KR970010798B1 - Agglomeration method of fine powder using non-coking coal - Google Patents

Agglomeration method of fine powder using non-coking coal Download PDF

Info

Publication number
KR970010798B1
KR970010798B1 KR1019940040111A KR19940040111A KR970010798B1 KR 970010798 B1 KR970010798 B1 KR 970010798B1 KR 1019940040111 A KR1019940040111 A KR 1019940040111A KR 19940040111 A KR19940040111 A KR 19940040111A KR 970010798 B1 KR970010798 B1 KR 970010798B1
Authority
KR
South Korea
Prior art keywords
compressive strength
reduced
coal
minutes
spectroscopy
Prior art date
Application number
KR1019940040111A
Other languages
Korean (ko)
Other versions
KR960023143A (en
Inventor
정봉진
정영채
신명균
김용하
Original Assignee
김만제
포항종합제철주식회사
신창식
재단법인 산업과학기술연구원
알렉산더 파투찌, 프리쯔 퀴비쉬
뵈스트-알핀 인두스트리안라겐바우 게엠바하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김만제, 포항종합제철주식회사, 신창식, 재단법인 산업과학기술연구원, 알렉산더 파투찌, 프리쯔 퀴비쉬, 뵈스트-알핀 인두스트리안라겐바우 게엠바하 filed Critical 김만제
Priority to KR1019940040111A priority Critical patent/KR970010798B1/en
Publication of KR960023143A publication Critical patent/KR960023143A/en
Application granted granted Critical
Publication of KR970010798B1 publication Critical patent/KR970010798B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The present invention related to method for agglomeration by mixing simply prereduced fine ore with general briquette to be easily invested prereduced fine ore in fusion reduction furnace as the lower process.The present invention comprise a process of mixing particle of general briquette which free swelling factor is above 2 with prereduced fine ore for compound ration to prereduced to be above 20 weight% fine ore; a process of agglomeration by reacting said mixture at the high temperature of above 600 deg.C over 2 minutes.

Description

일반탄에 의한 분체원료의 괴성화 방법Aggregation method of powder raw material by ordinary coal

제1도는 종래방법에 의한 분체원료를 용융환원로에 취입하는 공정을 나타낸 개략도.1 is a schematic view showing a step of blowing the powder raw material by the conventional method into the melt reduction reactor.

제2도는 본 발명에 의해 분체원료를 용융환원로에 취입하는 공정을 나타낸 개략도.2 is a schematic view showing a step of blowing the powder raw material into the melt reduction reactor according to the present invention.

제3도는 시료의 반응시간에 따른 압축강도를 나타낸 그래프.3 is a graph showing the compressive strength according to the reaction time of the sample.

제4도는 시료의 반응온도에 따른 압축강도를 나타낸 그래프.4 is a graph showing the compressive strength according to the reaction temperature of the sample.

제5도는 일반탄 배합비 변화에 따른 압축강도를 나타낸 그래프.5 is a graph showing the compressive strength according to the change of the general coal mix ratio.

제6도는 자유팽윤계수가 상이한 일반탄에 대한 압축강도를 나타낸 그래프.6 is a graph showing the compressive strength for ordinary coals having different free swelling coefficients.

본 발명은 일반탄을 이용하여 분체원료를 괴성화시키는 방법에 관한 것으로서, 보다 상세하는 예비환원 반응기에 의해 배출되는 분광석이 하부공정인 용융환원로에 용이하게 투하될 수 있도록 하기 위하여, 용융환원로의 에너지원으로 사용되고 있는 일반탄을 이용하여 분광석을 괴성화시키는 방법에 관한 것이다.The present invention relates to a method of compacting powder raw materials using ordinary coal, in order to allow the spectroscopy discharged by the preliminary reduction reactor in detail to be easily dropped into the melt reduction reactor, which is a lower process, a melt reduction reactor. It relates to a method of compacting the spectroscopy using ordinary coal used as an energy source of.

제1도는 종래 방법에 의해 분체원료를 용융환원로에 취입하는 공정을 나타낸 개략도이다. 제1도에 나타난 바와같이, 예비환원반응기에서 환원된 분광석을 용융환원로에 직접 투하할 경우, 하부의 용융환원로에서 발생되는 고온의 환원가스에 의하여 미립의 분광석이 비산하게 되는데, 이러한 비산현상으로 인하여 미립의 분광석이 환원로의 상부에서 계속적으로 순환하거나 또는 용융환원로 상부 노벽에 부착물을 형성하게 되어 공정상에 많은 문제점이 발생되고 있다.1 is a schematic view showing a step of blowing the powder raw material into the melt reduction furnace by a conventional method. As shown in FIG. 1, when the spectroscopy reduced in the pre-reduction reactor is directly dropped into the molten reduction reactor, the particulate spectroscopy is scattered by the high temperature reducing gas generated in the lower melting reduction reactor. Due to the scattering phenomenon, the particulate spectroscopy continuously circulates in the upper part of the reduction furnace or forms deposits on the upper furnace wall of the melt reduction furnace, causing many problems in the process.

또한, 용융환원로 하부로부터 발생되는 상승기류에 의해 미립의 환원광석이 용융환원로 외부로 배출되는 경우, 가스청정계에의 부과, 배출된 미립환원광석의 재산화 등의 문제점이 야기되기도 한다.In addition, when the fine reducing ore is discharged to the outside of the melt reduction furnace by the rising air generated from the bottom of the melt reduction furnace, problems such as imposing to the gas cleaning system, reoxidation of the discharged fine reduction ore may be caused.

이러한 문제점을 해결하기 위하여, 미국특허 제4,978,387호의 용융환원공정 및 대한민국 특허출원 제87-12076호의 금속합금회수공정에서는, 예비환원된 미분의 철광석을 용융환원로에 투입하기 위해서 운송가스 및 버너를 이요하고 있다. 그러나, 이 방법을 사용함에 있어서는, 미분체 운송을 위하여 막대한 양의 가스가 필요할 뿐만 아니라, 미분체에 의하여 버너링 주위가 심하게 마모되어 장기간 사용에 많은 문제점이 있다. 또한, 상온의 운송가스의 승온열이 추가로 소요되므로 전체적으로 에너지를 과다 소비하는 요인이 되기도 한다.In order to solve this problem, in the melt reduction process of US Patent No. 4,978,387 and the metal alloy recovery process of Korean Patent Application No. 87-12076, transport gas and burners are used to inject pre-reduced fine iron ore into the melt reduction reactor. Doing. However, in using this method, not only a huge amount of gas is required for the transportation of fine powder, but also there are many problems in long-term use due to severe abrasion around the burner by the fine powder. In addition, the heating temperature of the transport gas at room temperature is additionally consumed, which may cause excessive energy consumption.

또한, 종래에는 일반탄에 피치, 아스팔트, 전분질, 아황산폐액등의 각종 점결제를 혼합한 후에 분광석과 함께 수백기압 이상의 높은 압력을 가하여 성형체로 만드는 방법이 사용되기도 하였다. 그러나, 이와같이 점결제를 사용하여 분체를 괴성화하는 경우에는 점결제로 첨가된 황, 알카리등과 같은 불순물로 인하여 후공정에서 용선을 제조할 때에 용선의 품질을 저하시키는 요인이 되기도 한다.In addition, conventionally, various types of binders such as pitch, asphalt, starch, and sulfite waste were mixed with ordinary coal, and then a high pressure of several hundred atmospheres or more with spectroscopy was used to form a molded article. However, when the powder is agglomerated using the caking agent in this way, impurities such as sulfur and alkali added as the caking agent may cause deterioration of the quality of the molten iron when manufacturing the molten iron in a later process.

본 발명은 상기와 같은 종래방법들의 문제점을 해소하기 위하여 안출된 것으로, 예비환원된 분광석이 용이하게 하부공정인 용융환원로에 투하될 수 있도록, 예비환원된 분광석을 일반탄과 단순히 혼합하여 괴성화시키는 방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the problems of the conventional methods as described above, by simply mixing the pre-reduced spectroscopy with ordinary coal so that the pre-reduced spectroscopy can be easily dropped into the molten reduction furnace of the lower process Its purpose is to provide a method of compaction.

즉, 본 발명에 있어서는 분광석을 일반탄과 혼합시킴에 있어서, 피치, 아스팔트 등과 같은 점결제를 사용하지 않고, 일반탄이 고온에서 열분해될 때 생성되는 자체점결성 물질로 환원분광석을 괴성화시키는 것이기 때문에, 종래방법에 있어서 처럼 점결제등의 첨가로 인한 문제점이 발생되지 않는다.That is, in the present invention, when mixing the spectroscopy with ordinary coal, it is possible to agglomerate the reduced spectroscopy with a self-adhesive material produced when the coal is pyrolyzed at high temperature without using a binder such as pitch or asphalt. Therefore, a problem due to addition of a caking additive or the like does not occur as in the conventional method.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 자유팽윤계수가 2이상인 미립의 일반탄을 예비환원 분광석에 대한 배합비가 20중량% 이상되도록 예비환원 분광석과 혼합하고, 이 혼합물을 600℃ 이상의 온도에서 2분 이상 반응시켜 괴성화시키는 것을 특징으로 하는, 일반탄에 의한 분체 원료 괴성화방법이다.In the present invention, the fine coal having a free swelling coefficient of 2 or more is mixed with the pre-reduced spectroscopy such that the blending ratio of the pre-reduced spectroscopy is 20% by weight or more, and the mixture is reacted for at least 2 minutes at a temperature of 600 ° C. or more to be compacted. It is a powder raw material compaction method by a general coal characterized by the above-mentioned.

예비환원된 분광석을 괴성화하여 이를 용융환원로에 중력을 이용하는 투하형식으로 투입함에 있어서, 낙하거리와 용융환원로의 가스상승에 따라 달라질 수 있겠지만, 일반적인 용융환원로에 있어서 낙하높이가 10m인 것을 상정할 때, 괴성화된 분체의 바람직한 압축강도는 약 5kg/㎠ 이상이어야 한다.When compacting the pre-reduced spectroscopy and feeding it into the melt-type drop-off type, it may vary according to the drop distance and the gas rise of the melt-reduction furnace, but in the general melt-reduction furnace, the drop height is 10 m. Given that, the preferred compressive strength of the compacted powder should be at least about 5 kg / cm 2.

괴성화된 분체의 압축강도가 약 5kg/㎠ 이상이 되도록 예비환원 분광석과 일반탄을 반응시킴에 있어서, 일반탄의 자유팽윤계수, 예비환원 분광석에 대한 일반탄의 배합비, 반응온도 및 반응시간등이 서로 상대적으로 영향을 미치기 때문에 이들 반응요소 각각에 대한 일반적인 기준을 제시하기는 매우 어렵다.In the reaction of pre-reduced spectroscopy and ordinary coal such that the compressive strength of the compacted powder is about 5 kg / cm 2 or more, the free swelling coefficient of the regular coal, the mixing ratio of the general carbon to the pre-reduced spectroscopy, reaction temperature and reaction It is very difficult to provide a general standard for each of these response factors, since time, etc., are relative to each other.

그러나, 대체적으로 보아 각 반응요소들의 바람직한 조건범위는, 일반탄의 자유팽윤계수는 2이상, 예비환원분광석에 대한 일반탄의 배합비는 20중량% 이상, 반응온도는 600℃이상, 반응시간은 2분이상이다.However, in general, the preferred condition range of each reaction element is free coal swelling coefficient of 2 or more, the mixing ratio of ordinary carbon to prereduced ore is 20% by weight or more, the reaction temperature is 600 ℃ or more, the reaction time is More than 2 minutes.

본 발명에 사용되는 일반탄의 자유팽윤계수가 2이상이어야 하는 이유는 자유팽윤계수가 2 미만인 경우에는 고온으로 반응시키더라도 시료의 압축강도가 증가하지 않기 때문이고, 일반탄과 예비환원분광석의 배합에 있어서, 일반탄이 적어도 20중량% 이상이어야 하는 이유는 20중량% 미만에서 괴성화된 혼합물이 중력낙하되기에 적합한 압축강도를 보여주지 못하기 때문이다.The reason why the free swelling coefficient of the general coal used in the present invention should be 2 or more is that if the free swelling coefficient is less than 2, the compressive strength of the sample does not increase even when reacted at high temperature. In the formulation, the reason why the coal should be at least 20% by weight is that the compacted mixture at less than 20% by weight does not show a suitable compressive strength for gravity drop.

한편, 혼합물을 반응시킴에 있어서는 약 600℃ 이상이 적합하나데, 600℃ 보다 낮은 경우에는 바람직한 압축강도가 이루어지지 않기 때문이다. 온도가 높을수록 압축강도도 증가하나, 약 600-700℃에서 가장 바람직한 압축강도가 형성되므로, 에너지 손실을 줄인다는 의미에서 볼 때, 약 600-700℃가 바람직하다.On the other hand, when reacting the mixture, about 600 ° C. or more is suitable, because when the mixture is lower than 600 ° C., the desired compressive strength is not achieved. The higher the temperature, the higher the compressive strength, but since the most desirable compressive strength is formed at about 600-700 ° C., about 600-700 ° C. is preferable in view of reducing energy loss.

그리고, 반응시간은 2분 이상이어야 하는데, 반응시간이 2분보다 짧은 때에는 미쳐 반응이 제대로 일어나지 않고, 또 반응시간이 10분보다 긴 경우에는 오히려 압축강도가 줄어드는 문제점이 있다. 바람직하게는 반응시간을 5-10분으로 하는 것이 좋다.In addition, the reaction time should be 2 minutes or more, but when the reaction time is shorter than 2 minutes, the reaction does not occur properly, and when the reaction time is longer than 10 minutes, there is a problem that the compressive strength is rather reduced. Preferably the reaction time is 5-10 minutes.

이하, 실시예에 의거 본 발명을 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated based on an Example.

실시예 1Example 1

예비환원된 분광석과 일반탄의 혼합물을 고온에서 반응시킬 때 괴성화 될 수 있는 가능성 및 괴성화시 중력투입에 적합한 압축강도가 되는지 여부를 알아보기 위하여 입자크기가 각각 2mm 이하인 환원철 및 일반탄을 시료로 하여 1600℃까지 승온이 가능한 전기로를 사용하여 실험을 수행하였다.To find out the possibility of agglomeration when reacting the mixture of pre-reduced spectroscopy and ordinary coal at high temperature and whether the compressive strength is suitable for gravity injection during agglomeration, reduced iron and coal with a particle size of 2 mm or less, respectively The experiment was carried out using an electric furnace capable of raising the temperature to 1600 ℃ as a sample.

실험을 수행하는 동안 환원실의 재산화방지 및 일반탄의 연소를 방지하기 위하여 질소를 공급하였다.During the experiment, nitrogen was supplied to prevent reoxidation of the reduction chamber and to prevent combustion of ordinary coal.

실험에 사용된 시료는 38% 예비환원된 환원철과 자유팽윤계수가 4.5인 일반탄이며, 환원철과 일반탄의 구성비는 무게비로 7 : 3이었다. 이와같은 구성으로 혼합된 시료를 도가니에 담아 700℃로 미리 가열된 전기로에 넣은 후 반응시간을 각각 5, 10, 15, 20, 25분으로 달리하여 반응시키고, 반응후의 시료에 대하여 압축강도를 측정하였다. 이때 측정된 각 시료의 압축강도는 제3도와 같다.The samples used in this experiment were 38% pre-reduced reduced iron and plain carbon with free swelling coefficient of 4.5, and the composition ratio of reduced iron and ordinary coal was 7: 3 by weight. Put the mixed sample in such a crucible and put it in an electric furnace preheated to 700 ° C., and react the reaction time by 5, 10, 15, 20 and 25 minutes, respectively, and measure the compressive strength of the sample after the reaction. It was. The compressive strength of each sample measured at this time is shown in FIG.

제3도에서 보듯이, 반응시간이 2분이었을때, 괴성체의 최소필요 압축강도인 5kg/㎠에 달하였으며, 반응시간이 5-10분이었을 때에는 압축강도가 우수하였으나, 반응시간이 10분을 초과하였을 때에는 오히려 압축강도가 줄어들었다.As shown in FIG. 3, when the reaction time was 2 minutes, the minimum required compressive strength of the compacted body reached 5 kg / cm 2, and when the reaction time was 5-10 minutes, the compressive strength was excellent, but the reaction time was 10 minutes. When exceeded, the compressive strength decreased.

실시예 2Example 2

실시예 1에서와 동일한 조건하에서, 반응시간을 10분에 고정하고, 반응온도를 600℃부터 850℃까지 50℃씩 변화시키며 실험을 수행하고, 반응후의 시료에 대하여 압축강도를 측정하였다.Under the same conditions as in Example 1, the reaction time was fixed at 10 minutes, the experiment was carried out by changing the reaction temperature from 600 ℃ to 850 ℃ by 50 ℃, and the compressive strength was measured for the sample after the reaction.

이때 측정된 각 시료의 압축강도는 제4도와 같다.The compressive strength of each sample measured at this time is shown in FIG.

제4도에서 보듯이, 반응온도가 상승될수록 압축강도가 증가하였으며, 반응온도가 약 600-700℃인 경우에는 소망스러운 압축강도가 형성되었다. 800℃이상에서도 시료의 압축강도는 우수하였으나 열손실등을 고려할 때, 반응온도 약 600-700℃가 가장 바람직하다고 하겠다.As shown in FIG. 4, as the reaction temperature increases, the compressive strength increases, and when the reaction temperature is about 600-700 ° C., the desired compressive strength is formed. The compressive strength of the sample was excellent even at 800 ℃ or higher, but considering the heat loss, the reaction temperature about 600-700 ℃ would be the most desirable.

실시예 3Example 3

실시예 1에서와 동일한 조건하에서, 반응온도 및 반응시간을 700℃, 10분으로 고정하고, 각각 38%, 80%, 90%로 예비환원된 환원철에 대하여 일반탄의 배합비를 20%에서 60%까지 10%씩 증가시키면서 실험을 수행하였다. 반응후의 시료에 대한 압축강도는 제5도와 같다.Under the same conditions as in Example 1, the reaction temperature and the reaction time were fixed at 700 ° C. and 10 minutes, and the blending ratio of ordinary carbon was reduced from 20% to 60% for the reduced iron pre-reduced to 38%, 80%, and 90%, respectively. Experiments were performed in increments of 10%. The compressive strength of the sample after the reaction is shown in FIG.

제5도에서 보듯이, 각각의 환원철에 대하여 일반탄의 배합비가 20% 이상부터는 환원철의 환원율에 관계없이 중력낙하시키기에 적합한 압축강도를 보여주었다.As shown in FIG. 5, for each reduced iron, from 20% or more of the blended carbon, the compressive strength suitable for gravity drop was shown irrespective of the reduction rate of the reduced iron.

실시예 4Example 4

실시예 1에서와 동일한 조건하에서, 반응온도 및 반응시간을 700℃, 10분으로, 그리고 환원철과 일반탄의 배합비를 7 : 3이 되도록 고정하고, 38% 예비환원된 환원철에 자유팽윤계수가 상이한 일반탄의 종류를 변화시키면서 실험을 수행하였다. 반응후의 시료에 대한 압축강도는 제6도와 같다.Under the same conditions as in Example 1, the reaction temperature and reaction time were fixed at 700 ° C. and 10 minutes, and the mixing ratio of reduced iron and ordinary carbon was set to 7: 3, and the free swelling coefficient was different from that of the 38% pre-reduced reduced iron. The experiment was carried out while changing the type of ordinary bullet. The compressive strength of the sample after the reaction is shown in FIG.

제6도에서 보듯이, 시료의 압축강도는 일반탄의 자유팽윤계수가 2이상부터 바람직한 강도를 나타내었다.As shown in FIG. 6, the compressive strength of the sample showed the preferred strength from 2 or more free swelling coefficient.

본 발명은, 전술하였듯이, 예비환원된 분광석에 일반탄을 혼합하여 고온에서 반응시킴으로써, 분광석을 괴성화시키고 나아가 하부공정의 용융환원로에 중력에 의한 투하가 용이하도록 하는 일반탄에 의한 분체원료의 괴성화 방법인 바, 본 발명은 종래방법등과 비교할 때 보다 경제적이면서도 부작용이 적은 아주 유용한 것이라 하겠다.The present invention, as described above, by mixing the ordinary carbon in the pre-reduced spectroscopy and reacting at high temperature, the powder by the ordinary coal to agglomerate the spectroscopy and to facilitate the drop by gravity to the molten reduction furnace of the lower process As a method of compacting the raw materials, the present invention is more economical and has less side effects than the conventional methods.

한편, 종래에는 미분탄은 연료로서도 잘 사용되지 아니하였는데, 본 발명에 의하여 그 사용이 증대될 수 있으므로, 본 발명은 미분단 활용의 다변화를 꾀할 수 있게 하는 것이기도 하다.On the other hand, in the past, pulverized coal was not well used as a fuel, but since the use thereof can be increased by the present invention, the present invention also enables diversification of pulverized utilization.

Claims (1)

자유팽윤계수가 2이상인 미립의 일반탄을 예비환원분광석에 대한 배합비가 20중량% 이상되도록 예비환원분광석과 혼합하고, 이 혼합물을 600℃ 이상의 고온에서 2분 이상 반응시켜 괴성화되도록 하는 것을 특징으로 하는, 일반탄에 의한 분체 원료 괴성화방법.The fine coal having a free swelling coefficient of 2 or more is mixed with the pre-reduced ore so that the mixing ratio to the pre-reduced ore is 20% by weight or more, and the mixture is allowed to react for at least 2 minutes at a high temperature of 600 ° C. or more to be compacted. The powder raw material compaction method by a general carbon characterized by the above-mentioned.
KR1019940040111A 1994-12-30 1994-12-30 Agglomeration method of fine powder using non-coking coal KR970010798B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940040111A KR970010798B1 (en) 1994-12-30 1994-12-30 Agglomeration method of fine powder using non-coking coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940040111A KR970010798B1 (en) 1994-12-30 1994-12-30 Agglomeration method of fine powder using non-coking coal

Publications (2)

Publication Number Publication Date
KR960023143A KR960023143A (en) 1996-07-18
KR970010798B1 true KR970010798B1 (en) 1997-07-01

Family

ID=19405987

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940040111A KR970010798B1 (en) 1994-12-30 1994-12-30 Agglomeration method of fine powder using non-coking coal

Country Status (1)

Country Link
KR (1) KR970010798B1 (en)

Also Published As

Publication number Publication date
KR960023143A (en) 1996-07-18

Similar Documents

Publication Publication Date Title
US6605130B2 (en) Pellets incorporated with carbonaceous material
KR100710943B1 (en) Process for producing particulate iron metal
KR100730820B1 (en) Method for producing improved coal for use in metallurgy, and method for producing reduced metal and slag containing oxidized nonferrous metal
US3660298A (en) Furnace charge for use in the production of silicon metal
WO2009125814A1 (en) Agglomerate, containing titanium oxide, for manufacturing granular metallic iron
IE51422B1 (en) Preparation of silicon from quartz and carbon
KR101739858B1 (en) Coal briquettes, method and apparatus for manufacturing the same
JP2007077484A (en) Method for manufacturing carbonaceous material-containing agglomerate
KR100276344B1 (en) Smelting reduction process
US3938987A (en) Process for preparing a smelter furnace charge composition
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
US4728358A (en) Iron bearing briquet and method of making
US4389493A (en) Process for the production of silicon-containing and carbon-containing raw material moldings, and the use of such moldings
JP3502011B2 (en) Manufacturing method of carbonized interior agglomerates
KR970010798B1 (en) Agglomeration method of fine powder using non-coking coal
JP3900721B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JPH05263155A (en) Production of sintered or pelletized ore as blast-furnace material using lime cake
JP2003301205A (en) Method for charging blast furnace material
JP3863104B2 (en) Blast furnace operation method
JP4078285B2 (en) Blast furnace operation method
JP3718604B2 (en) Blast furnace raw material charging method
RU2092564C1 (en) Blast furnace charging method
JPS60169512A (en) Carburizer for metallurgy
NL1009869C2 (en) Pellets comprising iron ore and fuel, used for producing crude iron, contain optionally powdered coal in their core
JP3531464B2 (en) Method for producing sintered ore with low SiO2 content

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121029

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20131024

Year of fee payment: 17