JP2003342670A - Non-heat treated high tensile steel having excellent toughness - Google Patents

Non-heat treated high tensile steel having excellent toughness

Info

Publication number
JP2003342670A
JP2003342670A JP2002150169A JP2002150169A JP2003342670A JP 2003342670 A JP2003342670 A JP 2003342670A JP 2002150169 A JP2002150169 A JP 2002150169A JP 2002150169 A JP2002150169 A JP 2002150169A JP 2003342670 A JP2003342670 A JP 2003342670A
Authority
JP
Japan
Prior art keywords
steel
toughness
heat treated
ferrite
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002150169A
Other languages
Japanese (ja)
Inventor
Toshinaga Hasegawa
俊永 長谷川
Masanori Minagawa
昌紀 皆川
Hiroyuki Shirahata
浩幸 白幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002150169A priority Critical patent/JP2003342670A/en
Publication of JP2003342670A publication Critical patent/JP2003342670A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-heat treated high tensile steel eliminating the need for a complicated manufacturing process and the addition of a large amount of an expensive alloy element, having good productivity and also having a low production cost and having excellent toughness and a tensile strength of ≥490 MPa. <P>SOLUTION: In the non-heat treated steel, good toughness is secured by making a structure containing a given component, keeping a Nb equivalence being an indication of precipitation strengthening property in 0.005-0.1%, and further keeping an average particle size of ferrite in ≤10 μm and a ferrite fractional ratio in ≥70% and also the total fractional ratio of bainite and martensite in ≤10%. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、焼入焼戻しやTM
CPによらない、靭性の優れた引張強度が490MPa
級以上の非調質高張力鋼に関するものである。特に板厚
が50mm程度以下の優れた溶接性と強度・靭性とが両
立した鋼の製造に有用である。用途としては、例えば、
建築構造物、海洋構造物、船舶、橋梁、ラインパイプ等
の溶接構造物に用いることができる。また、鋼の形態は
特に問わないが、構造部材として用いられ、低温靭性が
要求される鋼板、特に厚板、鋼管素材、あるいは形鋼で
有用である。
TECHNICAL FIELD The present invention relates to quenching and tempering and TM.
Tensile strength of 490 MPa with excellent toughness, independent of CP
The present invention relates to non-heat treated high-strength steel of grade or higher. In particular, it is useful for manufacturing steel having a plate thickness of about 50 mm or less, which has both excellent weldability and strength / toughness. For example,
It can be used for welded structures such as building structures, offshore structures, ships, bridges and line pipes. The form of the steel is not particularly limited, but it is useful as a steel plate used as a structural member and requiring low temperature toughness, particularly a thick plate, a steel pipe material, or a shaped steel.

【0002】[0002]

【従来技術】一般に、引張強度が490MPa以上の高
張力鋼、特に溶接性、溶接熱影響部(HAZ)の靱性が
必要な溶接構造用高張力鋼においては、低炭素当量(C
eq.)化ないしは低Pcm化のために、焼入れ焼戻
し、あるいは水冷型加工熱処理(TMCP)等の調質処
理により製造されるのが一般的である。しかし、該製造
方法は必然的に工程数の増加、製造コストの増大、さら
には水冷による鋼材形状の悪化等の問題が避けられな
い。一方、熱間圧延のままあるいは焼きならしで製造す
る非調質高張力鋼の場合は、細粒強化、変態強化が調質
高張力鋼に比べて小さい分、強度を高めることが困難で
あり、引張強度が490MPa以上の高張力鋼を製造し
ようとすると、必然的に合金元素あるいは析出強化元素
を比較的多量の含有せざるを得ず、その結果、合金コス
トの増加、溶接性の劣化及びHAZ靱性の劣化が避けら
れない。
2. Description of the Related Art Generally, in a high-strength steel having a tensile strength of 490 MPa or more, particularly in a high-strength steel for a welded structure requiring weldability and toughness of a heat affected zone (HAZ), a low carbon equivalent (C
eq. In order to lower the Pcm or lower the Pcm, it is generally manufactured by quenching and tempering, or heat treatment such as water-cooled thermomechanical processing (TMCP). However, the manufacturing method inevitably has problems such as an increase in the number of steps, an increase in manufacturing cost, and further deterioration of the shape of the steel material due to water cooling. On the other hand, in the case of non-heat treated high-strength steel manufactured by hot rolling or by normalizing, it is difficult to increase the strength because fine grain strengthening and transformation strengthening are smaller than heat-treated high-strength steel. However, when trying to manufacture a high-strength steel having a tensile strength of 490 MPa or more, it is unavoidable that a relatively large amount of alloying elements or precipitation strengthening elements is contained, resulting in an increase in alloy cost, deterioration of weldability, and The deterioration of HAZ toughness is unavoidable.

【0003】非調質高張力鋼としては、従来から、析出
強化元素である、NbやVを利用した鋼が提示されてい
る。例えば、ASTM規格A633E鋼ではVNによる
焼きならし時の細粒化を利用して強度・靱性の向上を図
っている。また、最近では、析出元素を適正化した高生
産性の引張強度が70kgf/mm級の非調質鋼も特
開2000−8135号公報で開示されている。しか
し、これらは母材の強度・靱性向上は留意さているもの
の、溶接性やHAZ靱性に対する配慮はなく、厳しい低
温靱性が要求される溶接構造用鋼として用いることには
難がある。また最近、低炭素ベイナイト鋼を厚手鋼板に
適用した例が示されている。例えば、特開平8−144
019号公報に開示されているように、C量を0.03
%程度まで低減し、Nb、Bの添加により、水冷せずに
ベイナイト組織を得ることで、溶接性と強度とを両立さ
せている。ただし、母材靱性を確保するためには制御圧
延が必須であり、生産性に問題がある。
As a non-heat treated high-strength steel, a steel using precipitation strengthening elements such as Nb and V has been proposed. For example, in ASTM standard A633E steel, strength and toughness are improved by utilizing the fine graining at the time of normalizing by VN. In addition, recently, a high productivity non-heat treated steel having a tensile strength of 70 kgf / mm 2 grade in which precipitation elements are optimized is also disclosed in JP-A-2000-8135. However, although attention is paid to improving the strength and toughness of the base metal, these do not consider weldability and HAZ toughness and are difficult to use as welded structural steels that require severe low temperature toughness. In addition, recently, an example in which low carbon bainite steel is applied to a thick steel plate is shown. For example, JP-A-8-144
As disclosed in Japanese Patent No. 019,
%, And by adding Nb and B to obtain a bainite structure without water cooling, both weldability and strength are achieved. However, controlled rolling is indispensable in order to secure the toughness of the base material, and there is a problem in productivity.

【0004】[0004]

【発明が解決しようとする課題】本発明は、複雑な製造
工程や高価な合金元素の多量添加を必要としない、生産
性が良好で、かつ、製造コストの低い手段により製造が
可能な、靭性の優れた引張強度が490MPa級以上の
非調質高張力鋼を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention has a toughness that does not require a complicated manufacturing process or a large amount of expensive alloying elements, has good productivity, and can be manufactured by means of low manufacturing cost. It is an object of the present invention to provide a non-heat treated high-strength steel having excellent tensile strength of 490 MPa or higher.

【0005】[0005]

【課題を解決するための手段】圧延後の加速冷却や再加
熱熱処理を行わない、非調質鋼の製造において、生産性
を高めるためには、鋼の変形抵抗が小さくなるように高
温加熱・高温圧延を指向し、さらに、制御圧延を行わな
いか、可能な限り高温で仕上げることが必要となる。ま
た、生産性向上以外に製造コストを低減するためには、
強度・靭性向上のために多量添加が必要で原料価格が高
価な、Ni,Cu,Cr等の固溶強化元素の使用を極力回
避し、微量で強度向上効果が大きい、Nb,V等の析出
強化元素を活用する必要がある。本発明者らは上記観点
から、詳細な検討を行い、生産性向上のためには、高温
加熱でも加熱オーステナイト粒径の微細化が可能な、安
定なピンニング粒子を高密度に分散させた鋼を用いて、
析出強化元素による強化を活用した化学組成とすること
が第一に必要であるが、さらに、特に靭性と降伏応力と
を確保するためには、これら要件に加えて、変態組織を
適正化する必要があることを知見し、発明に至った。そ
の要件は下記の通りである。
[Means for Solving the Problems] In the production of non-heat treated steel that does not undergo accelerated cooling or reheating heat treatment after rolling, in order to improve productivity, in order to increase the deformation resistance of the steel, high temperature heating It is aimed at high temperature rolling, and it is necessary to perform no controlled rolling or finish at a temperature as high as possible. In addition to improving productivity, in order to reduce manufacturing costs,
Precipitation of Nb, V, etc., in which a large amount is added to improve strength and toughness, the raw material price is high, and the use of solid solution strengthening elements such as Ni, Cu, Cr, etc. It is necessary to utilize strengthening elements. From the above viewpoints, the present inventors have made a detailed study, and in order to improve the productivity, it is possible to refine the heated austenite grain size even at high temperature heating, and a steel in which stable pinning particles are dispersed at a high density is used. make use of,
It is first necessary to have a chemical composition that utilizes strengthening by precipitation strengthening elements, but in addition, in order to secure toughness and yield stress in particular, it is necessary to optimize the transformation structure in addition to these requirements. It was discovered that there was, and the invention was reached. The requirements are as follows.

【0006】(1)質量%で、C :0.05〜0.2%、
Si:0.05〜1%、Mn:0.1〜2%、P:0.015%
以下、S:0.01%以下、Al:0.005〜0.1%、N:
0.001〜0.01%を含有し、さらに、Nb:0.0
03〜0.1%、V:0.01〜0.5%、Mo:0.
01〜1%、W :0.01〜1%、Ta:0.003
〜0.1%、Zr:0.005〜0.2%の1種または
2種以上を含有し、かつ、下記(A)式で示されるNb
当量が0.005〜0.1%の範囲を満足し、残部がF
e及び不可避不純物よりなる鋼で、該鋼中に、その組成
が、少なくともCa、Al、Oを含み、Oをのぞいた元
素が質量比で、Ca:5%以上、Al:5%以上を含む、円
相当径で0.005〜2μmの酸化物粒子を単位面積当
たりの個数で、200〜3000個/mm含有し、更
に、フェライトの平均粒径が10μm以下、フェライト
分率が70%以上で、かつ、ベイナイトとマルテンサイ
トとの合計の分率が10%以下である組織を有すること
を特徴とする靭性の優れた非調質高張力鋼。 Nb当量=Nb%+V%/5+Mo%/10+W%/10+Ta%+Zr% /2 ・・・(A) (2)前記酸化物粒子の組成が少なくともCa,Al,
O,Sを含み、Oを除いた元素が質量比で、Ca:5%以
上、Al:5%以上、S:1%以上、を含有することを特徴
とする前記(1)に記載の靭性の優れた非調質高張力
鋼。
(1) C: 0.05 to 0.2% by mass%,
Si: 0.05-1%, Mn: 0.1-2%, P: 0.015%
Hereinafter, S: 0.01% or less, Al: 0.005-0.1%, N:
0.001 to 0.01%, and Nb: 0.0
03-0.1%, V: 0.01-0.5%, Mo: 0.
01 to 1%, W: 0.01 to 1%, Ta: 0.003
To 0.1%, Zr: 0.005 to 0.2%, one or more, and Nb represented by the following formula (A).
The equivalent satisfies the range of 0.005 to 0.1% and the balance is F
e and unavoidable impurities, the composition of which is at least Ca, Al, and O, and the elements other than O are in a mass ratio of Ca: 5% or more and Al: 5% or more. , Oxide particles having an equivalent circle diameter of 0.005 to 2 μm per unit area of 200 to 3000 particles / mm 2 , and further, an average particle diameter of ferrite is 10 μm or less, and a ferrite fraction is 70% or more. And a non-heat treated high-strength steel having excellent toughness, which has a structure in which the total fraction of bainite and martensite is 10% or less. Nb equivalent = Nb% + V% / 5 + Mo% / 10 + W% / 10 + Ta% + Zr% / 2 (A) (2) The composition of the oxide particles is at least Ca, Al,
The toughness according to the above (1), characterized in that the elements containing O and S and excluding O are contained in a mass ratio of Ca: 5% or more, Al: 5% or more, S: 1% or more. Excellent non-heat treated high strength steel.

【0007】(3)鋼中にさらに、質量%でMgを0.
0001〜0.002%含有し、かつ前記酸化物粒子の組
成が少なくともCa,Al,Mg,Oを含み、Oを除いた
元素が質量比で、Ca:5%以上、Al:5%以上、Mg:
1%以上、を含有することを特徴とする前記(1)に記
載の靭性の優れた非調質高張力鋼。(4)前記酸化物粒
子の組成が少なくともCa,Al,Mg,O,Sを含み、O
を除いた元素が質量比で、Ca:5%以上、Al:5%以
上、Mg:1%以上、S:1%以上、を含有することを特
徴とする前記(3)に記載の靭性の優れた非調質高張力
鋼。
(3) Further, Mg is added to the steel in an amount of 0.1% by mass.
0001 to 0.002% and the composition of the oxide particles contains at least Ca, Al, Mg, O, and the elements except O are mass ratio, Ca: 5% or more, Al: 5% or more, Mg:
1% or more is contained, The non-heat treated high-strength steel excellent in toughness as described in (1) above. (4) The composition of the oxide particles contains at least Ca, Al, Mg, O, S, and O
The toughness according to the above (3), characterized in that the elements other than are contained in a mass ratio of Ca: 5% or more, Al: 5% or more, Mg: 1% or more, S: 1% or more. Excellent non-heat treated high strength steel.

【0008】(5)質量%で、Ni:0.1〜3%、C
u:0.05〜1.5%、Cr:0.05〜1%、B:
0.0002〜0.005%、の1種または2種以上を
含有することを特徴とする前記(1)乃至(4)のいず
れかに記載の靭性の優れた非調質高張力鋼。(6)質量
%で、Y:0.001〜0.01%、La:0.005
〜0.1%、Ce:0.005〜0.1%、のうち1種
または2種以上を含有することを特徴とする前記(1)
乃至(5)のいずれかに記載の靭性の優れた非調質高張
力鋼。
(5) Mass%, Ni: 0.1-3%, C
u: 0.05 to 1.5%, Cr: 0.05 to 1%, B:
0.0002-0.005% of 1 type (s) or 2 or more types, The non-heat treated high-strength steel excellent in toughness in any one of said (1) thru | or (4) characterized by the above-mentioned. (6) Y: 0.001 to 0.01% and La: 0.005 by mass%
~ 0.1%, Ce: 0.005-0.1%, one or more of the above (1) is contained.
A non-heat treated high tensile steel having excellent toughness according to any one of (1) to (5).

【0009】[0009]

【発明の実施の形態】本発明においては析出強化を基本
的な強化機構とする。本発明者らは、微量で強度向上に
有効な元素の探索と、強度上昇に応じた靭性劣化が比較
的小さい元素を探索した結果、Nb,V,Mo,W,Ta,
Zrが有効であり、各々に適正な含有量の範囲があると
ともに、その合計量についても一定の制限を設ける必要
があることを知見するに至った。先ず、個々の元素の範
囲としては、Nb:0.003〜0.1%、V:0.0
1〜0.5%、Mo:0.01〜1%、W :0.01
〜1%、Ta:0.003〜0.1%、Zr:0.00
5〜0.2%とする。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, precipitation strengthening is a basic strengthening mechanism. The present inventors have searched for an element that is effective in improving the strength with a small amount and an element that has a relatively small deterioration in toughness according to the increase in strength, and as a result, Nb, V, Mo, W, Ta,
It has been found that Zr is effective, each has an appropriate content range, and it is necessary to set a certain limit on the total amount. First, as the range of each element, Nb: 0.003 to 0.1%, V: 0.0
1 to 0.5%, Mo: 0.01 to 1%, W: 0.01
~ 1%, Ta: 0.003 to 0.1%, Zr: 0.00
5 to 0.2%.

【0010】Nb量を0.003〜0.1%としたの
は、0.003%未満では熱間圧延後の冷却中に析出が
生じ難く、その結果析出強化量が明瞭に生じないためで
あり、一方、0.1%超になると、加熱・圧延中に粗大
に析出して強化に無効となるのに加えて粗大な析出物が
靭性を顕著に劣化させるためである。Vの場合は0.0
1%未満では析出強化量が明瞭に生じないため、一方、
0.5%超になると、粗大な析出が生じて、強化に無効
となるのに加えて靭性を顕著に劣化させるため、その範
囲を0.01〜0.5%に限定する。
The amount of Nb is set to 0.003 to 0.1% because if it is less than 0.003%, precipitation does not easily occur during cooling after hot rolling, and as a result, the precipitation strengthening amount does not clearly occur. On the other hand, if it exceeds 0.1%, coarse precipitates during heating / rolling and becomes ineffective for strengthening, and in addition, coarse precipitates significantly deteriorate the toughness. 0.0 for V
If it is less than 1%, the precipitation strengthening amount does not clearly occur.
If it exceeds 0.5%, coarse precipitation occurs, which is ineffective for strengthening and significantly deteriorates the toughness. Therefore, the range is limited to 0.01 to 0.5%.

【0011】Mo,WはNb,Vと同等の効果を発揮させ
るためには、若干多量に含有させる必要がある。Mo、
Wとも、含有量が0.01%未満では析出強化を明瞭に
生じないため、好ましくなく、一方、1%超と過剰に含
有させると、粗大な析出物を形成して靭性を劣化させる
とともに、溶接性も阻害するため、本発明においては、
Mo,Wともその適正範囲を0.01〜1%とした。T
a,ZrもNbとほぼ同等か、若干弱い析出強化能を有
する。効果を発揮するためには、少なくとも、Taは
0.003%、Zrは0.005%含有させる必要があ
る。一方、析出物が粗大化せずに靭性を顕著に劣化させ
ない上限は、Taは0.1%、Zrは0.2%となる。
Mo and W must be contained in a slightly large amount in order to exhibit the same effect as Nb and V. Mo,
If the content of W is less than 0.01%, precipitation strengthening does not occur clearly, so it is not preferable. On the other hand, if it is added in excess of 1%, coarse precipitates are formed and the toughness is deteriorated. Since the weldability is also hindered, in the present invention,
The proper range of Mo and W was set to 0.01 to 1%. T
a and Zr have almost the same or slightly weaker precipitation strengthening ability as Nb. In order to exert the effect, it is necessary to contain at least 0.003% of Ta and 0.005% of Zr. On the other hand, the upper limit for preventing precipitation from coarsening and not significantly degrading toughness is 0.1% for Ta and 0.2% for Zr.

【0012】以上が、析出強化のために用いる、Nb,
V,Mo,W,Ta,Zrにおける個々の範囲の限定理由で
ある。該元素は単独だけでなく、複合添加でも有効に析
出強化による鋼の高強度化に用いることができるが、そ
の場合には、析出強化を確実に発揮させるためと、過剰
な添加による悪影響を回付するために、上記(A)式で
示す、Nb当量を0.005〜0.1%に限定する。N
b当量は析出強化能、析出による靭性劣化程度をNbと
の相対比較で示した指標である。Nb当量が0.005
%未満であると、本発明のような熱処理を行わない非調
質高張力鋼の場合には析出強化による強度向上が明確に
は望めない。一方、個々の元素は各々の上限以下に含有
されていても、Nb当量が0.1%を超えると、析出強
化に起因する脆化が著しく、本発明の組織要因を満足し
ていても、構造用鋼としての十分な靭性確保が困難とな
る。従って、本発明においては、個々の析出強化元素の
範囲を規定した上でさらにNb当量の範囲を0.005
〜0.1%に限定する。
Above, Nb, which is used for precipitation strengthening,
This is the reason for limiting the individual ranges in V, Mo, W, Ta, and Zr. These elements can be used not only alone but also in combination to effectively increase the strength of the steel by precipitation strengthening, but in that case, in order to ensure precipitation strengthening and to prevent the adverse effects of excessive addition. In order to add, the Nb equivalent shown by the formula (A) is limited to 0.005 to 0.1%. N
The b equivalent is an index showing the precipitation strengthening ability and the degree of toughness deterioration due to precipitation in relative comparison with Nb. Nb equivalent is 0.005
If it is less than%, in the case of non-heat treated high-strength steel that is not subjected to heat treatment as in the present invention, the strength improvement by precipitation strengthening cannot be clearly expected. On the other hand, even if the individual elements are contained below the respective upper limits, if the Nb equivalent exceeds 0.1%, embrittlement due to precipitation strengthening is remarkable, and even if the structure factor of the present invention is satisfied, It becomes difficult to secure sufficient toughness as a structural steel. Therefore, in the present invention, the range of each precipitation strengthening element is defined, and the range of Nb equivalent is 0.005.
Limited to ~ 0.1%.

【0013】上記のように、本発明においては析出強化
元素による析出強化を強化機構の主体としているが、析
出強化には不可避的に靭性の劣化を伴う。従って、析出
強化を鋼の強化に有効に活用するためには、析出による
靭性劣化を析出強化を損なうことなく、靭性を向上させ
る方法が必要となる。本発明者らは、このような観点か
らの、析出強化を最大限に利用するのに適した鋼組織を
探求した。その結果、「フェライトの平均粒径が10μ
m以下、フェライト相の分率が70%以上で、かつ、ベ
イナイトとマルテンサイトと合計の分率が10%以下で
ある組織を有する」ことが強度と靭性のバランスの上で
最も好適な組織要件であることを新たに知見した。
As described above, in the present invention, the precipitation strengthening by the precipitation strengthening element is the main component of the strengthening mechanism, but precipitation strengthening inevitably involves deterioration of toughness. Therefore, in order to effectively utilize the precipitation strengthening for strengthening the steel, a method for improving the toughness without impairing the precipitation strengthening due to the deterioration of the toughness is required. The present inventors sought a steel structure suitable for maximizing the use of precipitation strengthening from such a viewpoint. As a result, "the average grain size of ferrite is 10μ
It is the most preferable microstructure requirement in terms of the balance between strength and toughness that "there is a structure in which the ratio of the ferrite phase is 70% or more and the total ratio of bainite and martensite is 10% or less". It was newly discovered that

【0014】フェライト主体の非調質鋼組織において
は、フェライトの細粒化が靭性向上に有効である。当
然、フェライト粒径は微細なほど靭性は向上する。ただ
し、本発明において、Nb当量が0.005〜0.1%
である場合の析出強化に伴う靭性劣化分を、フェライト
の微細化だけで保証しようとすると、オーステナイトの
低温域で累積圧下率の大きな制御圧延を行わざるを得
ず、生産性の大幅な低下を招くため、本発明の目的から
は好ましくない。本発明者らは靭性を支配する組織因子
を詳細に検討し、靭性を向上させるためには、フェライ
トの微細化だけでなく、パーライト、ベイナイト、さら
にはマルテンサイト等のフェライト以外の第二相の抑制
も有効であり、第二相の抑制と一定のフェライトの微細
化を適性に組み合わせることによって、生産性を損なわ
ずに靭性を確保できることを見いだした。すなわち、フ
ェライト分率を70%以上とし、かつ残部の第二相の
内、ベイナイトとマルテンサイトの合計の分率を10%
以下とすることで、フェライト粒径は最大10μm以下
であれば、析出による靭性劣化を補って十分な靭性を確
保することが可能となる。
In a non-heat treated steel structure mainly composed of ferrite, grain refinement of ferrite is effective for improving toughness. Naturally, the finer the ferrite grain size, the higher the toughness. However, in the present invention, the Nb equivalent is 0.005 to 0.1%.
In order to guarantee the toughness deterioration due to precipitation strengthening in the case of only by just refining ferrite, there is no choice but to perform controlled rolling with a large cumulative rolling reduction in the low temperature range of austenite, resulting in a significant decrease in productivity. Therefore, it is not preferable for the purpose of the present invention. The present inventors have studied in detail the structural factors that govern toughness, and in order to improve toughness, not only ferrite miniaturization but also pearlite, bainite, and further a second phase other than ferrite such as martensite It was found that the suppression is also effective, and by appropriately combining the suppression of the second phase and the miniaturization of a certain amount of ferrite, the toughness can be secured without impairing the productivity. That is, the ferrite fraction is 70% or more, and the total fraction of bainite and martensite in the remaining second phase is 10%.
When the ferrite grain size is 10 μm or less at the maximum, it becomes possible to compensate for the deterioration of toughness due to precipitation and to secure sufficient toughness.

【0015】圧延後に加速冷却を行わない非調質鋼にお
いては、フェライト変態中にCが未変態のオーステナイ
ト相中に濃化するため、ベイナイトやマルテンサイトは
Cが高い故に靭性が劣る。そのため、ベイナイトとマル
テンサイトの合計分率として、10%以下とする必要が
ある。ベイナイトやマルテンサイトに比べてパーライト
は靭性への悪影響が小さいが、その分率は少ないほど好
ましく、フェライト分率でみて、70%以上とする必要
がある。すなわち、第二相としては30%未満とすべき
で、かつ、該第二相としては、ベイナイトとマルテンサ
イトを10%以下に抑制して、パーライト主体とすべき
である。第二相分率が30%未満で、該第二相として、
ベイナイトとマルテンサイトが10%以下に抑制されて
いれば、本発明の非調質鋼において靭性を確保するため
に必要なフェライト粒径の上限は10μmとなる。フェ
ライト粒径が10μm超では、第二相におけるベイナイ
トとマルテンサイトの合計分率が10%以下でも靭性が
大幅に劣化する可能性が大となる。一方、フェライト粒
径は微細であるほど靭性は向上するが、過剰に微細化す
ることは鋼の製造工程に不可をかけ、生産性を低下させ
ることになるため、好ましくない。フェライト粒径が1
0μm以下で、かつ生産性を低下させない範囲でフェラ
イトを微細化することが好ましい。
In a non-heat treated steel that is not subjected to accelerated cooling after rolling, since C is concentrated in the untransformed austenite phase during ferrite transformation, bainite and martensite are inferior in toughness due to the high C content. Therefore, the total fraction of bainite and martensite needs to be 10% or less. Although pearlite has a smaller adverse effect on toughness than bainite or martensite, the smaller the ratio, the more preferable. It is necessary to set the ferrite ratio to 70% or more. That is, the second phase should be less than 30%, and as the second phase, bainite and martensite should be suppressed to 10% or less, and pearlite should be the main component. The second phase fraction is less than 30%, and as the second phase,
If the bainite and martensite are suppressed to 10% or less, the upper limit of the ferrite grain size required to secure the toughness in the non-heat treated steel of the present invention is 10 μm. If the ferrite grain size exceeds 10 μm, the toughness is likely to be significantly deteriorated even if the total fraction of bainite and martensite in the second phase is 10% or less. On the other hand, the finer the ferrite grain size is, the more the toughness is improved, but excessive fineness is not preferable because it impairs the steel manufacturing process and lowers the productivity. Ferrite grain size is 1
It is preferable to make the ferrite fine in a range of 0 μm or less and within a range that does not reduce productivity.

【0016】ベイナイトとマルテンサイトの分率を合計
で10%以下と限定する第一の目的は靭性確保にある
が、本要件は、靭性とは全く異なる強度特性安定確保の
ためにも必須要件である。すなわち、フェライト主体の
組織の鋼において、剪断的に変態するベイナイトあるい
は/及びマルテンサイトが一定以上存在すると、ベイナ
イトあるいは/及びマルテンサイト変態時にフェライト
相に可動転位が局所的に導入され、降伏応力が極端に低
下する問題が生じる。圧延後水冷するTMCP鋼では組
織全体に比較的均一に多量に転位が導入されるため、極
端に降伏応力が低下することはない。また、調質鋼であ
れば、焼戻し処理のときに可動転位が再度固着されるた
めにやはり極端に降伏応力が低下することはない。な
お、本発明で言うところの分率は、実質的には、断面の
光学顕微鏡組織あるいは電子顕微鏡組織で観察した場合
の面積率を指すが、組織が等方性であれば体積率と等価
である。
The first purpose of limiting the total fraction of bainite and martensite to 10% or less is to secure toughness, but this requirement is an essential requirement for securing stability of strength characteristics which is completely different from toughness. is there. That is, in steel having a structure mainly composed of ferrite, when bainite and / or martensite that shear-transforms exists in a certain amount or more, mobile dislocations are locally introduced into the ferrite phase during bainite and / or martensite transformation, and the yield stress increases. The problem of extremely lowering occurs. In TMCP steel that is water-cooled after rolling, a large amount of dislocations are introduced relatively uniformly throughout the structure, so that the yield stress does not drop extremely. Further, in the case of heat-treated steel, the yield stress does not decrease extremely because the movable dislocations are fixed again during the tempering treatment. Incidentally, the fraction referred to in the present invention substantially refers to the area ratio when observed with an optical microscope structure or an electron microscope structure of the cross section, but if the structure is isotropic, it is equivalent to the volume ratio. is there.

【0017】生産性向上のために、熱間圧延におけ鋼片
の再加熱を高温化することを可能にし、及び低温での制
御圧延を回避し、その上で靭性を劣化させないために
は、鋼片加熱時の加熱オーステナイト粒径が高温加熱に
よっても粗大化しないことが必要となる。そのために、
本発明おいては、高温でも安定なピンニング粒子を鋼中
に高密度に分散させ、熱間圧延前の鋼片の加熱段階にお
けるオーステナイト粒径微細化を図る。オーステナイト
の粒界をピンニングし、粒界の移動を止める作用を有す
る分散粒子の一つとしては、従来、Ti窒化物が有効で
あると考えられていた。しかしながらTi窒化物は14
00℃以上の高温では固溶する割合が大きくなるため、
ピンニング効果が小さくなる。これに対し、高温で安定
な酸化物と硫化物とを併せてピンニング粒子として活用
することが有効である。
In order to improve the productivity, it is possible to increase the temperature of the reheating of the billet in the hot rolling, and to avoid the controlled rolling at a low temperature, and further to prevent the toughness from deteriorating. It is necessary that the heated austenite grain size at the time of heating the billet does not coarsen even by high temperature heating. for that reason,
In the present invention, the pinning particles that are stable even at high temperature are dispersed in the steel at high density to reduce the austenite grain size in the heating stage of the steel slab before hot rolling. Conventionally, Ti nitride was considered to be effective as one of the dispersed particles having the function of pinning the austenite grain boundaries and stopping the movement of the grain boundaries. However, if Ti nitride is 14
At a high temperature of 00 ° C or higher, the proportion of solid solution increases,
The pinning effect is reduced. On the other hand, it is effective to use oxides and sulfides that are stable at high temperature together as pinning particles.

【0018】また、分散粒子による結晶粒界のピンニン
グ効果は、分散粒子の体積率が大きいほど、一個の粒子
径が大きいほど大きい。ただし、分散粒子の体積率は鋼
中に含まれる粒子を構成する元素の濃度によって上限が
あるので、体積率を一定と仮定した場合には、粒子径は
ある程度小さい方がピンニングには有効である。酸化物
および硫化物の体積分率を大きくする手段の一つとし
て、酸素量、硫黄量を増大させることがあるが、酸素
量、硫黄量の増大は材質に有害な粗大介在物をも多数生
成する原因となるため、有効な手段ではない。酸素およ
び硫黄を最大限に利用するためには、酸素および硫黄と
の溶解度積が小さい元素を活用することが有効である。
酸素との溶解度積が小さい、すなわち強脱酸元素とし
て、一般的にはAlが用いられる。しかしながら、Al
だけでは酸素を充分利用するには不充分で、さらにAl
よりも強い脱酸元素が必要で、Mg、さらにはCaを活
用することが重要である。
Further, the pinning effect of the crystal grain boundaries by the dispersed particles becomes larger as the volume ratio of the dispersed particles becomes larger and the diameter of each particle becomes larger. However, since the volume ratio of dispersed particles has an upper limit depending on the concentration of the elements that make up the particles contained in the steel, if the volume ratio is assumed to be constant, a smaller particle size is more effective for pinning. . One of the means to increase the volume fraction of oxides and sulfides is to increase the oxygen content and sulfur content. However, the increase of oxygen content and sulfur content also produces many coarse inclusions that are harmful to the material. Is not an effective means. In order to make maximum use of oxygen and sulfur, it is effective to utilize an element having a small solubility product with oxygen and sulfur.
Al is generally used as a strong deoxidizing element, which has a small solubility product with oxygen. However, Al
Is not enough to utilize oxygen enough,
A stronger deoxidizing element is required, and it is important to utilize Mg and Ca.

【0019】硫化物を生成しやすい元素として、Mnが
挙げられる。しかしながら、Mnだけでは硫黄を活用す
るには不充分で、硫黄との溶解度積が小さい、すなわち
安定した硫化物を生成するにはやはりMg、Caの活用
が有効である。Ca、Mgを用いた溶解実験を行った結
果、鋼中に生成する酸化物粒子の組成として、Caが5
%以上、Mgが1%以上含まれることで、酸化物の体積
分率すなわち酸化物量を大きくすることが可能となるこ
とを知見した。さらには、酸化物の周囲にCaSおよび
MgSといった硫化物が析出することで、酸化物と硫化
物とを併せてより一層の体積分率の増加が可能となるこ
とを見出した。その場合、酸化物と硫化物とを併せて一
つの粒子と見なしたときの組成が、Mgを含まない場合
で、Oを除いた元素が質量比で、CaとAlが5%以
上、Sが1%以上含まれる必要がある。また、粒子がM
gを含む場合は、Oを除いた元素が質量比で、Ca及び
Alが5%以上、Mg及びSが1%以上含まれる必要が
ある。なお、酸化物中にSを含む場合、酸化物と硫化物
とが複合化している場合、酸化物を核として硫化物が該
酸化物の周囲に析出している場合、いずれもオーステナ
イトの成長抑制には同等の効果を有する。以降で、酸化
物あるいはピンニング粒子としているものも、特に断ら
ない限り、上記の粒子を包含することとする。この結果
をもとに、鋼中に含まれる粒子の組成が下記のいずれか
を満足することが有効となる。
Mn is mentioned as an element that easily forms sulfides. However, Mn alone is not sufficient to utilize sulfur, and the solubility product with sulfur is small, that is, utilization of Mg and Ca is also effective for producing a stable sulfide. As a result of a melting experiment using Ca and Mg, Ca was found to be 5 as the composition of oxide particles generated in steel.
It was found that when the content of Mg is 1% or more and the content of Mg is 1% or more, the volume fraction of oxide, that is, the amount of oxide can be increased. Furthermore, it has been found that by precipitating sulfides such as CaS and MgS around oxides, it is possible to further increase the volume fraction of oxides and sulfides. In that case, when the composition when the oxide and the sulfide are regarded as one particle together does not contain Mg, the elements except O are mass ratio, Ca and Al are 5% or more, S Must be contained by 1% or more. Also, if the particle is M
When g is contained, the elements other than O must be contained in a mass ratio of 5% or more of Ca and Al and 1% or more of Mg and S. In addition, when the oxide contains S, when the oxide and the sulfide are complexed, when the sulfide is deposited around the oxide with the oxide as the nucleus, the growth inhibition of austenite is suppressed. Have the same effect. Hereinafter, oxides or pinning particles will also include the above particles unless otherwise specified. Based on this result, it is effective that the composition of the particles contained in the steel satisfies any of the following.

【0020】酸化物が少なくともCa,Al,Oを含
み、Oをのぞいた元素が質量比で、Ca:5%以上、A
l:5%以上を含む。必要に応じて、該酸化物中に、さ
らにS:1%以上を含む。酸化物が少なくともCa,
Al,Mg,Oを含み、Oをのぞいた元素が質量比で、C
a:5%以上、Al:5%以上、Mg:1%以上を含
む。必要に応じて、該酸化物中に、さらにS:1%以上
を含む。上記要件を満足していれば、該酸化物にその他
の元素、例えば、Si,Mn,Ti,Y,La,Ce等が含
まれていても効果が損なわれることはない。次にピンニ
ングに有効な粒子の大きさについて述べる。分散粒子に
よる結晶粒界のピンニング効果は、分散粒子の体積率が
大きいほど、一個の粒子径が大きいほど大きいが、粒子
の体積率が一定のとき、一個の粒子の大きさが小さい方
が粒子数が多くなりピンニング効果が大きくなるが、あ
まり小さくなると粒界に存在する粒子の割合が小さくな
るため、その効果は低減する。粒子の大きさを種々変化
させた試験片を用いて、高温に加熱したときのオーステ
ナイト粒径を詳細に調査した結果に基づいて、ピンニン
グには粒子の大きさとして、直径で、0.005〜2μ
mのものが効果が大きいことをつきとめ、さらにその中
でも、0.1〜2μmの粒子の大きさが特に有効である
ことを知見した。この結果より、必要な粒子径を0.0
05〜2μm、その中でも特に0.1〜2μmとした。
The oxide contains at least Ca, Al and O, and the elements other than O are in a mass ratio of Ca: 5% or more, A
1: Contains 5% or more. If necessary, the oxide further contains S: 1% or more. If the oxide is at least Ca,
The elements including Al, Mg, and O, excluding O, are C
It contains a: 5% or more, Al: 5% or more, and Mg: 1% or more. If necessary, the oxide further contains S: 1% or more. As long as the above requirements are satisfied, the effect is not impaired even if the oxide contains other elements such as Si, Mn, Ti, Y, La and Ce. Next, the particle size effective for pinning will be described. The pinning effect of the crystal grain boundary by the dispersed particles is larger as the volume ratio of the dispersed particles is larger and the particle size of one particle is larger, but when the volume ratio of the particles is constant, the smaller the size of one particle is Although the number is large and the pinning effect is large, if it is too small, the ratio of particles existing at the grain boundaries becomes small, and the effect is reduced. Based on the results of detailed investigation of the austenite grain size when heated to a high temperature using test pieces with various grain sizes changed, the pinning was performed with a grain size of 0.005 to 0.005 as a diameter. 2μ
It was found that the particle size of m was large, and it was found that the particle size of 0.1 to 2 μm is particularly effective. From this result, the required particle size is 0.0
05 to 2 μm, and particularly 0.1 to 2 μm.

【0021】次に鋼片の高温再加熱時にオーステナイト
粒径が安定となるために必要なピンニング粒子の個数に
ついて検討した。粒子個数が多いほど加熱オーステナイ
ト粒径は微細化するが、粒子数が200個/mm以上
であれば、微細な加熱オーステナイト粒径、具体的には
鋼片の加熱温度が1300℃以下であれば、確実にオー
ステナイト粒径を約50μm以下とすることが可能とな
る。ただし、さらに粒子数を増加させても、ピンニング
効果は徐々に飽和する傾向にある。必要以上に粒子個数
を多くすることは靭性に有害な粗大な粒子が生成する可
能性が高くなり、また現在の工業技術では限界もあるこ
とを考え、粒子数の上限を3000個/mmに限定し
た。該酸化物の大きさおよび個数の測定は、例えば以下
の要領で行なう。母材となる鋼板から抽出レプリカを作
製し、それを電子顕微鏡にて10000倍で20視野以
上、観察面積にして1000μm以上を観察すること
で該酸化物の大きさおよび個数を測定する。このとき鋼
板の表層部から中心部までどの部位から採取した抽出レ
プリカでもよい。また、粒子が適正に観察可能であれ
ば、観察倍率を低くしてもかまわない。
Next, the number of pinning particles necessary for stabilizing the austenite grain size during high temperature reheating of the steel slab was examined. The larger the number of particles, the finer the heated austenite particle size, but if the number of particles is 200 particles / mm 2 or more, the fine heated austenite particle size, specifically, the heating temperature of the steel slab is 1300 ° C. or less. In this case, the austenite grain size can be reliably reduced to about 50 μm or less. However, even if the number of particles is further increased, the pinning effect tends to be saturated gradually. Increasing the number of particles more than necessary increases the possibility that coarse particles harmful to toughness will be generated, and considering that there is a limit in the current industrial technology, the upper limit of the number of particles is set to 3000 particles / mm 2 . Limited The size and number of the oxides are measured, for example, as follows. The size and number of the oxides are measured by making an extraction replica from a steel plate as a base material, and observing it with an electron microscope at a magnification of 10,000 times for 20 fields or more and an observation area of 1000 μm 2 or more. At this time, the extracted replica collected from any portion from the surface layer portion to the central portion of the steel sheet may be used. Further, if the particles can be properly observed, the observation magnification may be lowered.

【0022】酸化物粒子は溶鋼を脱酸する際に生成す
る。これを一次酸化物と称する。さらには鋳造、凝固中
に溶鋼温度の低下とともにTi−Al−Ca酸化物は生
成する。これを二次酸化物と称する。本発明では、一次
酸化物と二次酸化物とのどちらを用いてもかまわない。
構造用鋼として必要な特性を具備するためには、また、
加熱オーステナイト粒の成長をピンニングする安定な粒
子を適正に分散させるためには、析出強化元素以外の元
素についても、個々に限定する必要がある。以下、N
b,V,Mo,W,Ta,Zr以外の元素についての限定理
由を説明する。先ず、Cはパーライト等の第二相を形成
することにより、また、Nb,V,Mo,W,Ta,Zrと
結びついて炭化物形成することにより、鋼の強度を向上
させる有効な成分として添加するもので、0.05%未
満では、本発明において強度発現の基本としている析出
強化代が十分でなく、構造用鋼に必要な強度の確保が困
難であり、また、0.2%を超える過剰の添加は第二相
分率が過大となり、また炭化物が粗大となって靭性を極
端に劣化させるため、また、耐溶接割れ性も著しく低下
させるため、0.01〜0.2%の範囲とした。次に、
Siは脱酸元素として有用であり、また、母材の強度確
保にも有効な元素である。0.05未満では脱酸の効果
が十分でなく、一方、1%を超える過剰の添加はHAZ
に高炭素島状マルテンサイトを生成してHAZ靭性を低
下させるため、本発明ではSiの範囲を0.05〜1%
とした。
Oxide particles are produced when deoxidizing molten steel. This is called a primary oxide. Furthermore, Ti-Al-Ca oxide is produced as the molten steel temperature decreases during casting and solidification. This is called a secondary oxide. In the present invention, either the primary oxide or the secondary oxide may be used.
In order to have the necessary properties as a structural steel,
In order to properly disperse stable particles that pin the growth of heated austenite grains, it is necessary to individually limit the elements other than the precipitation strengthening element. Below, N
The reasons for limitation of elements other than b, V, Mo, W, Ta and Zr will be described. First, C is added as an effective component for improving the strength of steel by forming a second phase such as pearlite and by forming a carbide in combination with Nb, V, Mo, W, Ta and Zr. However, if it is less than 0.05%, the precipitation strengthening allowance, which is the basis for strength development in the present invention, is not sufficient, and it is difficult to secure the strength required for structural steel. Addition of 0.01 to 0.2% causes the second phase fraction to become excessively large, the carbides to become coarse and the toughness to be extremely deteriorated, and the weld crack resistance to be significantly reduced. did. next,
Si is an element that is useful as a deoxidizing element and is also effective in securing the strength of the base material. If it is less than 0.05, the effect of deoxidation is not sufficient, while if added in excess of 1%, HAZ
In order to reduce the HAZ toughness by forming high carbon island martensite in the present invention, the range of Si in the present invention is 0.05 to 1%.
And

【0023】また、Mnは母材の強度靭性の確保に必要
な元素であり、最低限0.1%以上添加する必要がある
が、過剰に添加するとHAZ靭性、溶接割れ性などが劣
化するため、許容できる範囲で上限を2%とした。Pは
不純物元素として、母材、HAZともに靭性に悪影響を
及ぼすので、極力低減するべきであり、本発明では上限
を0.015%とした。Sは硫化物を形成して延性を大
きく劣化させる元素であるため、極力低減する必要があ
り、本発明では上限を0.01%とした。Alは脱酸に
有用な元素であり、またAlNにより母材の加熱オース
テナイト粒径微細化に有効な元素であるが、効果を発揮
するためには0.005%以上含有する必要がある。一
方、0.1%を超えて過剰に含有すると、加熱オーステ
ナイト微細化に有効な微細酸化物の分散に悪影響を及ぼ
し、かつ粗大な酸化物を形成して延性を劣化させるた
め、0.005%〜0.1%の範囲に限定する必要があ
る。
Further, Mn is an element necessary for securing the strength and toughness of the base material, and it is necessary to add at least 0.1%, but if it is added excessively, HAZ toughness, weld cracking property, etc. deteriorate. The upper limit was set to 2% within the allowable range. Since P is an impurity element which adversely affects the toughness of both the base material and HAZ, it should be reduced as much as possible. In the present invention, the upper limit was made 0.015%. Since S is an element that forms sulfides and greatly deteriorates ductility, it is necessary to reduce S as much as possible, and in the present invention, the upper limit was made 0.01%. Al is an element useful for deoxidation and is an element effective for refining the heated austenite grain size of the base material by AlN, but in order to exert the effect, it is necessary to contain 0.005% or more. On the other hand, if it is contained in excess of 0.1%, it adversely affects the dispersion of fine oxides effective for refining the heated austenite, and forms coarse oxides to deteriorate ductility, so 0.005% It is necessary to limit the range to 0.1%.

【0024】Nは固溶状態では延性、靭性に悪影響を及
ぼすため、好ましくないが、V,AlやTiと結びつい
てオーステナイト粒微細化や析出強化に有効に働くた
め、微量であれば機械的特性向上に有効である。また、
工業的に鋼中のNを完全に除去することは不可能であ
り、必要以上に低減することは製造工程に過大な負荷を
かけるため好ましくない。そのため、延性、靭性への悪
影響が許容できる範囲で、かつ、工業的に制御が可能
で、製造工程への負荷が許容できる範囲として下限を
0.001%とする。過剰に含有すると、固溶Nが増加
し、延性や靭性に悪影響を及ぼす可能性があるため、許
容できる範囲として上限を0.01%とする。Tiは加
熱オーステナイト粒径微細化を酸化物によるピンニング
で行う場合には、適正に添加が必要である。効果を発揮
するためには0.005%以上必要である一方、0.0
3%を超えると粗大なTiNや酸化物を形成する恐れが
あるため、本発明においてはTiは0.005〜0.0
3%に限定する。CaもTiと同様、酸化物の微細分散
を加熱オーステナイト微細化に用いる場合には必須の元
素である。加熱オーステナイト粒径微細化に効果を発揮
するためには0.0005%以上必要である一方、0.
003%を超えると粗大な硫化物や酸化物を形成する恐
れがあるため、本発明においてはCaは0.0005〜
0.003%に限定する。
N is not preferable because it adversely affects the ductility and toughness in the solid solution state, but it works effectively for austenite grain refinement and precipitation strengthening in combination with V, Al and Ti. It is effective for improvement. Also,
Industrially, it is impossible to completely remove N in steel, and it is not preferable to reduce N more than necessary because it puts an excessive load on the manufacturing process. Therefore, the lower limit is set to 0.001% as a range in which adverse effects on ductility and toughness are allowable, industrial control is possible, and a load on the manufacturing process is allowable. If it is contained in excess, the amount of solute N increases, which may adversely affect the ductility and toughness, so the upper limit is made 0.01% as an allowable range. Ti needs to be added properly when the heated austenite grain size is refined by oxide pinning. 0.005% or more is necessary to exert the effect, while 0.0
If it exceeds 3%, coarse TiN and oxides may be formed, so that Ti is 0.005 to 0.0 in the present invention.
Limited to 3%. Like Ti, Ca is also an essential element when the fine dispersion of oxides is used for the refinement of heated austenite. 0.0005% or more is necessary in order to exert an effect on the refinement of the heated austenite grain size, while
If it exceeds 003%, coarse sulfides and oxides may be formed. Therefore, in the present invention, Ca is 0.0005-
It is limited to 0.003%.

【0025】また、Mgも酸化物微細分散に有効であ
り、必要に応じて添加する。添加する場合は、0.00
01〜0.002%の範囲とするが、これは0.000
1%未満では効果が明確でなく、0.002%超では酸
化物の粗大化が懸念されるためである。以上が、本発明
において重要な元素及び不純物元素の限定理由である
が、本発明においては、強度・靭性の調整のために、必
要に応じて、さらにNi,Cu,Cr,Bの1種または2
種以上を含有することができる。Niは母材の強度と靭
性を同時に向上でき、非常に有効な元素であるが、効果
を発揮するためには0.1%以上の添加が必要である。
Ni量は増加するほど母材の強度・靭性を向上させる
が、6%を超えるような過剰な添加では、効果が飽和す
る一方で、焼入性が過剰となって、ベイナイトやマルテ
ンサイト、さらには残留オーステナイトの形成を抑制す
ることが困難で、降伏応力の顕著な低下を生じる懸念が
ある。さらには、高価な元素であるため、経済性も考慮
して、本発明においてはNiの上限を3%とする。
Further, Mg is also effective for finely dispersing the oxide, and is added if necessary. If added, 0.00
The range is from 01 to 0.002%, which is 0.000.
This is because if it is less than 1%, the effect is not clear, and if it exceeds 0.002%, coarsening of the oxide is feared. The above are the reasons for limiting the important elements and impurity elements in the present invention. However, in the present invention, in order to adjust the strength and toughness, one of Ni, Cu, Cr, and B, or Two
More than one species can be included. Ni is a very effective element because it can improve the strength and toughness of the base material at the same time, but in order to exert the effect, it is necessary to add 0.1% or more.
As the amount of Ni increases, the strength and toughness of the base material are improved, but if added in excess of 6%, the effect is saturated, while the hardenability becomes excessive, and bainite, martensite, and It is difficult to suppress the formation of retained austenite, and there is a concern that the yield stress may significantly decrease. Further, since it is an expensive element, the upper limit of Ni is set to 3% in the present invention in consideration of economy.

【0026】CuもNiとほぼ同様の効果を有する元素
であるが、効果を発揮するためには0.05%以上の添
加が必要であり、1.5%超の添加では熱間加工性やH
AZ靭性に問題を生じるため、本発明においては、0.
05〜1.5%の範囲に限定する。Crは焼入性の向
上、固溶強化により強度向上に有効な元素であり、効果
を生じるためには0.05%以上必要であるが、Crは
過剰に添加すると硬さの増加、粗大析出物の形成等を通
して、母材やHAZの靭性に悪影響をおよぼすため、許
容できる範囲として、上限を1%に限定する。 Bは極
微量で焼入性を高める元素であり、高強度化に有効な元
素である。Bは固溶状態でオーステナイト粒界に偏析す
ることによって焼入性を高めるため、極微量でも有効で
あるが、0.0002%未満では粒界への偏析量を十分
に確保できないため、焼入性向上効果が不十分となった
り、効果にばらつきが生じたりしやすくなるため好まし
くない。一方、0.005%を超えて添加すると、鋼片
製造時や再加熱段階で粗大な析出物を形成する場合が多
いため、焼入性向上効果が不十分となったり、鋼片の割
れや析出物に起因した延性劣化、靭性劣化を生じる危険
性も増加する。そのため、本発明においては、Bの範囲
を0.0002〜0.005%とする。
Cu is an element which has almost the same effect as Ni, but in order to exert the effect, it is necessary to add at least 0.05%, and if it exceeds 1.5%, hot workability and H
In the present invention, AZ toughness causes a problem.
It is limited to the range of 05 to 1.5%. Cr is an element effective in improving the hardenability and strength by solid solution strengthening, and 0.05% or more is necessary for producing the effect, but if Cr is added excessively, hardness increases and coarse precipitation occurs. Since the toughness of the base material and HAZ is adversely affected through the formation of the product, the upper limit is set to 1% as an allowable range. B is an element that enhances the hardenability in a very small amount and is an element that is effective for increasing the strength. B is effective even at a very small amount because it enhances hardenability by segregating to austenite grain boundaries in a solid solution state, but if it is less than 0.0002%, a sufficient segregation amount to grain boundaries cannot be secured, so quenching It is not preferable because the effect of improving the property tends to be insufficient or the effect tends to vary. On the other hand, if added in excess of 0.005%, coarse precipitates are often formed during the production of the billet or during the reheating stage, so the effect of improving hardenability becomes insufficient, or cracks in the billet occur. The risk of deterioration of ductility and toughness due to precipitates also increases. Therefore, in the present invention, the range of B is 0.0002 to 0.005%.

【0027】さらに、本発明においては、延性の向上、
継手靭性の向上等のために、必要に応じて、Y,La,C
eの1種または2種以上を含有することができる。Yは
介在物を微細化させて母材、HAZの延性やHAZ靭性
向上に有効に働く。その効果を発揮するための下限の含
有量は0.001%である。一方、過剰に含有すると、
硫化物や酸化物の粗大化を生じ、延性の低下や、加熱オ
ーステナイト粒径ピンニング効果の低下による靭性の劣
化を招くため、上限を0.01%とする。La,Ceも
Yとほぼ同様の効果を有し、効果を発揮するためにはい
ずれの元素とも0.005%以上必要である。一方、過
剰な添加による悪影響が生じない上限としては、いずれ
の元素とも0.1%とする。
Further, in the present invention, improvement of ductility,
To improve joint toughness, etc., Y, La, C as necessary
One or two or more of e can be contained. Y is effective in improving the ductility and HAZ toughness of the base material and HAZ by refining inclusions. The lower limit content for exerting the effect is 0.001%. On the other hand, if contained in excess,
The upper limit is set to 0.01%, because coarsening of sulfides and oxides occurs, ductility decreases, and deterioration of toughness due to a decrease in the heating austenite grain size pinning effect occurs. La and Ce also have substantially the same effect as Y, and 0.005% or more of each element is necessary to exert the effect. On the other hand, as an upper limit at which no adverse effect due to excessive addition occurs, 0.1% is set for all elements.

【0028】[0028]

【実施例】以上が、本発明の要件についての説明である
が、さらに、実施例に基づいて本発明の効果を示す。実
施例に用いた鋼板の化学組成、酸化物の組成、サイズ、
個数測定結果、鋼板製造方法、及び強度を表1、2に示
す。表1には鋼中酸化物粒子の組成、粒子径0.005
〜2μmの粒子数の測定結果を示すが、酸化物の組成調
査、及び大きさ、個数の測定は、鋼板のほぼ板厚の1/
4部位から抽出レプリカを作製し、それを電子顕微鏡に
て10000倍で20視野以上、観察面積にして100
0μm以上を観察することで行った。尚、酸化物粒子
とは既述したように、酸化物中にSを含む粒子、酸化物
と硫化物とが複合化している粒子、酸化物を核として硫
化物が該酸化物の周囲に析出している粒子を全て含んだ
ものである。
The above is a description of the requirements of the present invention. Furthermore, the effects of the present invention will be shown based on Examples. The chemical composition of the steel sheet used in the examples, the composition of the oxide, the size,
The results of the number measurement, the steel plate manufacturing method, and the strength are shown in Tables 1 and 2. Table 1 shows the composition of oxide particles in steel, and the particle size is 0.005.
The measurement results of the number of particles of ~ 2 μm are shown.
Extraction replicas were prepared from 4 parts, and they were observed with an electron microscope at a magnification of 20 and more than 20 fields of view.
It was performed by observing 0 μm 2 or more. As described above, the oxide particles include particles containing S in the oxide, particles in which the oxide and sulfide are complexed, and sulfide having the oxide as a nucleus precipitated around the oxide. It contains all the particles that are

【0029】表1に示した化学組成の鋼片を用いて、板
厚15mm〜50mmの鋼板を試作した。試作鋼は真空
溶解または転炉により溶製し、インゴットまたは鋳片を
鋼板に製造した。鋼板の製造方法と鋼板の組織、引張特
性、靭性を表2に示す。鋼板の大部分は、生産性が高
く、圧延負荷の小さい、高温加熱(1150〜1300
℃)、高温圧延(少なくとも1000〜800℃で累積
圧下率50〜90%)を指向し、かつ、熱間圧延後、そ
のまま空冷とした非調質鋼であるが、一部比較例とし
て、熱間圧延後水冷により加速冷却したものもある。鋼
板のフェライト粒径及び各組織の分率は鋼板表面から2
mm、板厚の1/4、板厚中心の3箇所の断面光学顕微鏡
組織において、フェライト粒径は切断法により、組織分
率は点算法により求め、平均した値である。機械的性質
は鋼板の圧延方向に直角な方向が試験片長手方向になる
ように、板厚中心部から試験片を採取して測定した。靭
性は2mmVノッチシャルピー衝撃試験の破面遷移温度
(vTrs)で評価した。
Using steel pieces having the chemical compositions shown in Table 1, steel plates having a plate thickness of 15 mm to 50 mm were experimentally manufactured. The prototype steel was melted by vacuum melting or a converter to manufacture an ingot or a cast piece into a steel plate. Table 2 shows the steel sheet manufacturing method, the steel sheet structure, tensile properties, and toughness. Most of the steel sheets have high productivity and low rolling load, and high temperature heating (1150 to 1300).
C), high temperature rolling (at least 1000 to 800 ° C., cumulative rolling reduction of 50 to 90%), and is a non-heat treated steel that is air-cooled as it is after hot rolling. There is also one that is subjected to accelerated cooling by water cooling after hot rolling. The ferrite grain size of the steel sheet and the fraction of each structure are 2 from the steel sheet surface.
mm, 1/4 of the plate thickness, and the cross-sectional optical microscope structure at three points in the center of the plate thickness, the ferrite grain size is obtained by the cutting method and the tissue fraction is obtained by the point calculation method, and is an average value. The mechanical properties were measured by taking a test piece from the center of the plate thickness so that the direction perpendicular to the rolling direction of the steel sheet was the longitudinal direction of the test piece. The toughness was evaluated by the fracture surface transition temperature (vTrs) of the 2 mm V notch Charpy impact test.

【0030】表1のうち、鋼片番号1〜10は化学組
成、酸化物の状態が本発明の要件を全て満足しているも
のであり、鋼片番号11〜17は化学組成、酸化物の状
態に関する本発明の要件の一部を満足していないもので
ある。表2のうち、試験番号A1〜A14は化学組成、
酸化物が本発明の要件を満足する鋼片を用いて、組織に
関する要件も本発明を全て満足するように製造した鋼板
である。一方、試験番号B1〜B9は本発明のいずれか
の要件を満足していない鋼板である。本発明の要件を全
て満足している試験番号A1〜A14の鋼板は、生産性
を低下させる制御圧延や加工熱処理を行わずとも、化学
組成に比して高い強度が得られており、かつ、良好な靭
性も同時に達成されていることが表2から明らかであ
る。
In Table 1, the steel slab numbers 1 to 10 are those having the chemical composition and the oxide state satisfying all the requirements of the present invention, and the steel slab numbers 11 to 17 are the chemical composition and the oxide. It does not satisfy some of the requirements of the present invention regarding the condition. In Table 2, test numbers A1 to A14 are chemical compositions,
It is a steel sheet manufactured by using a steel slab whose oxide satisfies the requirements of the present invention and also satisfying the requirements of the present invention with respect to structural requirements. On the other hand, test numbers B1 to B9 are steel sheets that do not satisfy any of the requirements of the present invention. The steel sheets of test numbers A1 to A14 satisfying all the requirements of the present invention have high strength as compared with the chemical composition, even without performing controlled rolling or thermomechanical treatment for reducing productivity, and It is clear from Table 2 that good toughness is also achieved.

【0031】一方、本発明の要件を満足していない試験
番号B1〜B9は、全般的に靭性が劣る上、ベイナイト
とマルテンサイトとの合計の分率が10%を超える鋼で
は引張強度に比べて降伏応力が極端に低くなっており、
本発明に比べて強度、靭性ともに劣っていることが明白
である。以下、個々の比較例に関して、本発明に比べて
特性が劣っている理由を詳細に説明する。試験番号B
1、B2は、各々C量,Mn量が過大であるため、フェ
ライト粒径は本発明を満足しているものの、フェライト
粒径以外の組織要件を満足しておらず、靭性の劣化が著
しく、かつ、引張強度に比べて降伏応力が低い。試験番
号B3は、Nb量が過大であるため、フェライトは細粒
化しているものの、Nbの粗大析出物による脆化が生
じ、さらにベイナイトとマルテンサイトとの合計の分率
が10%を超えているため、靭性が顕著に劣る上、降伏
応力も低くなっており、好ましくない。
On the other hand, Test Nos. B1 to B9, which do not satisfy the requirements of the present invention, are inferior in toughness as a whole, and steel having a total fraction of bainite and martensite of more than 10% has a higher tensile strength than that of steel. Yield stress is extremely low,
It is clear that the strength and toughness are inferior to those of the present invention. Hereinafter, the reason why the characteristics of each comparative example are inferior to those of the present invention will be described in detail. Exam number B
Nos. 1 and B2 have excessive amounts of C and Mn, respectively, so that the ferrite grain size satisfies the present invention, but does not satisfy the structural requirements other than the ferrite grain size, and the toughness is significantly deteriorated. Moreover, the yield stress is lower than the tensile strength. In test number B3, since the amount of Nb was excessively large, the ferrite was fine-grained, but embrittlement was caused by coarse precipitates of Nb, and the total fraction of bainite and martensite exceeded 10%. Therefore, the toughness is remarkably inferior and the yield stress is also low, which is not preferable.

【0032】試験番号B4は、析出強化元素個々の量は
本発明範囲内となっているが、Nb当量が本発明を逸脱
して過大なため、試験番号B3と同様、靭性の著しい劣
化と降伏応力の低下が生じている。試験番号B5は、逆
にNb当量が過小であるため、析出強化量が十分でな
く、化学組成が同程度の本発明鋼に比べて強度の低下が
著しい。試験番号B6,B7はいずれも、酸化物の個数
が十分でないために圧延前の加熱オーステナイト粒径が
粗大で、その結果として変態組織のフェライト粒径が本
発明範囲を逸脱して粗大であるために靭性の劣化が大き
い。試験番号B8は、鋼板の製造方法が適切でないため
に組織要件が本発明を満足していない例である。フェラ
イト粒径が過大であるため、靭性が劣り、ベイナイトと
マルテンサイトとの合計の分率も若干過大であるため降
伏応力も低く、好ましくない。
In the test number B4, the individual amounts of the precipitation strengthening elements are within the range of the present invention, but the Nb equivalent is too large to deviate from the present invention. Therefore, similar to the test number B3, the toughness is significantly deteriorated and the yield is increased. There is a decrease in stress. On the contrary, in the test number B5, the Nb equivalent is too small, so the precipitation strengthening amount is not sufficient, and the strength is remarkably reduced as compared with the steel of the present invention having the same chemical composition. In both of the test numbers B6 and B7, the heated austenite grain size before rolling is coarse because the number of oxides is not sufficient, and as a result, the ferrite grain size of the transformation structure is large outside the range of the present invention. The toughness is significantly deteriorated. Test number B8 is an example in which the structural requirements do not satisfy the present invention because the steel sheet manufacturing method is not appropriate. Since the ferrite grain size is too large, the toughness is poor, and the total fraction of bainite and martensite is also a little too large, so the yield stress is also low, which is not preferable.

【0033】試験番号B9は、本発明の化学組成と酸化
物の状態は本発明を満足している鋼片を用いて圧延後、
水冷により加速冷却した例である。すなわち、非調質鋼
ではないが、組織要件が本発明を満足していないため
に、引張強度の割に降伏応力が非常に低くなっている比
較例として示している。以上の実施例から、本発明によ
れば、生産性の劣る製造工程や複雑な製造工程によら
ず、また、高価な合金元素の多量添加をせずに、靭性の
優れた引張強度が490MPa級以上の非調質高張力鋼
が製造可能であることが明白である。
Test No. B9 shows that the chemical composition of the present invention and the state of the oxides were rolled using a steel piece satisfying the present invention.
This is an example of accelerated cooling by water cooling. That is, although it is not a non-heat treated steel, it is shown as a comparative example in which the yield stress is extremely low relative to the tensile strength because the structural requirements do not satisfy the present invention. From the above examples, according to the present invention, the tensile strength excellent in toughness is 490 MPa class without depending on a manufacturing process with poor productivity or a complicated manufacturing process, and without adding a large amount of expensive alloying elements. It is obvious that the above non-heat treated high strength steel can be manufactured.

【表1】 [Table 1]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】本発明により、複雑な製造工程や生産性
の低い製造工程に頼る必要がなく、かつ高価な合金元素
の多量添加を必要としない、靭性の優れた引張強度が4
90MPa級以上の非調質高張力鋼を提供することが可
能となり、産業上の効果は極めて顕著である。
According to the present invention, it is possible to obtain a tensile strength excellent in toughness which does not need to rely on a complicated manufacturing process or a manufacturing process having low productivity and does not require addition of a large amount of expensive alloying elements.
It becomes possible to provide non-heat treated high-strength steel of 90 MPa class or higher, and the industrial effect is extremely remarkable.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白幡 浩幸 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroyuki Shirahata             No. 1 Nishinosu, Oita City, Oita Prefecture Made in New Japan             Oita Steel Works, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C :0.05〜0.2%、Si:
0.05〜1%、Mn:0.1〜2%、P:0.015%以下、
S:0.01%以下、Al:0.005〜0.1%、N:0.0
01〜0.01%、Ti:0.005〜0.03%、Ca:0.
0005〜0.003%を含有し、さらに、Nb:0.0
03〜0.1%、V:0.01〜0.5%、Mo:0.
01〜1%、W :0.01〜1%、Ta:0.003
〜0.1%、Zr:0.005〜0.2%の1種または
2種以上を含有し、かつ、下記(A)式で示されるNb
当量が0.005〜0.1%の範囲を満足し、残部がF
e及び不可避不純物よりなる鋼で、該鋼中に、その組成
が、少なくともCa,Al,Oを含み、Oをのぞいた元素
が質量比で、Ca:5%以上、Al:5%以上を含む、円相
当径で0.005〜2μmの酸化物粒子を単位面積当た
りの個数で、200〜3000個/mm含有し、更
に、フェライトの平均粒径が10μm以下、フェライト
分率が70%以上で、かつ、ベイナイトとマルテンサイ
トとの合計の分率が10%以下である組織を有すること
を特徴とする靭性の優れた非調質高張力鋼。 Nb当量=Nb%+V%/5+Mo%/10+W%/10+Ta%+Zr% /2 ・・・(A)
1. C: 0.05 to 0.2% by mass%, Si:
0.05 to 1%, Mn: 0.1 to 2%, P: 0.015% or less,
S: 0.01% or less, Al: 0.005-0.1%, N: 0.0
01-0.01%, Ti: 0.005-0.03%, Ca: 0.0.
0005 to 0.003%, and Nb: 0.0
03-0.1%, V: 0.01-0.5%, Mo: 0.
01 to 1%, W: 0.01 to 1%, Ta: 0.003
To 0.1%, Zr: 0.005 to 0.2%, one or more, and Nb represented by the following formula (A).
The equivalent satisfies the range of 0.005 to 0.1% and the balance is F
e and inevitable impurities, the composition of which is at least Ca, Al, and O, and the elements other than O are mass ratios of Ca: 5% or more and Al: 5% or more. , Oxide particles having an equivalent circle diameter of 0.005 to 2 μm per unit area of 200 to 3000 particles / mm 2 , and further, an average particle diameter of ferrite is 10 μm or less, and a ferrite fraction is 70% or more. And a non-heat treated high-strength steel having excellent toughness, which has a structure in which the total fraction of bainite and martensite is 10% or less. Nb equivalent = Nb% + V% / 5 + Mo% / 10 + W% / 10 + Ta% + Zr% / 2 (A)
【請求項2】 前記酸化物粒子の組成が少なくともC
a,Al,O,Sを含み、Oを除いた元素が質量比で、C
a:5%以上、Al:5%以上、S:1%以上、を含有するこ
とを特徴とする請求項1に記載の靭性の優れた非調質高
張力鋼。
2. The composition of the oxide particles is at least C
a, Al, O, S, except O, in mass ratio, C
The non-heat treated high tensile steel with excellent toughness according to claim 1, wherein a: 5% or more, Al: 5% or more, and S: 1% or more are contained.
【請求項3】 鋼中にさらに、質量%でMgを0.00
01〜0.002%含有し、かつ前記酸化物粒子の組成が
少なくともCa,Al,Mg,Oを含み、Oを除いた元素
が質量比で、Ca:5%以上、Al:5%以上、Mg:1%
以上、を含有することを特徴とする請求項1に記載の靭
性の優れた非調質高張力鋼。
3. The steel further contains Mg in an amount of 0.00% by mass.
01 to 0.002% and the composition of the oxide particles contains at least Ca, Al, Mg, O, and the elements except O are mass ratio, Ca: 5% or more, Al: 5% or more, Mg: 1%
The non-heat treated high-strength steel with excellent toughness according to claim 1, characterized by containing the above.
【請求項4】 前記酸化物粒子の組成が少なくともC
a,Al,Mg,O,Sを含み、Oを除いた元素が質量比
で、Ca:5%以上、Al:5%以上、Mg:1%以上、
S:1%以上、を含有することを特徴とする請求項3に記
載の靭性の優れた非調質高張力鋼。
4. The composition of the oxide particles is at least C.
a, Al, Mg, O, S, elements excluding O in mass ratio, Ca: 5% or more, Al: 5% or more, Mg: 1% or more,
S: 1% or more is contained, The non-heat treated high strength steel excellent in toughness according to claim 3.
【請求項5】 質量%で、Ni:0.1〜3%、Cu:
0.05〜1.5%、Cr:0.05〜1%、B:0.
0002〜0.005%、の1種または2種以上を含有
することを特徴とする請求項1乃至請求項4のいずれか
に記載の靭性の優れた非調質高張力鋼。
5. In mass%, Ni: 0.1-3%, Cu:
0.05-1.5%, Cr: 0.05-1%, B: 0.
The non-heat treated high-strength steel with excellent toughness according to any one of claims 1 to 4, containing one or more of 0002 to 0.005%.
【請求項6】 質量%で、Y:0.001〜0.01
%、La:0.005〜0.1%、Ce:0.005〜
0.1%、のうち1種または2種を含有することを特徴
とする請求項1乃至請求項5のいずれかに記載の靭性の
優れた非調質高張力鋼。
6. Y: 0.001-0.01 by mass%
%, La: 0.005-0.1%, Ce: 0.005-
The non-heat treated high-strength steel excellent in toughness according to any one of claims 1 to 5, wherein 0.1% or more is contained.
JP2002150169A 2002-05-24 2002-05-24 Non-heat treated high tensile steel having excellent toughness Withdrawn JP2003342670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002150169A JP2003342670A (en) 2002-05-24 2002-05-24 Non-heat treated high tensile steel having excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002150169A JP2003342670A (en) 2002-05-24 2002-05-24 Non-heat treated high tensile steel having excellent toughness

Publications (1)

Publication Number Publication Date
JP2003342670A true JP2003342670A (en) 2003-12-03

Family

ID=29768086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150169A Withdrawn JP2003342670A (en) 2002-05-24 2002-05-24 Non-heat treated high tensile steel having excellent toughness

Country Status (1)

Country Link
JP (1) JP2003342670A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366777C (en) * 2005-12-12 2008-02-06 上海梅山钢铁股份有限公司 High temperature creep-resisting furnace shell material and its preparation method
JP2008088486A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel material excellent in toughness and brittle fracture incident characteristic of welding heat-affected zone, and producing method therefor
JP2008088488A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel with excellent toughness in weld heat-affected zone and toughness in base material, and its manufacturing method
CN102703807A (en) * 2012-06-25 2012-10-03 武汉钢铁(集团)公司 Steel with minus 80-degree C impact absorbing energy no less than 100J for ocean engineering and production method thereof
KR101306241B1 (en) * 2013-01-18 2013-09-10 주식회사 세아베스틸 Direct - quenched low carbon micro-alloyed steels having high strength and high impact toughness and method for manufacturing thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366777C (en) * 2005-12-12 2008-02-06 上海梅山钢铁股份有限公司 High temperature creep-resisting furnace shell material and its preparation method
JP2008088486A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel material excellent in toughness and brittle fracture incident characteristic of welding heat-affected zone, and producing method therefor
JP2008088488A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel with excellent toughness in weld heat-affected zone and toughness in base material, and its manufacturing method
JP4515428B2 (en) * 2006-09-29 2010-07-28 株式会社神戸製鋼所 Steel material excellent in toughness and brittle fracture occurrence characteristics of weld heat affected zone and its manufacturing method
JP4515430B2 (en) * 2006-09-29 2010-07-28 株式会社神戸製鋼所 Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
CN102703807A (en) * 2012-06-25 2012-10-03 武汉钢铁(集团)公司 Steel with minus 80-degree C impact absorbing energy no less than 100J for ocean engineering and production method thereof
CN102703807B (en) * 2012-06-25 2013-07-31 武汉钢铁(集团)公司 Steel with minus 80-degree C impact absorbing energy no less than 100J for ocean engineering and production method thereof
KR101306241B1 (en) * 2013-01-18 2013-09-10 주식회사 세아베스틸 Direct - quenched low carbon micro-alloyed steels having high strength and high impact toughness and method for manufacturing thereof

Similar Documents

Publication Publication Date Title
JP5093422B2 (en) High strength steel plate and manufacturing method thereof
JP4213833B2 (en) High toughness and high strength steel with excellent weld toughness and manufacturing method thereof
KR101892839B1 (en) Steel plate and method of producing same
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP7219882B2 (en) Steel material for pressure vessel and its manufacturing method
EP1444373A1 (en) STEEL PLATE HAVING SUPERIOR TOUGHNESS IN WELD HEAT&amp;minus;AFFECTED ZONE AND METHOD FOR MANUFACTURING THE SAME&amp;comma; WELDING FABRIC USING THE SAME
WO2018105510A1 (en) High mn steel sheet and method for producing same
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
EP1254275A1 (en) STEEL PLATE TO BE PRECIPITATING TiN + ZrN FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME AND WELDING FABRIC USING THE SAME
US20030131914A1 (en) Steel plate to be precipitating tinfor weleded structures, method for manufacturing the same, welding fabric using the same
US6946038B2 (en) Steel plate having Tin+MnS precipitates for welded structures, method for manufacturing same and welded structure
JP2017160510A (en) Nickel steel sheet for low temperature and manufacturing method therefor
KR102405388B1 (en) High Mn steel and its manufacturing method
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JP2018204110A (en) Abrasion resistant thick steel plate
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
CN111051555B (en) Steel sheet and method for producing same
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
JP7126077B2 (en) Method for producing high-manganese steel billet, method for producing high-manganese steel billet and high-manganese steel plate
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP4012497B2 (en) High strength steel with excellent weld heat affected zone toughness and method for producing the same
JP2002371338A (en) Steel superior in toughness at laser weld
KR19980044905A (en) Yield strength 65ksi class line pipe steel manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802