielkosci miniejszej oiz 10 lub nawet 12 wedlug ASTM.Zgodnie z wynalazkiem mozliwe jest uzyskanie ulepszonej stali, która jest bardziej odporna na pekniecia od stali obecnie stosowanej, zwlaszcza w niskich temperaturach, na przyklad ponizej 15°C przy równoczesnej wytrzymalosci na rozciaganie, zwlaszcza przy stosowaniu dodatków utwardzaja¬ cych, oraz przy zachowaniu odpornosci na sciera¬ nie, co jest niezwykle istotne dla stali na szyny kolejowe.Okazalo sie, ze zwiekszona odpornosc na pek¬ niecia, moze byc uzyskana przez zastosowanie do¬ datków rozdrabniajacych strukture stali w pola¬ czeniu z cieplna obróbka normalizujaca jak i kon¬ trolowanym walcowaniem.Wedlug wynalazku stal na szyny kolejowe za¬ wiera wagowo 0,2 — 0,85% wegla, maksimum 0,06% siarki, maksimum 0,06% fosforu i co naj¬ mniej jeden z ponizej podanych dodatków utwar¬ dzajacych, takich jak mangan w ilosci 0,5 — 2,5%, krzem 0 — 1,5%, chrom 0 — 1,5%, nikiel 0 — 1,0% i molibden 0 — 0,6%, przy czym calkowita ilosc dodatków utwardzajacych nie moze przekra¬ czac 5%, oraz co najmniej jeden z nizej wymie¬ nionych dodatków rozdrabniajacych, takich jak a- luminium w ilosci 0,015 — 0,1%, wanad 0,05 — 0,2%, niob 0,01 — 0,1% tytan 0,15 — 0,3% i cyr¬ kon 0,15 — 0,3%, które wraz z azotem w ilosci okolo 0,003 — 0,030% sa w zasadzie w proporcji stechiometrycznej do ilosci dodatków rozdrabnia¬ jacych i pozostaja w równowadze z zelazem i za¬ nieczyszczeniami. Stal na szyny kolejowe podda¬ wana normalizowaniu lub kontrolowanemu walco¬ waniu pozwala na uzyskanie struktury ziarnistej, ferrytycznej o wielkosci ziarna mniejszej od 8 w skali ASTM.Przykladowo, stopowa stal weglowa na szyny kolejowe zawiera wegiel w ilosci od 0,2 do 0,6°'.» oraz dodatki rozdrabniajace aluminium, wanad i/lub niob co pozwala na uzyskanie ferrytycznej struk¬ tury stali o ziarnach mniejszych niz 9 w skali ASTM.Stal wedlug wynalazku do wytwarzania szyn ko¬ lejowych ale zgodna z normami brytyjskimi win¬ na zawierac przykladowo wegiel w ilosci 0,4 — 0,6%, mangan 0,95 — 1,25%, siarke maksimum 0,06%, fosfor maksimum 0,06%, azot 0,003 — 10 0,030%, krzem 0,08 — 0,20% oraz aluminium 0,015 — 0,1% lub wanad 0,05 — 0,2% lub niob 0,01 — 0,1%.Zamiast wanadu, uzyte moze byc aluminium, wraz z niobem w ilosci 0,015 — 0,10% aluminium i 0,01 — 0,10% niobu w przypakdu, gdy stal ta jest poddawana kontrolowanemu walcowaniu.Podane powyzej stale, zawierajace dodatki, roz¬ drabniajace ich strukture, dodawane do stali o skladzie podanym w normie brytyjskiej BS 11.1959 oraz poddawane normalizowaniu lub kontrolowa¬ nemu walcowaniu, posiadaja odpornosc na ude¬ rzenia i pekniecia. Dalsze zwiekszenie odpornosci na uderzenia uzyskac mozna zgodnie z wynalaz¬ kiem przez zmniejszenie zawartosci wegla w stali, przykladowo od 0,28 — 0,39% wagowo. Na przy¬ klad, stal o zmniejszonej zawartosci wegla za¬ wiera wagowo wegiel w ilosci 0,28 — 0,39%, mangan 1,2 — 1,6%, siarke maksimum 0,06% fos¬ for maksimum 0,06%, azot 0,003 — 0,030%, krzem maksimum 0,35% oraz aluminium 0,015 — 0,10% lub wanad 0,05 — 0,20%.Najlepsze wlasnosci 'wykazywala stal o wartosci 0,02 — 0,06% wagowych aluminium, lub 0,10 — _ 0,15% wanadu i 0,010 — 0,15% azotu, która byla 35 poddawana normalizowaniu, lub zawierajaca 0,015 — 0,10% aluminium i dodatkowo 0,01 — 0,1% niobu, poddawana kontrolowanemu walcowaniu.Rozdrabnianie Stoukitury stali jak przedstawiono 40 powyzej izwlaszcza w polaczeniu z niska zawartos¬ cia perlitu, zwieksza odpornosc szyn na peknie¬ cia. Zmniejszanie zawartosci perlitu oraz zwiek¬ szenie zawartosci ferrytu uzyskuje sie dzieki mniej¬ szej zawartosci wegla. Powoduje to, niestety cza- 45 sami, zmniejszenie wytrzymalosci stali na rozcia¬ ganie i scieranie. Jednakze, zgodnie z wynalazkiem, wytrzymalosc na rozciaganie oraz odpornosc na scieranie moze byc zwiekszona przez wzmocnienie struktury fazy ferrytycznej przez utwardzanie roz- tworu stalego, to jest przez dodanie jednego lub kilku dodatków utwardzajacych, jak na przyklad krzemu, manganu, chromu, niklu lub molibdenu.Stal na szyny kolejowe wedlug wynalazku za¬ wiera wegiel w ilosci 0,28 — 0,39% oraz jako do- 55 datek utwardzajacy 1,2 — 2,5% wagowo manga¬ nu i/lub 0,8 — 1,2% wagowo krzemu. W stali znajdowac sie moga równiez inne dodatki utwar¬ dzajace, jak chrom, nikiel i molibden. Dodatkami rozdrabniajacymi strukture stali sa aluminium lub 60 wanad w przypadku, gdy stal ta jest noranaliizo- wana lub aluminium i niob, gdy stal jest walco¬ wana.Ponizej przedstawiono przykladowo procesy tech¬ nologiczne, w wyniku kltórych wytwarzana jest sital 65 na szyny kolejowe.83 139 6 Otrzymana stal zawierajaca przykladowo 0,2 — 0,85% wegla, minimum 0,5% manganu, maksimum 0,06% fosforu, maksimum 0,06% siarki oraz 0,003— 0,025% azotu oraz inne przypadkowe zanieczysz¬ czenia spuszczono do kadzi gdzie wprowadzono do¬ datki rozdrabniajace. Temperatura plynnej stali wynosi okolo 1600°C. Do stali w tym stadium mo¬ ga byc dodane równiez dodatki utwardzajace.Plynna stal odlano do wlewnic, a nastepnie po skrzepnieciu poddano jednemu z dwóch procesów walcowania w celu uksztaltowania pólfabrykatów hutniczych szyn kolejowych. W pierwszym proce¬ sie, wlewek podgrzano do temperatury okolo 1300°C, a nastepnie przewalcowano na zgniataczu do tem¬ peratury 950°C — 1050°C.Ksztaltowanie szyny dokonywane jest bezposre¬ dnio z wlewka bez posredniego podgrzewania, al¬ bo tez przewalcowany wlewek z walcowni — zgniatacza podgrzewany jest do temperatury po¬ wyzej 1300°C. W tym procesie walcowana szyna chlodzona jest do temperatury ponizej 700°C, nor¬ malizowana, to jest powtórnie ogrzewana do tem¬ peratury rzedu 850°C w celu rozdrobnienia ziarna i utworzenia osadów, które ograniczalyby rozrost ziaren, i nastepnie chlodzona w powietrzu.W drugim procesie stalowy wlewek lub kesisko z walcowni — zgniatacza chlodzone jest do co najmniej 700°C, a korzystnie do 500°C i nastepnie podgrzewane do temperatury w zakresie 1050°C do 1250°C, korzystnie do temperatury rzedu 1150°C i walcowane do chwili ostygniecia kesiska do temperatury rzedu 700°C do 900°C. Jest to tak zwane walcowanie sterowane lub kontrolowane.Powtórne podgrzewanie stali, zawierajacej dodatki rozdrabniajace ziarno, podczas walcowania pozwa¬ la na wytworzenie struktury drobnoziarnistej, po¬ dobnej do tej, jaka jest wytwarzana podczas nor¬ malizowania.Powyzsze sposoby moga byc przeprowadzane z pewnymi odmianami. Na przyklad nie dodaje sie dodatków stopowych w kadzi odlewniczej. Dodat¬ ki te wprowadzic mozna do pieca podczas wyta¬ piania stali lub w kilku porcjach do pieca, do ka¬ dzi i do wlewka. Stal wedlug wynalazku nie ko¬ niecznie musi byc odlewana w postaci wlewków.Moze byc takze wytwarzana w procesie odlewania ciaglego.W celu dokladniejszego przedstawienia wyna¬ lazku, w tablicach podane sa przyklady skladu 5 chemicznego stali oraz ich wlasnosci mechaniczne.Tablica I podaje sklad chemiczny stali oraz wy¬ miar ziarn a tablica II wlasnosci mechaniczne gotowego produktu.W przykladzie 1 wymieniona jest typowa stal 10 na szyny kolejowe (wedlug brytyjskiej normy BS 11: 1959) wytwarzana obecnie. Przyklad ten umieszczony zostal w tabeli jedynie dla porów¬ nania i nie stanowi ilustracji wynalazku. Nalezy zauwazyc niska udarnosc tej stali w porównaniu 15 z nastepnymi przykladami ilustrujacymi niniejszy wynalazek.Przyklady 2 do 10 opisuja stal na szyny kole¬ jowe wedlug wynalazku. We wszystkich przypad¬ kach zawartosc fosforu i siarki byla mniejsza od 20 0,06%, a wielkosc ziarna ferrytu byla mniejsza miz 8 w skali ASTM.Przyklady 2, 3 i 4 ilustruja typowe wyniki, ja¬ kie uzyskano po dodaniu dodatków rozdrabniaja¬ cych do typowej stali opisanej w normie brytyj- 25 skiej BS 11: 1959), i nastepnie normalizowanej i walcowanej. Przyklady 2A i 2B ilustruja doda¬ nie aluminium, przyklad 3 — wanadu, a przyklad 4 — niobu.Przyklady 5, 6, .7 i 8 ilustruja normalizowana 30 stal o dobrej udarnosci uzyskanej w wyniku mniej¬ szej zawartosci wegla a wyzszej zawartosci manga¬ nu wraz z dodatkami rozdrabniajacymi. W przy¬ kladach 5 i 6 jako dodatek rozdrabniajacy uzyto aluminium, a w przykladach 7 i 8 — wanad, w 35 przykladach 6 i 8 ponadto zwiekszono zawartosc krzemu w celu zwiekszenia odpornosci na sciera¬ nie.Przyklady 9 i 10 ilustruja stosowanie jako do¬ datków rozdrabniajacych aluminium wraz z nio- 40 bem przy czym stal wedlug tych przykladów pod¬ dana byla kontrolowanemu walcowaniu. Podana w przykladzie 9 stal ma sklad chemiczny odpo¬ wiadajacy stali znanej, przy czym dodano do tej stali dodatki rozdrabniajace, a stal podana w 45 przykladzie 10 posiada mniejsza zawartosc wegla przy wyzszej zawartosci manganu.Tablica I Przyklad nr 1 1 A B C 2 A B 3 4 5 6 A B 1 C Sklad chemiczny C% 2 0,45 0,50 0,59 0,46 0,55 0,45 0,45 0,39 0,34 0,36 0,40 Mn% 3 1,15 1,20 1,12 1,20 1,12 1,10 1,18 1,40 1,38 1,32 1,46 Si% 4 0,13 0,12 0,11 0,22 0,13 0,20 0,24 0,21 0,20 0,50 0,98 v% 5 — 0,16 — — — Al% 6 0,005 0,057 0,062 — — 0,045 0,042 0,052 0,038 N% 7 0,016 0,006 0,005 0,017 0,006 0,011 0,016 0,017 0,010 0,01'4 0,013 Nb% 8 — — — 0,048 — — Wielkosc ziaren w skali ASTM austenitu przed obróbka 9 4 3 3 8 7 10 6 10 8 9 7 ferrytu 10 14 12 13 1083139 7 8 A B C 9 10 0,35 0,30 0,33 0,36 0,46 0,36 1,43 1,47 1,31 1,43 1,15 1,47 0,21 1,28 0,90 1,00 0,17 0,33 0,15 0,14 0,10 0,19 — — — — 0,045 0,061 0,009 0,011 0,020 0,022 0,016 0,014 — — 0,048 0,050 10 9 10 9 7 7 14 13 14 12 10 9 Tablica II Przyklad nr 1 A B C 2 A B 3 4 5. 6 A B C 7 8 A B C 9 1 io Poczatkowa wytrzymalosc na rozciaganie kg/mm2 43,2 42,2 46,0 41,3 43,2 47,4 42,1 47,2 47,2 47,2 50,4 49,8 55,1 53,2 59,8 39,4 39,1 Wlasnosci mechaniczne Ostateczna wytrzymalosc na rozciaganie kg/mm2 81,0 78,7 79,1 69,9 81,3 71,7 72,3 71,2 70,9 72,4 80,0 69,3 73,4 73,7 78,7 69,3 65,8 Wydluzenie przy zerwaniu % 21,0 22,0 18,0 27,5 20,0 22,2 23,8 32,0 32,0 28,0 26,0 28,3 31,0 28,0 29,0 26,0 33,0 Zmniejszenie powierzchni ipnzekroju % 30,8 32,0 14,5 59,6 36,8 62,4 43,2 62,8 62,0 57,0 51,2 67,2 57,2 48,4 53,6 52,5 56,7 Próba udarnosci temp. 15°C KGm 0,4 0,4 0,3 1,4 3,0 0,3 3,9 4,7 4,0 2,2 5,0 3,2 3,2 2,8 1,7 3,2 2,76 KGm Temperatura przemiany izotermicznej + 120 + 130 + 120 —5 + 40 —20 + 85 —36 —42 —40 + 6 —60 —28 —30 —15 + 15 -23 | PL PL PLPatent holder: British Steel Corporation, London (Great Britain), British Railways Board, London (Great Britain). Alloy steel, especially for the production of railway rails. The subject of the invention is alloy steel, especially for the production of railway rails. for the production of railroad rails, they generally contain about 0.5% carbon and about 1% manganese. Before assembly, rolled steel rails are strengthened and machined. Typical types of such rails are described, among others, in British, French / eh and American standards. In accordance with the conditions given therein, railway rails (have adequate tensile strength (not less than 69 kg / mm 2) and wear resistance. However, the structure of this steel is coarse-grained, pearlitic, characterized by very low strength impacts at room temperature (1.39 kgm) according to Charpy's test of a 2 mm V-shaped sample. The steel usually has originally austenitic grains of about A.S.T.M.3 and ferritic grains of about A.S.T.M.4. When working, cracks may occur in the rail due to material fatigue, especially at the bolt holes or in the center of the rail, and cracks due to material defects. prior art. The object of the invention is achieved by the fact that the steel contains at least one hardening additive, such as manganese in an amount ranging from 0.5 to 2.5%, silicon from 0 to 1.5%, chromium from 0 to 1.5%, nickel from 0 to 1.0% and molybdenum from 0 to 0.6% in a total amount not exceeding 5%, at most One of the following grinding additives, such as aluminum from 0.015 to 0.1%, vanadium from 0.05 to 0.2%, niobium from 0.01 to 0.1%, titanium from 0.015 to 0.3%. %, zirconium from 0.15 to 0.3%, and nitrogen from 0.003 to 0.030% substantially stoichiometrically related to the amount of grinding additives and impurities. The steel is subjected to either normalizing or controlled rolling. According to the invention, the alloy steel for the manufacture of railroad rails contains both disintegrating and hardening additives, the steel being either normalized or controlled rolling to obtain a fine grain structure. with ferrite particles smaller than A.S.T.M.8, and preferably smaller than A.S.T.M.9. The normalization term used above is a heat treatment process in which the steel is heated to a temperature above its upper critical point and then cooled. steel is around 850 ° C. The controlled term refers to the rolling of steel carried out at a temperature of 700 ° C to 900 ° C, rather than at approximately 1000 ° C of normal final rolling. 831393 83139 4 The grinding additives are one or more of the following ingredients, such as aluminum, niobium, vanadium, titanium and zirconium, preferably in a weight ratio (based on the total weight of steel) 0.015% - 0.1% aluminum, 0, 01, - 0.1% niobium or 0.05% - 0.2% vanadium. Hardening additives are: silicon, manganese, chromium, iniMel and / or molybdenum. The content of silicon, in relation to the total weight of steel, is around 0.05% - 1.5%, chromium from 0.25% to 1.5% and manganese from 0.5% to 1.5%. The nitrogen content is usually around 0.003%. up to 0.030%, preferably a maximum of 0.025% by weight, based on the ratio of the steel. ^ uk ^ fterfytjKi ^ na 'about 4 grains along As.t \ m, ¦¦' * «¦ • ¦¦¦; According to the invention, a standardized or controlled rolling process produces a steel initially with an austenitic-ferritic structure with an austenite grain size less than 6 as per ASTM and a minisisid ferrite than 8 as per ASTM. The use of grinding additives in conjunction with the heat normalizing treatment causes the ferrite grains to be refined to a size smaller than 10 or even 12 according to ASTM. According to the invention, it is possible to obtain an improved steel that is more resistant to cracking than the steel currently used, especially at low temperatures. for example below 15 ° C with simultaneous tensile strength, especially with the use of hardening additives, and with abrasion resistance, which is extremely important for rail steel. , can be obtained by the use of additives that refine the structure of the steel in combination with heat normalizing and controlled rolling. According to the invention, the steel for railroad rails contains 0.2-0.85% by weight of carbon, maximum 0, 06% sulfur, a maximum of 0.06% phosphorus, and at least one of the following hardening additives, such as manganese and losci 0.5 - 2.5%, silicon 0 - 1.5%, chromium 0 - 1.5%, nickel 0 - 1.0% and molybdenum 0 - 0.6%, with the total amount of hardening additives not allowed more than 5%, and at least one of the disintegrating additives listed below, such as 0.015-0.1% aluminum, 0.05-0.2% vanadium, 0.01-0.1% niobium. % titanium 0.15 - 0.3% and zircon 0.15 - 0.3%, which, together with nitrogen in an amount of about 0.003 - 0.030%, are essentially stoichiometric to the amount of grinding additives and remain in equilibrium with iron and impurities. Rail steels subjected to normalization or controlled rolling produces a ferritic grain structure with a grain size less than 8 on the ASTM scale. For example, alloyed carbon steel for rail rails contains carbon in an amount ranging from 0.2 to 0.6 ° '. » and additives disintegrating aluminum, vanadium and / or niobium, which allows to obtain a ferritic steel structure with grains smaller than 9 in the ASTM scale. 0.4 - 0.6%, manganese 0.95 - 1.25%, sulfur maximum 0.06%, maximum phosphorus 0.06%, nitrogen 0.003 - 10 0.030%, silicon 0.08 - 0.20% and aluminum 0.015 - 0.1% or vanadium 0.05 - 0.2% or niobium 0.01 - 0.1%. Instead of vanadium, aluminum may be used, along with niobium in an amount of 0.015 - 0.10% aluminum and 0 , 01 - 0.10% niobium, if the steel is subjected to controlled rolling. The above-mentioned steels, containing additives that disintegrate their structure, added to steel with a composition given in British standard BS 11.1959 and subjected to normalization or controlled as rolling, are resistant to impacts and cracks. A further increase in the impact resistance can be obtained according to the invention by reducing the carbon content of the steel, for example from 0.28 to 0.39% by weight. For example, reduced carbon steels contain 0.28-0.39% by weight of carbon, 1.2-1.6% manganese, 0.06% sulfur maximum, 0.06% phosphorus maximum. , nitrogen 0.003 - 0.030%, maximum silicon 0.35% and aluminum 0.015 - 0.10% or vanadium 0.05 - 0.20%. The best properties were shown by steel with a value of 0.02 - 0.06% by weight of aluminum, or 0.10 - 0.15% vanadium and 0.010 - 0.15% nitrogen which has been normalized, or containing 0.015 - 0.10% aluminum and additionally 0.01 - 0.1% niobium, controlled rolling The grinding of the steel structure as described above and, especially in combination with the low perlite content, increases the fracture resistance of the rails. Reducing the pearlite content and increasing the ferrite content is achieved by reducing the carbon content. Unfortunately, this sometimes causes a reduction in the tensile and abrasion strength of the steel. However, according to the invention, the tensile strength and the abrasion resistance can be increased by strengthening the structure of the ferritic phase by hardening the solid solution, i.e. by adding one or more hardening additives, such as, for example, silicon, manganese, chromium, nickel or molybdenum. The railroad steel according to the invention has a carbon content of 0.28-0.39% and a hardening additive of 1.2-2.5% by weight of manganese and / or 0.8-1.2. % by weight of silicon. The steel may also contain other hardening additives, such as chromium, nickel and molybdenum. The additives that refine the steel structure are aluminum or vanadium in the case where the steel is noranalyzed, or aluminum and niobium when the steel is rolled. The following are examples of technological processes resulting in the production of steel 65 for railway rails. 83 139 6 The resulting steel containing, for example, 0.2-0.85% carbon, minimum 0.5% manganese, maximum 0.06% phosphorus, maximum 0.06% sulfur and 0.003-0.025% nitrogen and other incidental impurities were drained to the vat where the grinding additives were introduced. The temperature of the molten steel is around 1600 ° C. Hardening additives may also be added to the steel at this stage. The liquid steel was poured into ingot molds, and then solidified, it was subjected to one of two rolling processes to form railroad rail blanks. In the first process, the ingot was heated to a temperature of about 1300 ° C, and then rolled on a crusher to a temperature of 950 ° C - 1050 ° C. The ingot from the rolling mill is heated to a temperature above 1300 ° C. In this process, the rolled rail is cooled to below 700 ° C, normalized, that is, reheated to a temperature of 850 ° C to refine the grain and form deposits that would limit grain growth, and then cooled in the air. in the second process, the steel ingot or caissal from the rolling mill is cooled to at least 700 ° C, and preferably to 500 ° C, and then heated to a temperature in the range of 1050 ° C to 1250 ° C, preferably to a temperature of 1150 ° C, and rolled to moment the cauldron cools down to a temperature of 700 ° C to 900 ° C. This is called controlled or controlled rolling. The reheating of the steel containing grain refining additives during rolling produces a fine grain structure similar to that produced by normalization. The above methods can be carried out with some variations. . For example, no alloying additives are added in the casting ladle. These additives can be introduced into the furnace during the smelting of the steel or in several portions into the furnace, into the tub and into the ingot. The steel according to the invention does not necessarily have to be cast in the form of ingots. It can also be produced by a continuous casting process. In order to illustrate the invention more precisely, the tables give examples of the chemical composition of the steel and its mechanical properties. Table I gives the chemical composition. steel and grain size Table II mechanical properties of the finished product. Example 1 lists a typical steel 10 for railroad rails (according to British standard BS 11: 1959) currently produced. This example is included in the table for comparison only and is not intended to illustrate the invention. It should be noted the low impact strength of this steel compared to the following examples illustrating the present invention. Examples 2 to 10 describe a steel for railway rails according to the invention. In all cases, the phosphorus and sulfur content was less than 0.06% and the ferrite grain size was less than ASTM 8. Examples 2, 3 and 4 show the typical results obtained with the addition of disintegrants. to common steel described in British Standard BS 11: 1959), and then normalized and rolled. Examples 2A and 2B illustrate the addition of aluminum, Example 3 - vanadium, and Example 4 - niobium. Examples 5, 6, .7 and 8 illustrate a normalized steel with good toughness resulting from a lower carbon content and a higher manga content. nu with grinding additives. In Examples 5 and 6, aluminum was used as the grinding additive, and in Examples 7 and 8 - vanadium, in Examples 6 and 8, the silicon content was further increased to increase the abrasion resistance. Examples 9 and 10 illustrate the use as additives. crushing the aluminum with the cutter, the steel, according to these examples, was subjected to controlled rolling. The steel given in example 9 has a chemical composition corresponding to the known steel, with grinding additives added to the steel, and the steel given in example 10 has a lower carbon content with a higher manganese content. Table I Example No. 1 1 A B C 2 A B 3 4 5 6 A B 1 C Chemical composition C% 2 0.45 0.50 0.59 0.46 0.55 0.45 0.45 0.39 0.34 0.36 0.40 Mn% 3 1.15 1 , 20 1.12 1.20 1.12 1.10 1.18 1.40 1.38 1.32 1.46 Si% 4 0.13 0.12 0.11 0.22 0.13 0.20 0.24 0.21 0.20 0.50 0.98 v% 5 - 0.16 - - - Al% 6 0.005 0.057 0.062 - - 0.045 0.042 0.052 0.038 N% 7 0.016 0.006 0.005 0.017 0.006 0.011 0.016 0.017 0.010 0 , 01'4 0.013 Nb% 8 - - - 0.048 - - ASTM grain size austenite before treatment 9 4 3 3 8 7 10 6 10 8 9 7 ferrite 10 14 12 13 1083 139 7 8 A B C 9 10 0.35 0, 30 0.33 0.36 0.46 0.36 1.43 1.47 1.31 1.43 1.15 1.47 0.21 1.28 0.90 1.00 0.17 0.33 0 , 15 0.14 0.10 0.19 - - - - 0.045 0.061 0.009 0.011 0.020 0.022 0.016 0.014 - - 0.048 0.050 10 9 10 9 7 7 14 13 14 12 10 9 Table II Example No. 1 A B C 2 A B 3 4 5. 6 A B C 7 8 A B C 9 1 io Initial tensile strength kg / mm2 43.2 42.2 46.0 41.3 43.2 47.4 42.1 47.2 47, 2 47.2 50.4 49.8 55.1 53.2 59.8 39.4 39.1 Mechanical properties Ultimate tensile strength kg / mm2 81.0 78.7 79.1 69.9 81.3 71 , 7 72.3 71.2 70.9 72.4 80.0 69.3 73.4 73.7 78.7 69.3 65.8 Elongation at break% 21.0 22.0 18.0 27, 5 20.0 22.2 23.8 32.0 32.0 28.0 26.0 28.3 31.0 28.0 29.0 26.0 33.0 Reduction in area and cross-section% 30.8 32.0 14.5 59.6 36.8 62.4 43.2 62.8 62.0 57.0 51.2 67.2 57.2 48.4 53.6 52.5 56.7 Temperature impact test 15 ° C KGm 0.4 0.4 0.3 1.4 3.0 0.3 3.9 4.7 4.0 2.2 5.0 3.2 3.2 2.8 1.7 3, 2 2.76 KGm Temperature of isothermal transformation + 120 +130 +120 —5 + 40 —20 + 85 —36 —42 —40 + 6 —60 —28 —30 —15 + 15 -23 | PL PL PL

Claims (3)

1. Zastrzezenia patentowe 1. Stal stopowa do wytwarzania szyn kolejo¬ wych zawierajaca wagowo wegiel w ilosci 0,2 — 0,85%, siarke maksimum 0,06%, fosfor maksimum 0,06%, znamienna tym, ze zawiera co najmniej jeden z dodaitków utwardzajacych .takich, jak man¬ gan w ilosci 0,5 — 2,5%, krzem 0 — 1,5%, chrom 0 — 1,5%, nikiel 0 — 1,0% i molibden 0 — 0,6% w ilosci calkowitej nie przekraczajacej 5%, co naj¬ mniej jeden z nastepujacych dodatków rozdrab¬ niajacych takich jak aluminium 0,015 — 0,1%, wa¬ nad 0,05 — 0,2%, niob 0,01 — 0,1%, tytan 0,015 — 0,3% cyrkon 0,15 — 0,3% oraz azot w ilosci od 0,003 — 0,030% zasadniczo w stosunku stechiome- 45 50 trycznym do ilosci dodatków rozdrabniajacych oraz zanieczyszczenia, przy czym stal poddawana jest albo normalizowaniu albo kontrolowanemu wal¬ cowaniu dla wytworzenia struktury ferrytyczno- -perlitycznej o wielkosci ziarn ferrytycznych mniej¬ szych od 8 wedlug ASTM.1. Claims 1. An alloy steel for the manufacture of railway rails containing 0.2-0.85% by weight of carbon, 0.06% maximum sulfur, 0.06% maximum phosphorus, characterized in that it contains at least one with hardening additives such as 0.5-2.5% manganese, 0-1.5% silicon, 0-1.5% chromium, 0-1.0% nickel and 0-0 molybdenum, 6% in a total not exceeding 5%, at least one of the following grinding additives such as aluminum 0.015-0.1%, weight over 0.05-0.2%, niobium 0.01-0, 1%, titanium 0.015 - 0.3%, zircon 0.15 - 0.3% and nitrogen in an amount from 0.003 - 0.030%, generally stoichiometric to the amount of grinding additives and impurities, with the steel either subjected to normalization or controlled rolling to produce a ferritic-perlitic structure with an ASTM grain size smaller than 8. 2. Stal wedlug zastrz. 1, znamienna tym, ze za¬ wiera dodatek rozdrabniajacy w postaci aluminium lub wanadu, w przypadku gdy stal ta poddawana jest normalizowaniu.2. Steel according to claim The steel according to claim 1, characterized in that it contains a grinding additive in the form of aluminum or vanadium, when the steel is subjected to normalization. 3. Stal wedlug zastrz. 1, znamienna tym, ze za¬ wiera dodatek rozdrabniajacy w postaci aluminium i niobu, w przypadku gdy stal ta poddawana jest kontrolowanemu walcowaniu. LDA — Zaklad 2, Typo — zam. 838/76 — 110 egz. Cena 10 zl PL PL PL3. Steel according to claims The steel as claimed in claim 1, characterized in that it contains a grinding additive in the form of aluminum and niobium when the steel is subjected to controlled rolling. LDA - Plant 2, Typo - ordered 838/76 - 110 copies Price PLN 10 PL PL PL
PL1971147057A 1970-03-20 1971-03-20 PL83139B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1348770 1970-03-20

Publications (1)

Publication Number Publication Date
PL83139B1 true PL83139B1 (en) 1975-12-31

Family

ID=10023853

Family Applications (1)

Application Number Title Priority Date Filing Date
PL1971147057A PL83139B1 (en) 1970-03-20 1971-03-20

Country Status (10)

Country Link
US (1) US3726724A (en)
AT (1) ATA240871A (en)
BE (1) BE764566A (en)
CA (1) CA942541A (en)
DE (1) DE2113418A1 (en)
FR (1) FR2087818A5 (en)
GB (1) GB1342582A (en)
LU (1) LU62813A1 (en)
PL (1) PL83139B1 (en)
ZA (1) ZA711670B (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859146A (en) * 1968-12-09 1975-01-07 Ceskoslovenska Akademie Ved Steel composition, particularly for anti-friction bearings
US3897245A (en) * 1970-04-16 1975-07-29 Republic Steel Corp Low carbon steels having cold workability
DE2416055C3 (en) * 1974-04-03 1978-08-17 Fried. Krupp Huettenwerke Ag, 4630 Bochum Use of steel as a material for rails
DE2537702C3 (en) * 1975-08-23 1988-02-11 Thyssen Edelstahlwerke AG, 4000 Düsseldorf Use of a low-alloy tempering steel
US4026727A (en) * 1975-11-04 1977-05-31 A. Finkl & Sons Company Fatigue resistant steel, machinery parts and method of manufacture thereof
SE404703C (en) * 1976-09-20 1986-06-23 Garphytte Bruk Ab VALVE SPRING ROW OF LAYER ALLOY STEEL
US4064976A (en) * 1976-11-26 1977-12-27 Muller Westley C Car retarder shoe structure
DE2713782C3 (en) * 1977-03-29 1987-10-22 Klöckner-Werke AG, 4100 Duisburg Use of low-alloy steels as a material for the production of channel profiles for flexible roadway support in mining operations
DE2730045C2 (en) * 1977-07-02 1984-11-08 Krupp Stahl Ag, 4630 Bochum Process for producing wear-resistant rails and / or wheel materials
US4256517A (en) * 1978-01-09 1981-03-17 Republic Steel Corporation Welded alloy casing
JPS54148124A (en) 1978-05-12 1979-11-20 Nippon Steel Corp Manufacture of high strength rall of excellent weldability
US4405381A (en) * 1980-02-15 1983-09-20 Republic Steel Corporation Steel products such as bars, compositionally non-rimming and internally aluminum killed, having good surface condition
DE3009443C2 (en) * 1980-03-12 1981-11-19 Thyssen Edelstahlwerke AG, 4000 Düsseldorf Use of a steel of high strength and toughness
US4364772A (en) * 1981-05-28 1982-12-21 Titanium Metals Corporation Of America Rail wheel alloy
JPS5827955A (en) * 1981-08-11 1983-02-18 Aichi Steel Works Ltd Spring steel with superior hardenability and wear resistance
DE3336006A1 (en) * 1983-10-04 1985-04-25 Krupp Stahl Ag, 4630 Bochum RAIL WITH HIGH WEAR RESISTANCE IN THE HEAD AND HIGH BREAK PROTECTION IN THE FOOT
DE3446794C1 (en) * 1984-12-21 1986-01-02 BWG Butzbacher Weichenbau GmbH, 6308 Butzbach Process for the heat treatment of pearlitic rail steel
DE3604789C1 (en) * 1986-02-15 1987-08-20 Thyssen Stahl Ag Quenched and tempered steel
DE3719569C2 (en) * 1986-07-05 1988-06-23 Thyssen Edelstahlwerke Ag Microalloyed steels.
DE3627650C1 (en) * 1986-08-14 1988-01-14 Krupp Stahl Ag rail
DE3628711A1 (en) * 1986-08-23 1988-03-10 Kloeckner Stahl Gmbh Denitrated, low-alloyed, high-strength fine-grained structural steel
AT387049B (en) * 1986-10-29 1988-11-25 Voest Alpine Ag METHOD FOR PRODUCING SOFT HEART PIECES
US4919735A (en) * 1988-12-29 1990-04-24 National Forge Company Khare pipe mold steel
US5221373A (en) * 1989-06-09 1993-06-22 Thyssen Edelstahlwerke Ag Internal combustion engine valve composed of precipitation hardening ferritic-pearlitic steel
GB9116412D0 (en) * 1990-08-03 1991-09-11 Samsung Heavy Ind High toughness non-refined steels and method for manufacturing them
DE4234192C2 (en) * 1992-10-10 1996-01-11 Gutehoffnungshuette Man Heavy-duty full wheels and wheel tires for rail traction vehicles and cars
US5527401A (en) * 1993-06-30 1996-06-18 Samsung Heavy Industry Co., Ltd. High toughness and high strength untempered steel and processing method thereof
WO1995017532A1 (en) * 1993-12-20 1995-06-29 Nippon Steel Corporation Rail of high abrasion resistance and high tenacity having pearlite metallographic structure and method of manufacturing the same
US5516373A (en) * 1995-02-21 1996-05-14 Usx Corporation High performance steel strapping for elevated temperature service and method thereof
FR2800670B1 (en) * 1999-11-05 2003-04-18 Fag Oem & Handel Ag WHEEL BANDAGE OR MONOBLOCK WHEEL FOR RAIL GAMES ON RAIL VEHICLES
BR122013026772B1 (en) * 2006-12-25 2018-01-09 Nippon Steel & Sumitomo Metal Corporation STRUCTURAL STEEL FOR MACHINES
JP4609585B2 (en) * 2008-06-06 2011-01-12 住友金属工業株式会社 Soft nitriding steel, soft nitriding steel and crankshaft
CN104561816B (en) * 2015-01-07 2016-08-31 攀钢集团攀枝花钢铁研究院有限公司 The rail of a kind of high-strength, fatigue-resistant function admirable and production method thereof
JP6222403B1 (en) * 2015-12-15 2017-11-01 Jfeスチール株式会社 How to select rail steel and wheel steel

Also Published As

Publication number Publication date
BE764566A (en) 1971-08-16
LU62813A1 (en) 1971-08-24
ATA240871A (en) 1975-10-15
DE2113418A1 (en) 1971-10-07
FR2087818A5 (en) 1971-12-31
GB1342582A (en) 1974-01-03
ZA711670B (en) 1972-02-23
CA942541A (en) 1974-02-26
US3726724A (en) 1973-04-10

Similar Documents

Publication Publication Date Title
PL83139B1 (en)
US7670547B2 (en) Low alloy steel for oil country tubular goods having high sulfide stress cracking resistance
CN108950432B (en) Manufacturing method of high-strength and high-toughness low-alloy wear-resistant steel
JPWO2008126910A1 (en) Steel material excellent in high temperature characteristics and toughness and method for producing the same
CN111748728B (en) Easily-welded high-strength high-toughness wear-resistant steel plate and manufacturing method thereof
CN111850399B (en) Corrosion-resistant plastic die steel with good wear resistance and preparation method thereof
CN114107822B (en) 15.9-grade high-strength bolt steel and production method and heat treatment method thereof
KR101018055B1 (en) Fire-resistant high-strength rolled steel material and method for production thereof
WO2019029533A1 (en) Cast steel, preparation method for cast steel and use of cast steel
CN111961976A (en) Steel, preparation method and application thereof
US4851054A (en) Method of producing rolled steel having excellent resistance to sulfide stress corrosion cracking
JP2010180424A (en) Steel material superior in toughness at heat-affected zone in high-heat-input weld, and manufacturing method therefor
US3982969A (en) Low silicon high strength low alloy steel
CN114277310B (en) anti-H 2 S-corrosion oil casing and manufacturing method thereof
KR102612324B1 (en) Manufacturing method of high manganese steel cast steel and manufacturing method of high manganese steel steel strip or steel plate
CN114231703A (en) High-strength simplified annealing cold forging steel production method
KR920010228B1 (en) Making process for mooring chain steel having a good weldabilty
JPH0643605B2 (en) Manufacturing method of non-heat treated steel for hot forging
JPH06240406A (en) Steel plate with high strength and high toughness
KR19980044905A (en) Yield strength 65ksi class line pipe steel manufacturing method
JPH03243745A (en) Steel for machine structural use excellent in delayed fracture resistance
RU2031179C1 (en) Steel
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
JPH07166303A (en) High strength martensitic stainless steel excellent in stress corrosion cracking resistance and production thereof
CA3120929C (en) High strength hot rolled steel sheet having excellent elongation and method for manufacturing same