JP2003301205A - Method for charging blast furnace material - Google Patents

Method for charging blast furnace material

Info

Publication number
JP2003301205A
JP2003301205A JP2002109374A JP2002109374A JP2003301205A JP 2003301205 A JP2003301205 A JP 2003301205A JP 2002109374 A JP2002109374 A JP 2002109374A JP 2002109374 A JP2002109374 A JP 2002109374A JP 2003301205 A JP2003301205 A JP 2003301205A
Authority
JP
Japan
Prior art keywords
blast furnace
raw material
carbonaceous material
ore
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002109374A
Other languages
Japanese (ja)
Other versions
JP3863052B2 (en
Inventor
Akito Kasai
昭人 笠井
Yoshiyuki Matsui
良行 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002109374A priority Critical patent/JP3863052B2/en
Publication of JP2003301205A publication Critical patent/JP2003301205A/en
Application granted granted Critical
Publication of JP3863052B2 publication Critical patent/JP3863052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for charging blast furnace materials, which enhances a gas utilization factor to the maximum, and reduces a fuel ratio without deteriorating permeability of the air and a liquid, by using agglomerated ore including carbonaceous materials, even under the condition that the charge weight of the agglomerated ore including the carbonaceous materials is limited particularly in a blast furnace operation of blowing a large quantity of auxiliary fuels. <P>SOLUTION: When alternately charging the blast furnace materials such as sintered ore, pellets and massive ore, and cokes so as to form layers, into a blast furnace into which the auxiliary fuels of 100 kg or more per 1 t of pig iron are determined to be blown, this charging method is characterized by making a half or thinner part of a thickness of the raw material layer spreading from the top of each raw material layer consisting of the blast furnace materials to the bottom part, include the agglomerated ore containing the carbonaceous materials obtained by means of hot compacting a mixture containing fine ore and coal powders having the Gisella maximum fluidity (MF) satisfying log MF≥1.0, in a range of 300-550°C. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高炉原料装入方法
に関し、特には微粉炭多量吹込み操業時における操業の
安定性を維持する上で好適な高炉原料装入方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace raw material charging method, and more particularly to a blast furnace raw material charging method suitable for maintaining the stability of the operation during the operation of blowing a large amount of pulverized coal.

【0002】[0002]

【従来の技術】高炉操業においては、焼結鉱、ペレット
(焼成ペレット)、塊鉱石等の高炉原料(塊状酸化鉄原
料)とコークス(塊状炭材)とが層状に交互に装入され
るが、その装入の際、炉内半径方向の鉱石とコークスの
質量比(以下この比をO/Cと略記する)を高精度に制御
して、炉内のガス流分布、融着帯形状等を目標範囲内に
維持管理すること、すなわち、中心流を適正に確保する
ことが、高炉の安定操業を図る上で重要とされている。
2. Description of the Related Art In a blast furnace operation, blast furnace raw materials (lump iron oxide raw materials) such as sinter, pellets (calcined pellets) and lump ores and cokes (lump carbonaceous materials) are charged alternately in layers. During the charging, the mass ratio of ore and coke in the radial direction of the furnace (hereinafter this ratio is abbreviated as O / C) is controlled with high accuracy, and the gas flow distribution in the furnace, the cohesive zone shape, etc. It is important to maintain the temperature within the target range, that is, to properly secure the central flow in order to achieve stable operation of the blast furnace.

【0003】そして従来より、炉内半径方向のO/C分布
を制御するために、ベル式装入装置を備えた高炉におい
てはムーバブルアーマの設定位置を適正に制御すること
が、またベルレス式装入装置を備えた高炉においては分
配シュートの傾動角度を調節することが行われてきた。
最近では別ルートの装入シュートを併設し、その装入シ
ュートにより高炉中心部に高炉原料又は/及びコークス
を直接装入する方法が提案されている。これらの方法を
適正に利用し、炉内半径方向のO/C分布を高精度に制御
することにより、ガス流れを制御しながらガス利用率
〔ηCO= CO2/(CO+CO2)×100 〕を改善し、高炉の燃料
比(銑鉄 1トンを製造するために必要な燃料質量)を低
下させることができるとされている。
Conventionally, in order to control the O / C distribution in the radial direction in the furnace, in a blast furnace equipped with a bell-type charging device, it is necessary to properly control the set position of the movable armor, and also to use the bell-less type charging device. It has been practiced to adjust the tilt angle of the distribution chute in a blast furnace equipped with a charging device.
Recently, a method has been proposed in which a charging chute of another route is installed side by side and the charging chute directly charges the blast furnace raw material and / or coke into the center of the blast furnace. By properly using these methods and controlling the O / C distribution in the furnace radial direction with high accuracy, the gas utilization rate [η CO = CO 2 / (CO + CO 2 ) × 100] can be controlled while controlling the gas flow. It is said that the fuel ratio of the blast furnace (fuel mass required to produce 1 ton of pig iron) can be improved.

【0004】高炉原料は炉内装入後、炉内を降下する過
程で、炉内を上昇する還元ガスにより加熱昇温され還元
される。代表的な高炉内高さ方向における温度変化、ガ
ス成分変化を図1に示す。また、各原料層は層厚が30〜
150cmあるため、図2に示すように、各原料層中の層
厚方向においても成分変化が存在し、ガスのCOポテンシ
ャル(=CO/(CO+CO2))は、原料層の上部は下部に比べ
必然的に低くなる。そのため、各原料層の上部に存在す
る鉱石の還元が遅れて還元率が低下し、生下り等の高炉
不調の原因となりやすい。
The blast furnace raw material is heated and heated by the reducing gas rising in the furnace to be reduced in the process of descending in the furnace after entering the furnace interior. Figure 1 shows changes in temperature and gas components in the typical height direction of the blast furnace. Also, each raw material layer has a layer thickness of 30 to
Since it is 150 cm, as shown in Fig. 2, there is a component change in the layer thickness direction in each raw material layer, and the CO potential of gas (= CO / (CO + CO 2 )) is lower in the upper portion of the raw material layer. Inevitably lower than. Therefore, the reduction of the ore existing in the upper part of each raw material layer is delayed and the reduction rate is lowered, which is likely to cause a blast furnace malfunction such as a downfall.

【0005】ここで、コークス層厚は融着帯での通気性
を確保するため、層厚に下限が存在する。一方、近年精
力的に実施されている微粉炭(補助燃料)多量吹き込み
操業を行う場合には、燃料比(=コークス比+微粉炭
(補助燃料)比)を維持するためには炉頂から装入する
コークス量を減少させる必要がある。したがって、微粉
炭(補助燃料)多量吹き込み操業を行うためにはO/Cを
高くせざるを得ず、必然的に原料層厚は厚くなる。その
ため、原料層上部の還元遅れはさらに顕著となり、高炉
操業が不安定となることから、操業トラブルを回避する
ため燃料比を高くせざるを得ないのが現状である。
The coke layer thickness has a lower limit in order to ensure air permeability in the cohesive zone. On the other hand, when a large amount of pulverized coal (auxiliary fuel) is blown in, which has been vigorously carried out in recent years, in order to maintain the fuel ratio (= coke ratio + pulverized coal (auxiliary fuel) ratio), the furnace top is installed. It is necessary to reduce the amount of coke entering. Therefore, in order to carry out a large-scale pulverized coal (auxiliary fuel) blowing operation, there is no choice but to increase the O / C, which inevitably increases the raw material layer thickness. Therefore, the reduction delay in the upper part of the raw material layer becomes more prominent and the operation of the blast furnace becomes unstable. Therefore, it is the current situation that the fuel ratio must be increased in order to avoid operational troubles.

【0006】また、微粉炭(補助燃料)多量吹き込み時
には、炉頂からの固体の装入量が減少することから、熱
流比〔固体の熱容量/気体の熱容量〕が低下することに
より炉頂温度が高くなるため、炉壁及び炉頂からの熱損
失の更なる増加や、これまで飛散しなかったサイズのダ
ストが飛散することによるダスト比の増加等の問題によ
り、燃料比が上昇すると言った問題も出てきている(従
来技術1)。
In addition, when a large amount of pulverized coal (auxiliary fuel) is blown in, the amount of solids charged from the furnace top decreases, so that the heat flow ratio [heat capacity of solids / heat capacity of gas] decreases and the furnace top temperature increases. The fuel ratio rises due to problems such as a further increase in heat loss from the furnace wall and furnace top, and an increase in the dust ratio due to the scattering of dust that was not scattered until now. Are also coming out (prior art 1).

【0007】一方、高炉原料の被還元性を改善して、こ
れを従来の焼結鉱やペレットなどの高炉原料に混合して
用いることにより、各原料層の層厚方向全体の還元を促
進し、高炉操業の安定化や燃料比の低減等を図る提案が
種々なされている。
On the other hand, by improving the reducibility of the blast furnace raw material and mixing it with the conventional blast furnace raw material such as sinter or pellets, the reduction of the respective raw material layers in the layer thickness direction is promoted. Various proposals have been made to stabilize the blast furnace operation and reduce the fuel ratio.

【0008】例えば、固体炭材(例えば石炭粉、コーク
ス粉等)と粉鉱石又はダスト(炭素、酸化鉄等の混合
物)にバインダを加えて冷間成形された炭材内装コール
ドボンドペレットあるいはコンポジットと称されるもの
が提案されている(特公平1−28085、特許2600803、特
開昭60-262907等参照)。そして、炭材内装コールドボ
ンドペレットを使用するとガス利用率が向上することが
報告〔井上ら:鉄と鋼(1986),S885〕されている。し
かし、炭材内装コールドボンドペレットあるいはコンポ
ジットの製造にバインダとしてセメント類を用いた場合
には、高炉内での還元時において、セメント類中の結晶
水の分解や脱炭酸、酸化鉄の還元による変態等により強
度が低下して粉化し、通気性を悪化させる。さらに、高
炉内のスラグ比が上昇するため通液性が悪化する問題も
懸念される。また、成形後、コールドボンドペレットの
強度を発現するため、ペレットを養生するための広大な
用地や長時間を要する問題もある。一方、これを改善し
てセメント類以外のバインダを用いた場合には費用が高
くコストメリットがなくなる(従来技術2)。
For example, a solid carbonaceous material (for example, coal powder, coke powder, etc.) and powdered ore or dust (mixture of carbon, iron oxide, etc.) with a binder added thereto, and cold-formed carbonaceous material-containing cold bond pellets or composites. What is called is proposed (see Japanese Patent Publication No. 1-28085, Japanese Patent No. 2600803, Japanese Patent Laid-Open No. 60-262907, etc.). It has been reported that the use of cold bond pellets containing carbon material improves the gas utilization rate [Inoue et al .: Iron and Steel (1986), S885]. However, when cements are used as a binder in the production of carbonaceous material cold bond pellets or composites, during the reduction in the blast furnace, the water of crystallization in the cements is decomposed or decarboxylated, and the iron oxides are transformed. As a result, the strength is reduced and the powder is pulverized to deteriorate the air permeability. Furthermore, there is a concern that the liquid permeability may deteriorate because the slag ratio in the blast furnace increases. In addition, since the strength of the cold bond pellets is expressed after molding, there is a problem that a vast site for curing the pellets and a long time are required. On the other hand, if this is improved and a binder other than cement is used, the cost is high and the cost merit is lost (prior art 2).

【0009】そこで、本発明者らは、粉鉱石と石炭粉の
混合物を350〜550℃の温度に加熱した状態で成形した炭
材内装塊成鉱を、焼結鉱、ペレット、塊鉱石等の高炉原
料に混合して高炉へ装入する方法を開発した(特開2000
−290709参照)。この方法によれば、石炭粉の軟化溶融
時に圧縮成形し、その後固化させているため十分な強度
を確保しつつセメント類等のバインダを不要とするの
で、スラグ比が上昇せず通液性が悪化する問題は生じな
い。また、炭材内装塊成鉱中の溶融後固化した炭素と鉱
石との接触が緊密なため、還元反応が高炉内の低温域か
ら開始し、またその反応により発生するガスはCOガスが
主体であるため、混合した焼結鉱、ペレット、塊鉱石等
の原料の還元に利用されるので、ガス利用率を向上で
き、それに伴い燃料比を低下させることができる。ま
た、燃料として装入したコークスとCO2ガスとの反応が
抑制されることから、コークスの粉発生量が低下できる
とともに、高炉内の通気性が向上することを見出した
(従来技術3)。
Therefore, the present inventors have prepared a carbonaceous material-containing agglomerated ore obtained by molding a mixture of powdered ore and coal powder at a temperature of 350 to 550 ° C. We have developed a method of charging the blast furnace raw material and charging it into the blast furnace (JP 2000
-290709). According to this method, since compression molding is performed at the time of softening and melting of coal powder, and thereafter solidified, binders such as cements are unnecessary while securing sufficient strength, so the liquid permeability does not increase the slag ratio. There is no worsening problem. In addition, since the carbon solidified after melting in the agglomerated ore containing carbonaceous materials and the ore are in close contact, the reduction reaction starts from the low temperature region in the blast furnace, and the gas generated by the reaction is mainly CO gas. Therefore, since it is used for the reduction of the raw materials such as the mixed sinter, pellets, and lump ore, the gas utilization rate can be improved and the fuel ratio can be reduced accordingly. It was also found that the reaction between coke charged as fuel and CO 2 gas is suppressed, so that the amount of coke dust generated can be reduced and the air permeability in the blast furnace is improved (Prior Art 3).

【0010】[0010]

【発明が解決しようとする課題】上記従来技術3の方法
による場合、高炉に装入される燃料は、炉頂から装入さ
れるコークス、羽口から吹き込まれる補助燃料、および
炭材内装塊成鉱中の炭材である。ここで、コークスは、
高炉内で通気性および通液性を確保する役割を果たすも
のである。したがって、高炉全体の燃料比を維持ないし
低減しつつ、高炉内での通気性、通液性が確保できるコ
ークス量を装入し、かつ低廉な補助燃料(微粉炭、廃プ
ラスチック、タイヤ屑など)を多量に吹き込むために
は、炭材内装塊成鉱により高炉内に持ち込まれる炭材量
が制限される。つまり、炭材内装塊成鉱の装入量が制限
されることになる。そのため、このような限られた炭材
内装塊成鉱の装入量によっても、最大限に燃料比の低減
や操業の安定化の効果が得られる装入方法の開発が要請
されていた。
In the case of the method of the above-mentioned prior art 3, the fuel charged into the blast furnace is coke charged from the furnace top, auxiliary fuel blown from the tuyere, and carbon material-containing agglomerate. It is a carbonaceous material in the mine. Where the coke is
It plays a role of ensuring air permeability and liquid permeability in the blast furnace. Therefore, while maintaining or reducing the fuel ratio of the entire blast furnace, the amount of coke that can ensure the air permeability and liquid permeability in the blast furnace is charged, and the low cost auxiliary fuel (pulverized coal, waste plastic, tire scrap, etc.) In order to blow a large amount of carbonaceous material, the amount of carbonaceous material brought into the blast furnace is limited by the carbonaceous material-containing agglomerated ore. In other words, the charging amount of carbonaceous material agglomerated ore will be limited. Therefore, there has been a demand for the development of a charging method capable of maximally reducing the fuel ratio and stabilizing the operation even with such a limited charging amount of the carbonaceous material-containing agglomerated ore.

【0011】そこで、本発明の目的は、上記炭材内装塊
成鉱を用いて、特に補助燃料を多量に吹き込む高炉操業
において炭材内装塊成鉱の装入量が制限された条件下に
おいても、通気、通液性を悪化させることなく最大限に
ガス利用率の向上を図ることができ、燃料比を低下し得
る高炉原料装入方法を提供するものである。
Therefore, an object of the present invention is to use the above-described carbonaceous material-containing agglomerated ore even under conditions where the charging amount of the carbonaceous material-containing agglomerated ore is limited particularly in a blast furnace operation in which a large amount of auxiliary fuel is blown. The present invention provides a blast furnace raw material charging method capable of maximizing the gas utilization rate without deteriorating ventilation and liquid permeability and reducing the fuel ratio.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る高炉原料装入方法の要旨は以下の通
りである。
In order to achieve the above object, the gist of the blast furnace raw material charging method according to the present invention is as follows.

【0013】請求項1の発明は、高炉内へ塊状酸化鉄原
料と塊状炭材とを交互に層状に装入する原料装入方法に
おいて、前記塊状酸化鉄原料からなる各原料層の上面か
ら下方へ至る当該原料層厚の1/2以下の厚みの部分に、
炭材内装塊成鉱を含ませたことを特徴とする高炉原料装
入方法である。
According to a first aspect of the present invention, there is provided a raw material charging method of alternately charging the massive iron oxide raw material and the massive carbonaceous material into the blast furnace in a layered manner. In the part of the thickness of 1/2 or less of the raw material layer to reach,
It is a method for charging a blast furnace raw material, characterized by including a carbonaceous material-containing agglomerated ore.

【0014】請求項2の発明は、前記炭材内装塊成鉱
が、粉状酸化鉄含有物質と粉状炭材とを含む混合物を30
0〜550℃の温度範囲で熱間成形して得られたものである
請求項1に記載の高炉原料装入方法である。
According to a second aspect of the invention, the carbonaceous material-containing agglomerate comprises a mixture containing a powdery iron oxide-containing substance and a powdery carbonaceous material.
The blast furnace raw material charging method according to claim 1, which is obtained by hot forming in a temperature range of 0 to 550 ° C.

【0015】請求項3の発明は、前記粉状石炭のギーセ
ラ最高流動度(MF)が log MF≧1.0である請求項2に記載
の高炉原料装入方法である。
A third aspect of the present invention is the method for charging a blast furnace raw material according to the second aspect, wherein the Giesella maximum fluidity (MF) of the pulverized coal is log MF ≧ 1.0.

【0016】請求項4の発明は、前記炭材内装塊成鉱中
の炭素量が、当該炭材内装塊成鉱中の酸化鉄を還元する
のに必要な理論炭素量の0.5倍以上である請求項2又は
3に記載の高炉原料装入方法である。
[0016] In the invention of claim 4, the carbon content in the carbon material-containing agglomerated ore is 0.5 times or more of the theoretical carbon amount necessary for reducing the iron oxide in the carbon material-containing agglomerated ore. The blast furnace raw material charging method according to claim 2 or 3.

【0017】請求項5の発明は、前記熱間成形の後であ
って高炉装入前に、前記炭材内装塊成鉱を前記熱間成形
温度以上の温度で5分間以上保持して脱タール処理を行
う請求項2〜4のいずれか1項に記載の高炉原料装入方
法である。
According to a fifth aspect of the present invention, after the hot forming and before charging the blast furnace, the carbonaceous material-containing agglomerate is held at a temperature of the hot forming temperature or more for 5 minutes or more to remove tar. The blast furnace raw material charging method according to any one of claims 2 to 4, wherein treatment is performed.

【0018】請求項6の発明は、前記塊状酸化鉄原料と
前記炭材内装塊成鉱との合計量と、前記塊状炭材との質
量比が4以上である請求項1〜5のいずれか1項に記載の
高炉原料装入方法である。
The invention of claim 6 has a mass ratio of 4 or more to the total amount of the massive iron oxide raw material and the carbonaceous material-containing agglomerated ore and the massive carbonaceous material. The blast furnace raw material charging method according to item 1.

【0019】請求項7の発明は、前記高炉が、補助燃料
吹き込み量が銑鉄1トン当たり100kg以上の高炉である請
求項1〜6のいずれか1項に記載の高炉原料装入方法で
ある。
A seventh aspect of the present invention is the blast furnace raw material charging method according to any one of the first to sixth aspects, wherein the blast furnace is a blast furnace having an auxiliary fuel injection amount of 100 kg or more per ton of pig iron.

【0020】〔作用〕本発明は、酸化鉄と炭素とを主成
分とする炭材内装塊成鉱を、各原料層の上面から下方へ
至る当該原料層厚の1/2以下の厚みの部分に含ませたこ
とを特徴とするものである(請求項1)。これにより、
原料層が所定温度に加熱されれば、ガスのCOポテンシャ
ルが高い原料層下部では、従来の焼結鉱、ペレット、塊
鉱石等の塊状酸化鉄のみであっても還元が十分進行する
一方、ガスのCOポテンシャルが低い原料層上部において
も炭材内装塊成鉱の還元が進行し、この還元反応により
発生するガスはCOガスが主体なため、原料層上部の塊状
酸化鉄原料の還元をも促進する。その結果、ガス利用率
が向上し、燃料比が低下する。また、炭材内装塊成鉱中
に内装された炭素分が優先して利用されるため、燃料と
して装入した塊状炭材とCO2 ガスとの反応が抑制され、
塊状炭材の粉発生量が低下することにより高炉内の通気
性が向上する。炭材内装塊成鉱を含ませる範囲を原料層
厚の1/2以下としたのは、この範囲を大きくしすぎると
原料層内に炭材内装塊成鉱が含まれる割合が低下するこ
とにより、炭材内装塊成鉱から発生するCOガス主体のガ
スによる高炉原料の還元促進効果が過小となるためであ
る。
[Operation] According to the present invention, a carbonaceous material-containing agglomerate containing iron oxide and carbon as main components is formed in a portion having a thickness of 1/2 or less of the thickness of the raw material layer from the upper surface of each raw material layer to the lower side. (Claim 1). This allows
If the raw material layer is heated to a predetermined temperature, the reduction proceeds sufficiently even in the lower part of the raw material layer where the CO potential of the gas is high, even if only massive iron oxide such as conventional sinter, pellets, ore ore, etc. The reduction of the carbonaceous material-containing agglomerated ore progresses even in the upper part of the raw material layer where the CO potential of CO To do. As a result, the gas utilization rate is improved and the fuel ratio is reduced. In addition, since the carbon content inside the carbonaceous material agglomerated ore is preferentially used, the reaction between the massive carbonaceous material charged as fuel and CO 2 gas is suppressed,
Since the amount of powdered lump carbonaceous material is reduced, the air permeability in the blast furnace is improved. The reason why the range of including the carbonaceous material-containing agglomerate was set to be 1/2 or less of the raw material layer thickness is that if the range is made too large, the ratio of the carbonaceous material-containing agglomerate contained in the raw material layer decreases. This is because the effect of accelerating the reduction of blast furnace raw materials by the gas mainly composed of CO gas generated from the carbonaceous material agglomerated ore becomes too small.

【0021】なお、従来技術3によれば、本発明と同様
の炭材内装塊成鉱を焼結鉱、ペレット、塊鉱石等の塊状
酸化鉄に混合してから高炉に装入していることから、炭
材内装塊成鉱は原料層厚み方向全体に万遍なく含まれ
る。そのため、本発明に比べ、COポテンシャルの低い原
料層上部に存在する炭材内装塊成鉱の割合が少なく、発
生するCO主体のガス量も少ないので、本発明ほどには塊
状酸化鉄の還元が十分に促進されない。
According to the prior art 3, the carbonaceous material-containing agglomerated ore similar to that of the present invention is mixed with lumped iron oxide such as sinter, pellets and lump ore, and then charged into the blast furnace. Therefore, the carbonaceous material-containing agglomerates are uniformly contained in the entire thickness direction of the raw material layer. Therefore, as compared with the present invention, the proportion of carbonaceous material-containing agglomerates existing in the upper part of the raw material layer having a low CO potential is small, and the amount of CO-based gas generated is also small. Not promoted enough.

【0022】また、炭材内装塊成鉱として、粉状酸化鉄
と粉状炭材の混合物を 300〜 550℃の温度に加熱した状
態で熱間成形したものを用いることが望ましい(請求項
2)。熱間成形することによりバインダを用いることな
く粉状炭材を加熱した時に発現する粘結性を利用して、
十分密度が高く、かつ圧潰強度の高い(400N/個以上;
後述)炭材内装塊成鉱とすることができるためである。
なお、加熱温度を300〜 550℃が好適範囲であるとした
のは、以下の理由による。すなわち、粉状炭材は一般的
には300℃以上で軟化が開始し、温度の上昇とともに流
動度が上昇する。しかし、同時に固化も開始されるため
所定の温度で最高流動度に達し、さらに温度が上昇する
と固化の方が優勢となるため流動度が低下し、550℃を
超えると急速に固化が進行して流動性がなくなるからで
ある。なお、最高流動度を示す温度(炭材の種類により
異なる)近傍の温度で加圧成形すると炭材内装塊成鉱が
より緻密になり圧潰強度が高くなるので好ましい。ま
た、炭材内装塊成鉱はバインダを用いることなく塊成化
されているので、バインダを用いて製造される炭材内装
コールドボンドペレットあるいはコンポジットとは異な
り、バインダ使用によるコスト高の心配がない上に、バ
インダとしてセメント類を用いた場合に問題となる、ス
ラグ比上昇による通液性の悪化の問題もない。また、圧
潰強度の高い炭材内装塊成鉱を用いることで、高炉の通
気性の観点から問題となる粉発生が抑制できる。なお、
粉状炭材中に含まれている揮発分やタール分は、熱間成
形時に大部分が脱揮及び脱タールしており、更に、炭材
内装塊成鉱中の炭材割合は多くとも約30重量%程度で、
高炉への炭材内装塊成鉱の装入量は少量のため、炭材内
装塊成鉱を高炉に装入してもタール分の設備への付着は
問題とはならない。
Further, it is desirable to use, as the carbonaceous material-containing agglomerate, a mixture of powdered iron oxide and powdered carbonaceous material that has been hot-formed at a temperature of 300 to 550 ° C. (claim 2). ). By utilizing the caking property developed when powdered carbonaceous material is heated without using a binder by hot forming,
Sufficiently high density and high crush strength (400N / piece or more;
This is because it can be an agglomerated ore containing carbon material (described later).
The reason why the heating temperature is in the range of 300 to 550 ° C. is as follows. That is, in general, the powdery carbonaceous material starts to soften at 300 ° C. or higher, and the fluidity increases as the temperature rises. However, since solidification also begins at the same time, the maximum fluidity is reached at a given temperature, and when the temperature further rises, the solidification becomes dominant and the fluidity decreases, and when it exceeds 550 ° C, the solidification progresses rapidly. This is because the liquidity is lost. In addition, it is preferable to perform pressure molding at a temperature in the vicinity of the temperature at which the maximum fluidity is exhibited (it varies depending on the type of carbonaceous material) because the carbonaceous material-containing agglomerate becomes denser and the crushing strength becomes higher. In addition, since the carbonaceous material-containing agglomerated ore is agglomerated without using a binder, unlike the carbonaceous material-containing cold bond pellets or composites that are manufactured using a binder, there is no need to worry about the high cost of using a binder. Moreover, there is no problem of deterioration of liquid permeability due to increase in slag ratio, which is a problem when cements are used as a binder. Further, by using a carbonaceous material-containing agglomerated ore having a high crushing strength, generation of powder, which is a problem from the viewpoint of air permeability of the blast furnace, can be suppressed. In addition,
Most of the volatile components and tar components contained in the powdery carbonaceous materials are devolatilized and detarred during hot forming, and the proportion of carbonaceous materials in the carbonaceous material-containing agglomerate is at most about At about 30% by weight,
Since the amount of the carbonaceous material-containing agglomerate charged into the blast furnace is small, even if the carbonaceous material-containing agglomerate is charged into the blast furnace, the adhesion of tar to the equipment does not pose a problem.

【0023】また、粉状炭材として、ギーセラ最高流動
度(MF)が logMF≧1.0の粉状炭材を用いることが好まし
く(請求項3)、logMF≧2.0の粉状炭材を用いることが
特に好ましい。このような流動度の高い粉状炭材を用い
た炭材内装塊成鉱であると、粉状炭材を加熱した時に発
現する粘結性を利用して、より密度及び圧潰強度の高い
炭材内装塊成鉱とすることができ、またこれにより他の
原料と混合して高炉に装入して上記の作用効果を得るこ
とができるためである。図3に示すように、粉状炭材の
MFをlogMF≧1.0とすることにより炭材内装塊成鉱の圧潰
強度は、高炉装入等のハンドリングに耐える400N/個以
上が得られ、さらにlogMF≧2.0とすることにより炭材内
装塊成鉱の圧潰強度は700N/個以上が得られ、高炉内で
の粉化をさらに抑制できる。なお、このような作用効果
をより効果的に得るためには、炭材内装塊成鉱の粉状炭
材として、ギーセラ最高流動度(MF)が log MF≧1.0であ
ることに加えて、さらに熱間成形する際の石炭の加熱速
度を 10℃/秒以上で昇温することが好ましい。
As the powdery carbonaceous material, it is preferable to use a powdery carbonaceous material having a Giesella maximum fluidity (MF) of logMF ≧ 1.0 (claim 3), and it is preferable to use a powdery carbonaceous material of logMF ≧ 2.0. Particularly preferred. When the carbonaceous material-containing agglomerated ore using the powdery carbonaceous material having such a high fluidity is used, the coal having a higher density and crushing strength is utilized by utilizing the caking property developed when the powdery carbonaceous material is heated. This is because the material-containing agglomerate can be obtained, and by mixing it with other raw materials and charging it into the blast furnace, the above-mentioned effects can be obtained. As shown in FIG. 3,
By setting MF to logMF ≧ 1.0, the crushing strength of the carbonaceous material agglomerated ore can be 400N / piece or more which can withstand handling such as blast furnace charging, and by setting logMF ≧ 2.0, the carbonaceous material agglomerated ore can be crushed. A crushing strength of 700 N / piece or more can be obtained, and pulverization in the blast furnace can be further suppressed. In order to obtain such an effect more effectively, in addition to the fact that the Giesella maximum fluidity (MF) is log MF ≧ 1.0 as the powdery carbonaceous material of the carbonaceous material agglomerate, It is preferable to raise the heating rate of coal at the time of hot forming at 10 ° C./sec or more.

【0024】また、炭材内装塊成鉱中の炭素量は、当該
炭材内装塊成鉱中の酸化鉄を還元するのに必要な理論炭
素量の0.5倍以上とすることが好ましく(請求項4)、
これにより炭材内装塊成鉱内部からの還元と、原料層を
上昇する還元ガスによる炭材内装塊成鉱外表面からの還
元とが並存して進行するため、十分な還元速度が得られ
る。ここに、「炭材内装塊成鉱中の酸化鉄を還元するの
に必要な理論炭素量」とは、炭材内装塊成鉱中の酸化鉄
に含まれる酸素1モル分を還元するのに、炭素1モル分必
要と仮定して(例えば、Fe2O3+3C→2Fe+3CO)、化学
成分から算出される値である。なお、炭材内装塊成鉱中
の炭素量は多いほど還元促進の効果は大きくなるが、炭
素量が過剰になると炭材内装塊成鉱の強度は逆に低下す
る。したがって、炭材内装塊成鉱中の炭素量は理論炭素
量の1.5倍以下とすることが好ましく、0.7〜1.2倍の範
囲とすることが推奨される。
Further, the carbon content in the carbonaceous material-containing agglomerate is preferably 0.5 times or more of the theoretical carbon amount necessary to reduce the iron oxide in the carbonaceous material-containing agglomerated ore. 4),
As a result, the reduction from the inside of the carbonaceous material-containing agglomerate and the reduction from the outer surface of the carbonaceous material-containing agglomerate by the reducing gas rising in the raw material layer proceed in parallel, so that a sufficient reduction rate can be obtained. Here, "theoretical carbon amount necessary to reduce iron oxide in carbonaceous material agglomerated ore" means that 1 mol of oxygen contained in iron oxide in carbonaceous material agglomerated ore is reduced. Is a value calculated from the chemical composition, assuming that 1 mol of carbon is required (for example, Fe 2 O 3 + 3C → 2Fe + 3CO). It should be noted that the greater the amount of carbon in the carbonaceous material-containing agglomerate, the greater the effect of promoting reduction, but if the carbon amount becomes excessive, the strength of the carbonaceous material-containing agglomerate decreases conversely. Therefore, the amount of carbon in the carbonaceous material-containing agglomerate is preferably 1.5 times or less the theoretical carbon amount, and recommended to be in the range of 0.7 to 1.2 times.

【0025】また、熱間成形の後であって高炉装入前
に、炭材内装塊成鉱を熱間成形温度以上の温度で5分間
以上保持して脱タール処理を行うことが好ましい(請求
項5)。前述したように、粉状炭材中に含まれている揮
発分やタール分は、熱間成形時に大部分が脱揮及び脱タ
ールされているため、このような脱タール処理を行なわ
ずに熱間成形のまま炭材内装塊成鉱を高炉に装入しても
タール分の設備への付着は問題とはなるものではない
が、脱タール処理を施すことにより炭材内装塊成鉱がよ
り緻密化して圧潰強度がさらに上昇し、高炉内での粉化
がより確実に防止される効果がある。
Further, it is preferable to carry out the detarring treatment by holding the carbonaceous material-containing agglomerate at a temperature higher than the hot forming temperature for 5 minutes or more after the hot forming and before charging the blast furnace (claim) Item 5). As described above, most of the volatile components and tar components contained in the powdered carbonaceous materials are devolatilized and tar-free during hot forming, so heat treatment is not performed without such detarring treatment. Even if the carbonaceous material-containing agglomerate is charged into the blast furnace as it is during hot forming, the tar content does not pose a problem, but it is possible to make the carbonaceous material-containing agglomerate more efficient by detarring. It has the effect of densifying and further increasing the crushing strength, and more reliably preventing pulverization in the blast furnace.

【0026】また、本発明において、塊状酸化鉄原料と
炭材内装塊成鉱との合計量と、前記塊状炭材との質量比
(すなわちO/C)を4以上とすることが好ましく(請求項
6)、これにより十分高い補助燃料吹き込み量を確保し
つつ、原料層上部に炭材内装塊成鉱が配されている(含
まれている)ため、原料層層厚全体が十分に還元され、
生下り等の問題も生じない。なお、O/Cは過剰に高くし
すぎると通気性、通液性が阻害されるため、7以下とす
ることが望ましい。
In the present invention, the mass ratio (that is, O / C) of the aggregate iron oxide raw material and the carbonaceous material-containing agglomerate to the aggregate carbonaceous material is preferably 4 or more (claim) Item 6), whereby the carbonaceous material-containing agglomerate is placed (included) in the upper part of the raw material layer while ensuring a sufficiently high amount of auxiliary fuel injection, so the entire raw material layer thickness is sufficiently reduced. ,
There are no problems such as live birth. If the O / C is too high, the air permeability and liquid permeability will be impaired, so it is desirable to set it to 7 or less.

【0027】また、本発明において、補助燃料吹き込み
量を銑鉄1トン当たり100kg以上とすることが好ましく
(請求項7)、これによりコストの高い塊状炭材に代替
してコストの低い微粉炭などの補助燃料が多量に使用で
きるため燃料コストが低減される。
Further, in the present invention, it is preferable that the amount of the auxiliary fuel blown is 100 kg or more per ton of pig iron (claim 7), whereby high cost lumpy carbonaceous material can be substituted for low cost pulverized coal and the like. Fuel cost is reduced because a large amount of auxiliary fuel can be used.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施形態を説明す
る。粉状酸化鉄原料として例えばT.Fe:約68質量%の粉
鉱石と、粉状炭材として例えばC:80質量%の石炭粉
を約78:22(粉鉱石:石炭粉)の質量割合で混合し、そ
の混合物を約 440℃の温度に加熱し、線圧約2.5t/cmの
成形圧で体積約6cm3の卵形の炭材内装塊成鉱に熱間成形
する。必要により、この炭材内装塊成鉱を成形温度より
高い、例えば約500℃の温度で5分間以上保持し、脱ター
ルを行ってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. As a powdered iron oxide raw material, for example, T.Fe: about 68 mass% of powdered ore, and as a powdered carbonaceous material, for example, C: 80 mass% of coal powder at a mass ratio of about 78:22 (powdered ore: coal powder). After mixing, the mixture is heated to a temperature of about 440 ° C., and hot-formed into an egg-shaped carbonaceous material-containing agglomerated ore having a volume of about 6 cm 3 at a forming pressure of a linear pressure of about 2.5 t / cm. If necessary, this carbonaceous material-containing agglomerate may be detarred by holding it at a temperature higher than the molding temperature, for example, at a temperature of about 500 ° C. for 5 minutes or more.

【0029】ここで、例えばベル・アーマ方式の高炉の
場合、高炉炉内半径方向のO/C分布を調整する目的で、
通常、コークスを層状に装入した後、複数回(例えばN
回)に分けて高炉原料を装入する方法が採用される。し
たがって、高炉原料のN回の装入分のうち、最初の(N−
M)回分は、従来どおり焼結鉱、ペレット、塊鉱石等の
みからなる高炉原料Aを装入し、残りのM回分は、炭材内
装塊成鉱の所定量を焼結鉱、ペレット、塊鉱石等の高炉
原料(塊状酸化鉄原料)に混合した高炉原料Bを装入す
る。このように炭材内装塊成鉱を混合した高炉原料Bの
装入回数Mを変更することにより、炭材内装塊成鉱を含
ませる原料層の厚みを容易に調整できる。この方法によ
れば従来の装入設備をそのまま用いることができ、しか
も装入方法を大幅に変更する必要がないため、低コスト
で本発明を実施することができる。
Here, for example, in the case of a bell-armor type blast furnace, for the purpose of adjusting the O / C distribution in the radial direction in the blast furnace,
Usually, the coke is charged in layers and then several times (eg N
The method of charging the blast furnace raw material in two steps is adopted. Therefore, the first (N-
M) batch is charged with blast furnace raw material A consisting of sinter ore, pellets, lump ore, etc. as usual, and the remaining M batches are sinter, pellets, or lumps of the specified amount of carbonaceous material agglomerate. Blast furnace raw material B mixed with blast furnace raw material (lump iron oxide raw material) such as ore is charged. By changing the charging number M of the blast furnace raw material B mixed with the carbonaceous material-containing agglomerate in this manner, the thickness of the raw material layer containing the carbonaceous material-containing agglomerate can be easily adjusted. According to this method, the conventional charging equipment can be used as it is, and since the charging method does not have to be significantly changed, the present invention can be implemented at low cost.

【0030】なお、本例では粉鉱石と石炭粉の混合割合
(質量比)を粉鉱石/石炭粉=78/22としたが、石炭量
は石炭中の炭素量と鉱石中のFe量に応じて理論炭素量の
0.5倍以上(特に好ましくは0.7〜1.2倍の範囲)で、高
炉炉頂部への装入時のハンドリング等に耐え得る、圧潰
強度が約400N/個以上が得られるように調整するとよ
い。
In this example, the mixing ratio (mass ratio) of the powder ore and the coal powder was set to powder ore / coal powder = 78/22, but the amount of coal depends on the amount of carbon in the coal and the amount of Fe in the ore. Of theoretical carbon
The crushing strength may be adjusted to 0.5 times or more (particularly in the range of 0.7 to 1.2 times) so as to obtain a crushing strength of about 400 N / piece or more, which can withstand handling at the time of charging to the top of the blast furnace.

【0031】また、本例では粉状酸化鉄原料として粉鉱
石を例示したが、これに限られるものではなく、酸化鉄
を含有する、高炉ダスト、転炉ダスト、電気炉ダスト、
ミルスケール、ミルスラッジ、シュレッダダストなどを
用いることもできる。また、粉状炭材として、本例では
石炭を例示したが、これに限られるものではなく、炭素
を含有し、かつ加熱により軟化・溶融性を示す、ピッ
チ、アスファルト、SRCなどを用いることもできる。
In this example, powdered ore was used as an example of the powdered iron oxide raw material, but the powdery iron oxide raw material is not limited to this, and blast furnace dust, converter dust, electric furnace dust containing iron oxide,
Mill scale, mill sludge, shredder dust, etc. can also be used. Further, as the powdery carbonaceous material, coal is exemplified in this example, but the present invention is not limited to this, and it is possible to use pitch, asphalt, SRC, etc., which contains carbon and exhibits softening / melting property by heating. it can.

【0032】また、炭材内装塊成鉱の形状は特に限定さ
れるものでなく、本例の卵形の他、枕形、球状、俵状、
ブロック状、立方体状、直方体状でもよい。また、炭材
内装塊成鉱のサイズは、下限は原料層の通気性を維持で
きるよう、5mm以上とすることが望ましいが、上限は特
に限定されない。内装炭材により内部からも還元される
ため、還元ガスにより外表面からのみ還元される焼結
鉱、ペレット、塊鉱石などのように粒径が制限されるこ
とがないためである。ただし、焼結鉱、ペレット、塊鉱
石などの従来の高炉原料中に偏析させずにできるだけ均
一に混合できるよう、100mm以下程度とすることが推
奨される。
The shape of the carbonaceous material-containing agglomerate is not particularly limited, and in addition to the egg shape of this example, a pillow shape, a spherical shape, a bale shape,
It may have a block shape, a cubic shape, or a rectangular parallelepiped shape. The lower limit of the size of the carbonaceous material-containing agglomerate is preferably 5 mm or more so as to maintain the air permeability of the raw material layer, but the upper limit is not particularly limited. This is because the internal carbonaceous material is also reduced from the inside, so that the particle size is not limited as in the case of sinter, pellets, agglomerated ores, etc., which is reduced only from the outer surface by the reducing gas. However, it is recommended that the diameter be 100 mm or less so that it can be mixed into the conventional blast furnace raw materials such as sinter, pellets, and lump ore as uniformly as possible without segregation.

【0033】また、本例ではベル・アーマ方式による装
入方法について説明したが、ベルレス方式の場合にも同
様の方法で実施できる。すなわち、ベルレス方式の高炉
においても、通常、高炉原料を装入するとき旋回シュー
トを複数回旋回して行う方法が用いられるので、上記ベ
ル・アーマ方式と同様、複数の旋回回数のうち後半の所
定回数にのみ炭材内装塊成鉱を混合すればよい。
Although the charging method by the bell armor method has been described in the present example, the same method can be applied to the bellless method. That is, even in a bellless blast furnace, a method of swirling a swirling chute multiple times is usually used when charging a blast furnace raw material. The carbonaceous material-containing agglomerated ore may be mixed only in.

【0034】上記のように炭材内装塊成鉱を混合した高
炉原料Bを原料層の上部所定部分に装入することによ
り、原料層が高炉内を降下するとともに昇温され、炭材
内装塊成鉱中の石炭と鉱石が見かけ上直接還元反応(吸
熱反応)を開始する。この還元反応により発生するガス
はCOガスが主体であるため、炭材内装塊成鉱に混合して
装入した、原料層上部の焼結鉱、ペレット、塊鉱石等の
高炉原料の還元を促進するため、原料層層厚全体の還元
効率が向上し、燃料比が低下する。また、内装炭材が優
先的にCO2ガスと反応するため、燃料として装入したコ
ークスとCO2 ガスとの反応が抑制され、コークスの粉発
生量が低下するため高炉内の通気性が向上する。
By charging the blast furnace raw material B mixed with the carbonaceous material-containing agglomerate into a predetermined portion above the raw material layer as described above, the raw material layer descends in the blast furnace and is heated, and the carbonaceous material-containing lump is heated. Apparently direct reduction reaction (endothermic reaction) is initiated between coal and ore in the ore. Since the gas generated by this reduction reaction is mainly CO gas, it promotes the reduction of the blast furnace raw materials such as sinter ore, pellets, and lump ore, etc., which are mixed and charged into the carbonaceous material-containing agglomerated ore and which are located above the raw material layer. Therefore, the reduction efficiency of the entire thickness of the raw material layer is improved, and the fuel ratio is reduced. Further, since the carbonaceous material reacts preferentially with the CO 2 gas, the reaction of charging coke and CO 2 gas as a fuel is suppressed, the permeability of the blast furnace for powder generation amount of coke is reduced improving To do.

【0035】[0035]

【実施例】〔実施例1〕高炉内を模擬した還元条件で、
本発明に用いる炭材内装塊成鉱と、従来の焼結鉱および
ペレット(焼成ペレット)の還元実験を行い、還元の状
況を比較した。
[Example] [Example 1] Under reducing conditions simulating the inside of a blast furnace,
The reduction experiments of the carbonaceous material-containing agglomerated ore used in the present invention and the conventional sintered ore and pellets (calcined pellets) were conducted to compare the reduction conditions.

【0036】炭材内装塊成鉱は、表1に示す粉鉱石と表
2に示す石炭粉を78:22(粉鉱石:石炭粉)の質量割合
で混合し、その混合物を440℃の温度に加熱し、双ロー
ル型成形機で、線圧2.5t/cmの成形圧で30mm×25mm
×17mm(体積約6cm3)の大きさの卵形のブリケット
(炭材内装塊成鉱)に熱間成形した。
In the agglomerated ore containing carbonaceous material, the powdered ore shown in Table 1 and the coal powder shown in Table 2 were mixed at a mass ratio of 78:22 (powdered ore: coal powder), and the mixture was heated to a temperature of 440 ° C. Heated, twin roll type molding machine, linear pressure 2.5t / cm molding pressure 30mm × 25mm
It was hot-formed into an egg-shaped briquette (carbonaceous material-containing agglomerated ore) having a size of 17 mm (volume about 6 cm 3 ).

【0037】焼結鉱は、粒径11.2〜12.7mmのものを使
用し、焼成ペレットは、粒径約12mmのものを使用し
た。
The sintered ore used had a particle size of 11.2 to 12.7 mm, and the fired pellet used had a particle size of about 12 mm.

【0038】還元実験は、各サンプルごとに、一定荷重
(98kPa)を掛けた状態で、図4に示す昇温・ガス成分
の条件で実施した。なお、ブリケット(炭材内装塊成
鉱)については、4分割して還元実験に供した。
The reduction experiment was carried out for each sample under a constant load (98 kPa) under the conditions of temperature rise and gas components shown in FIG. Briquette (carbonaceous material-containing agglomerated ore) was divided into four and subjected to reduction experiments.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】図5に、各サンプルについて行った還元実
験の結果を示す。図5は、到達温度とその時の還元率と
の関係を示したものである。図5から明らかなように、
炭材内装塊成鉱は、特に1000℃までのCOポテンシャルの
低い条件下において、ペレットおよび焼結鉱に比べて格
段に還元性が優れていることがわかる。このことから、
炭材内装塊成鉱を原料層の上部側に配する(含ませる)
ことにより、COポテンシャルの低い原料層上部における
原料の還元率の低下を抑制できることが確認された。
FIG. 5 shows the result of the reduction experiment conducted for each sample. FIG. 5 shows the relationship between the ultimate temperature and the reduction rate at that time. As is clear from FIG.
It can be seen that the carbonaceous material-containing agglomerated ore is remarkably superior to the pellets and the sintered ore especially under the condition of low CO potential up to 1000 ° C. From this,
Place (include) carbonaceous material agglomerate on the upper side of the raw material layer
Thus, it was confirmed that the reduction of the reduction rate of the raw material in the upper part of the raw material layer having a low CO potential can be suppressed.

【0042】〔実施例2〕次に、炭材内装塊成鉱と、炭
材内装コールドボンドペレットと、焼成ペレットとを実
施例1とは異なる方法および条件でそれぞれ還元実験を
行い、還元中の強度の変化を比較した。炭材内装塊成鉱
と焼成ペレットは、上記実施例1で用いたものと同じも
のを使用した。なお、ブリケット(炭材内装塊成鉱)は
分割せずにそのまま用いた。炭材内装コールドボンドペ
レットは、炭材内装塊成鉱と同じく、粉鉱石と石炭粉を
78:22(粉鉱石:石炭粉)の質量割合で混合し、これ
に、ポルトランドセメントを外数で11.1質量%添加し、
適量の水分を添加して約12mm径のペレットに造粒した
後、密封して約5日間養生して作製した。還元実験は、
サンプルに荷重を掛けずに、1000〜1200℃の範囲で一定
温度に維持した加熱炉中にサンプルを挿入し、炭材内装
塊成鉱および炭材内装コールドボンドペレットでは0〜2
0分、焼成ペレットでは0〜60分の範囲内で還元時間を種
々変更して行った。なお、加熱炉中の雰囲気は、炭材内
装塊成鉱および炭材内装コールドボンドペレットでは
N2:100%とし、焼成ペレットでは、N2/CO=50/50(容積
%)とした。図6に、還元後の各サンプルの還元率と圧
潰強度との関係を示す。図6から明らかなように、焼成
ペレットでは、還元前に比べ還元率20%で圧潰強度が1/
10程度に急激に低下しており、炭材内装コールドボンド
ペレットでは還元率の上昇とともに圧潰強度が徐々に低
下し、還元率40%で圧潰強度が1/2程度まで低下する。
これに対し、炭材内装塊成鉱では、還元中ほとんど圧潰
強度が変化せず(低下せず)、高い強度を維持すること
が確認された。このことから、炭材内装塊成鉱を用いる
ことにより、高炉内での原料の粉化が抑制され、炉内通
気性が向上ないし維持される。
Example 2 Next, a carbonaceous material-containing agglomerate, a carbonaceous material-containing cold bond pellet, and a calcined pellet were subjected to reduction experiments under the methods and conditions different from those in Example 1, respectively. The changes in intensity were compared. The carbonaceous material-containing agglomerated ore and the fired pellets were the same as those used in Example 1 above. The briquette (carbonaceous material-containing agglomerated ore) was used as it was without being divided. The carbon material-containing cold bond pellets, like the carbon material-containing agglomerated ore, consist of powdered ore and coal powder.
78:22 (powder ore: coal powder) is mixed in a mass ratio, and 11.1 mass% of Portland cement is added to this,
An appropriate amount of water was added to pelletize a pellet having a diameter of about 12 mm, which was then sealed and cured for about 5 days. The reduction experiment is
Insert a sample into a heating furnace that is maintained at a constant temperature in the range of 1000 to 1200 ° C without applying a load to the sample.
The reduction time was variously changed within the range of 0 to 60 minutes for the 0 minute and fired pellets. The atmosphere in the heating furnace is different for carbonaceous material agglomerated ores and carbonaceous material cold bond pellets.
N 2 : 100%, and in the fired pellet, N 2 / CO = 50/50 (volume%). FIG. 6 shows the relationship between the reduction rate and the crush strength of each sample after reduction. As is clear from FIG. 6, the crush strength of the fired pellets is 1 / at a reduction rate of 20% compared to that before reduction.
It rapidly decreases to about 10, and the crush strength of the carbon material-containing cold bond pellets gradually decreases as the reduction rate increases, and the crush strength decreases to about 1/2 at the reduction rate of 40%.
On the other hand, it was confirmed that the crush strength of the carbon material-containing agglomerate hardly changed (reduced) during the reduction and maintained high strength. Therefore, by using the carbonaceous material-containing agglomerated ore, the pulverization of the raw material in the blast furnace is suppressed, and the air permeability in the furnace is improved or maintained.

【0043】[0043]

【発明の効果】以上説明したように、本発明に係る高炉
原料装入方法によれば、原料層上部の還元遅れを効果的
に防止できるため、燃料比が低下できる。また、高炉原
料やコークスの粉化を抑制できるため高炉内の通気性が
向上するので、高炉への補助燃料多量吹込み操業が安定
して行える。
As described above, according to the blast furnace raw material charging method of the present invention, the reduction delay in the upper part of the raw material layer can be effectively prevented, so that the fuel ratio can be lowered. Further, since the blast furnace raw material and coke can be suppressed from being pulverized, the air permeability in the blast furnace is improved, so that the operation of injecting a large amount of auxiliary fuel into the blast furnace can be stably performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】代表的な高炉内高さ方向における温度変化およ
びガス成分変化を示す模式図である。
FIG. 1 is a schematic diagram showing a temperature change and a gas component change in a typical height direction in a blast furnace.

【図2】各原料層中の層厚方向における、温度変化、ガ
ス成分変化、および還元率変化を示す模式図である。
FIG. 2 is a schematic diagram showing a temperature change, a gas component change, and a reduction rate change in a layer thickness direction in each raw material layer.

【図3】粉状炭材のlogMFと炭材内装塊成鉱の圧潰強度
との関係を示すグラフ図である。
FIG. 3 is a graph showing the relationship between logMF of powdered carbonaceous material and crushing strength of carbonaceous material-containing agglomerated ore.

【図4】実施例1の還元実験の昇温・ガス成分の条件を
示す図である。
FIG. 4 is a diagram showing conditions of temperature rise and gas components in the reduction experiment of Example 1.

【図5】実施例1の還元実験による、到達温度と還元率
との関係を示すグラフ図である。
FIG. 5 is a graph showing the relationship between the ultimate temperature and the reduction rate in the reduction experiment of Example 1.

【図6】実施例2の還元実験による、還元率と圧潰強度
との関係を示すグラフ図である。
FIG. 6 is a graph showing the relationship between the reduction rate and the crush strength in the reduction experiment of Example 2.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K001 AA10 BA02 CA29 GA02 HA01 4K012 BA02 BA04 BA06 BA07 BA08 BC04 BE01    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K001 AA10 BA02 CA29 GA02 HA01                 4K012 BA02 BA04 BA06 BA07 BA08                       BC04 BE01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 高炉内へ塊状酸化鉄原料と塊状炭材とを
交互に層状に装入する原料装入方法において、前記塊状
酸化鉄原料からなる各原料層の上面から下方へ至る当該
原料層厚の1/2以下の厚みの部分に、酸化鉄と炭素とを
主成分とする炭材内装塊成鉱を含ませたことを特徴とす
る高炉原料装入方法。
1. A raw material charging method for alternately charging a massive iron oxide raw material and a massive carbonaceous material into a blast furnace in a layered manner, the raw material layer extending from an upper surface to a lower side of each raw material layer made of the massive iron oxide raw material. A method for charging a blast furnace raw material, characterized in that a carbon material-containing agglomerate containing iron oxide and carbon as main components is included in a portion having a thickness of 1/2 or less of the thickness.
【請求項2】 前記炭材内装塊成鉱が、粉状酸化鉄含有
物質と粉状炭材とを含む混合物を300〜550℃の温度範囲
で熱間成形して得られたものである請求項1に記載の高
炉原料装入方法。
2. The carbonaceous material-containing agglomerate is obtained by hot forming a mixture containing a powdery iron oxide-containing substance and a powdery carbonaceous material in a temperature range of 300 to 550 ° C. Item 1. A blast furnace raw material charging method according to Item 1.
【請求項3】 前記粉状炭材のギーセラ最高流動度(MF)
が log MF≧1.0 である請求項2に記載の高炉原料装入
方法。
3. The maximum fluidity (MF) of Giesera of the powdered carbonaceous material
Is log MF ≧ 1.0, The blast furnace raw material charging method according to claim 2.
【請求項4】 前記炭材内装塊成鉱中の炭素量が、当該
炭材内装塊成鉱中の酸化鉄を還元するのに必要な理論炭
素量の0.5倍以上である請求項2又は3に記載の高炉原
料装入方法。
4. The carbon amount in the carbonaceous material-containing agglomerate is 0.5 times or more of a theoretical carbon amount required to reduce iron oxide in the carbonaceous material-containing agglomerated ore. The blast furnace raw material charging method described in.
【請求項5】 前記熱間成形の後であって高炉装入前
に、前記炭材内装塊成鉱を前記熱間成形温度以上の温度
で5分間以上保持して脱タール処理を行う請求項2〜4
のいずれか1項に記載の高炉原料装入方法。
5. The detarring treatment is performed by holding the carbonaceous material-containing agglomerate at a temperature equal to or higher than the hot forming temperature for 5 minutes or more after the hot forming and before charging the blast furnace. 2-4
The blast furnace raw material charging method according to any one of 1.
【請求項6】 前記塊状酸化鉄原料と前記炭材内装塊成
鉱との合計量と、前記塊状炭材との質量比が4以上であ
る請求項1〜5のいずれか1項に記載の高炉原料装入方
法。
6. The mass ratio of the massive iron oxide raw material and the total amount of the carbonaceous material-containing agglomerated ore and the massive carbonaceous material is 4 or more, according to claim 1. Blast furnace raw material charging method.
【請求項7】 前記高炉が、補助燃料吹き込み量が銑鉄
1トン当たり100kg以上の高炉である請求項1〜6のいず
れか1項に記載の高炉原料装入方法。
7. The blast furnace is characterized in that the amount of auxiliary fuel injected is pig iron.
The blast furnace raw material charging method according to any one of claims 1 to 6, wherein the blast furnace is 100 kg or more per ton.
JP2002109374A 2002-04-11 2002-04-11 Blast furnace raw material charging method Expired - Fee Related JP3863052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002109374A JP3863052B2 (en) 2002-04-11 2002-04-11 Blast furnace raw material charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002109374A JP3863052B2 (en) 2002-04-11 2002-04-11 Blast furnace raw material charging method

Publications (2)

Publication Number Publication Date
JP2003301205A true JP2003301205A (en) 2003-10-24
JP3863052B2 JP3863052B2 (en) 2006-12-27

Family

ID=29392863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002109374A Expired - Fee Related JP3863052B2 (en) 2002-04-11 2002-04-11 Blast furnace raw material charging method

Country Status (1)

Country Link
JP (1) JP3863052B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028593A (en) * 2004-07-16 2006-02-02 Jfe Steel Kk Method for operating blast furnace
JP2007211296A (en) * 2006-02-09 2007-08-23 Kobe Steel Ltd Agglomerate including carbonaceous material to be used for vertical furnace, and production method therefor
JP2008189952A (en) * 2007-02-01 2008-08-21 Kobe Steel Ltd Method for operating blast furnace
WO2010041770A1 (en) 2008-10-10 2010-04-15 新日本製鐵株式会社 Blast furnace operating method using carbon-containing unfired pellets
JP2010285684A (en) * 2009-05-14 2010-12-24 Kobe Steel Ltd Method for producing agglomerated ore including carbonaceous material to be used for vertical furnace
JP2011032531A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material
JP2011162845A (en) * 2010-02-10 2011-08-25 Jfe Steel Corp Method for operating blast furnace with the use of ferrocoke

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028593A (en) * 2004-07-16 2006-02-02 Jfe Steel Kk Method for operating blast furnace
JP4556524B2 (en) * 2004-07-16 2010-10-06 Jfeスチール株式会社 Blast furnace operation method
JP2007211296A (en) * 2006-02-09 2007-08-23 Kobe Steel Ltd Agglomerate including carbonaceous material to be used for vertical furnace, and production method therefor
JP2008189952A (en) * 2007-02-01 2008-08-21 Kobe Steel Ltd Method for operating blast furnace
WO2010041770A1 (en) 2008-10-10 2010-04-15 新日本製鐵株式会社 Blast furnace operating method using carbon-containing unfired pellets
JP2010285684A (en) * 2009-05-14 2010-12-24 Kobe Steel Ltd Method for producing agglomerated ore including carbonaceous material to be used for vertical furnace
JP2011032531A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material
JP2011162845A (en) * 2010-02-10 2011-08-25 Jfe Steel Corp Method for operating blast furnace with the use of ferrocoke

Also Published As

Publication number Publication date
JP3863052B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
RU2447164C2 (en) Method of producing pellets from recovered iron and method of producing cast iron
JP4348152B2 (en) Method for producing ferronickel and ferronickel refining raw material
RU2455370C1 (en) Agglomerate containing titanium oxide for production of granulated metallic iron
JP2008095177A (en) Method for producing carbon-containing non-calcined pellet for blast furnace
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
KR100571063B1 (en) Carbon containing nonfired agglomerated ore for blast furnace and production method thereof
JP4603628B2 (en) Blast furnace operation method using carbon-containing unfired pellets
JP3863052B2 (en) Blast furnace raw material charging method
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
JP3502011B2 (en) Manufacturing method of carbonized interior agglomerates
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
JP4984488B2 (en) Method for producing semi-reduced sintered ore
EP1749894A1 (en) Semi-reduced sintered ore and method for production thereof
EP2264195A1 (en) Process for producing cement-bonded ore agglomerates
JP2000034526A (en) Production of reduced iron pellet
JP3718604B2 (en) Blast furnace raw material charging method
JP4867394B2 (en) Non-calcined agglomerate for iron making
JP3863104B2 (en) Blast furnace operation method
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JP3379360B2 (en) Hot metal production method
JP5867428B2 (en) Hot metal manufacturing method using vertical melting furnace
JPS60248831A (en) Manufacture of uncalcined lump ore
JP3864506B2 (en) Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron
JP2000119722A (en) Production of reduced iron pellet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees