KR970002502B1 - Carbon concentration measuring method in low carbon steel - Google Patents

Carbon concentration measuring method in low carbon steel Download PDF

Info

Publication number
KR970002502B1
KR970002502B1 KR1019930031770A KR930031770A KR970002502B1 KR 970002502 B1 KR970002502 B1 KR 970002502B1 KR 1019930031770 A KR1019930031770 A KR 1019930031770A KR 930031770 A KR930031770 A KR 930031770A KR 970002502 B1 KR970002502 B1 KR 970002502B1
Authority
KR
South Korea
Prior art keywords
amount
carbon
molten steel
exhaust gas
steel
Prior art date
Application number
KR1019930031770A
Other languages
Korean (ko)
Other versions
KR950019699A (en
Inventor
안상복
이광근
Original Assignee
조말수
포항종합제철주식회사
백덕현
재단법인산업과학기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조말수, 포항종합제철주식회사, 백덕현, 재단법인산업과학기술연구소 filed Critical 조말수
Priority to KR1019930031770A priority Critical patent/KR970002502B1/en
Publication of KR950019699A publication Critical patent/KR950019699A/en
Application granted granted Critical
Publication of KR970002502B1 publication Critical patent/KR970002502B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/14Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference
    • G01N7/18Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference by allowing the material to react

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A method for measuring amount of melting steel carbon in a super-limited carbon steel capable of measuring amount of a carbon contained in a melting steel by using analyzing information of an exhaust gas discharged during refining a super-limited carbon steel in a vacuum state is disclosed. According to the method, a decarbonizing time of a super-limited carbon steel is reduced. A life of an RH refractory material is prolonged to improve a productive capacity of a steel.

Description

극저탄소강의 용강탄소량 측정방법How to measure molten steel carbon in ultra low carbon steel

제1도는 본 발명의 극저탄소강의 용강탄소량 측정방법 설명도.1 is an explanatory diagram of a method for measuring molten steel carbon of ultra low carbon steel of the present invention.

제2도는 실시예에 따른 배기가스 총유량(Qt)과 배기가스중 CO 함량 특성도.2 is a characteristic diagram of the total amount of exhaust gas (Qt) and the amount of CO in the exhaust gas according to the embodiment.

제3도는 제2도에서 구한 배기가스에 포함된 CO 함량을 나타낸 특성도.3 is a characteristic diagram showing the CO content contained in the exhaust gas obtained in FIG.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

A : 보정하기 전 배기가스에 포함된 CO 측정량A: CO measurement amount contained in exhaust gas before calibration

B : 보정후 배기가스에 포함된 CO 보정량B: CO correction amount included in exhaust gas after correction

C : 단위시간당 CO 발생량C: CO generation amount per unit time

본 발명은 극저탄소강의 용강 탄소량 측정방법에 관한 것으로, 특히 노외정련 공정의 RH 또는 RH-OB설비(이하, 진공탈가스 설비라 함)에서 극저탄소강의 진공정련시 배출되는 배기가스 분석 정보를 이용하여 용강중 탄소함량을 판정하는 극저탄소강의 용강탄소량 측정방법에 관한 것이다.The present invention relates to a method for measuring the amount of molten steel carbon of ultra low carbon steel, and in particular, the exhaust gas analysis information emitted during vacuum refining of ultra low carbon steel in an RH or RH-OB facility (hereinafter referred to as a vacuum degassing facility) in an external refining process. The present invention relates to a method for measuring molten steel carbon in ultra low carbon steels for determining the carbon content in molten steel.

일반적으로 진공탈가스 설비를 이용한 노외정련(진공탈가스) 공정은 전로공정과 연속주조공정 사이에서 행하여지며, 용강이 액체상태에서 처리되는 마지막 정련공정으로서, 이 공정에 의해 수요가가 요구하는 강의 성분범위를 목표값으로 하여 적절하게 성분조정이 이루어진다. 특히, 이 공정에서는 용강중 탄소함량을 확인한 후, 목표값과 비교하여 추가의 보정작업을 실시하게 된다.In general, the furnace refining (vacuum degassing) process using the vacuum degassing equipment is carried out between the converter process and the continuous casting process, and the final refining process in which molten steel is processed in the liquid state. The component adjustment is appropriately made using the component range as a target value. In particular, in this process, the carbon content in the molten steel is checked, and then further corrections are made in comparison with the target value.

종래의 노외정련 공정에서 탄소함량을 확인하는 방법으로는 시료분석에 의한 방법이 널리 사용되고 있으며, 이 방법은 용강의 정련처리중 시료채취 설비 이용, 용강 침지시료를 채취하고 이를 기송관을 통해 분석실로 보낸 후, 그 결과값이 공정컴퓨터에 의해 수신되면 조업자가 이를 통하여 탄소함량을 확인한다.In the conventional off-road refining process, a method of sample analysis is widely used. This method uses a sampling facility during the refining process of molten steel, collects a molten steel immersion sample, and transfers it to an analysis chamber through a pneumatic pipe. After sending, when the result is received by the process computer, the operator checks the carbon content through it.

상기의 종래의 방법에서는 용강시료를 반드시 채취해야만 하고, 연속주조공정에서 용강을 인계할 시간이 촉박할 경우, 시료 분석값을 기다릴 시간적 여유가 없기 때문에 탄소성분에 대한 보정작업을 실시하지 못한 채 용강을 연속주조공정으로 이송시켜야 하므로, 연속주조공정으로 이송된 용강의 탄소성분이 목표범위를 벗어날 경우, 용강은 성분하자품으로 처리되어 생산성을 저하시킨다. 그리고, 분석에 필요한 시간으로 인하여, 진공해제 및 처리종료 시점이 지연되고 따라서 진공 탈가스 설비 노후의 촉진 및 RH-OB 내화물 수명 단축 등 기회비용을 증가시키는 원인이 되는 문제점이 발생한다.In the above conventional method, the molten steel sample must be collected, and if the time to take over the molten steel in the continuous casting process is short, there is no time to wait for the sample analysis value, so that the molten steel cannot be performed. Since it must be transferred to the continuous casting process, when the carbon component of the molten steel transferred to the continuous casting process is out of the target range, the molten steel is treated as a component defect to reduce the productivity. In addition, due to the time required for the analysis, the time point for releasing the vacuum and processing is delayed, and thus, there is a problem that causes the opportunity cost such as promoting the deterioration of the vacuum degassing equipment and shortening the life of the RH-OB refractory.

또한 특허출원번호(92-26528)에 출원된 또 다른 종래 기술은 배기가스중 CO, CO2, O2성분 및 배기가스 유량을 측정하여 상기 측정 데이터를 근거로 탈탄량과 탄산량을 산정하고 이를 이용하여 용강중의 탄소량을 측정하는 방법으로써 배기가스중 CO, CO2, O2성분 및 배기가스 유량에 관한 측정 데이터의 신뢰도가 높을 경우에는 매우 정확한 판정을 할 수 있으나, 임의의 시간중 측정 데이터의 신뢰도가 떨어지거나 특히 임의 시간동안의 측정 데이터가 누락될 경우 용강중의 탄소량 판정 오차 범위가 커져 신뢰도가 떨어지는 문제가 발생한다.In addition, another prior art filed in Patent Application No. 92-26528 measures the CO, CO 2 , O 2 component and exhaust gas flow rate in the exhaust gas to calculate the decarburization amount and carbonic acid amount based on the measured data. It is a method to measure the amount of carbon in molten steel by using a method of measuring the amount of carbon in the molten steel. When the reliability of the measurement data regarding the CO, CO 2 , O 2 components and the exhaust gas flow rate in the exhaust gas is high, a very accurate determination can be made. If the reliability is low or, in particular, the measurement data for a certain time is missing, the problem of determination of the amount of carbon in the molten steel becomes large, resulting in a problem of low reliability.

따라서 본 발명은 상기와 같은 종래방법의 문제점을 해결하기 위하여, 극저탄소강의 용강을 진공탈가스 장치에서 미탈산 상태로 감압정련할 때, 배출되는 배기가스 양을 매분당 측정하고, 이 가스중 일산화탄소(CO) 성분을 정량 분석하여, 용강의 단위시간당 탈탄양을 산정하고 이를 이론적 탈탄량과 비교함으로써, 극저탄소강 용강의 탄소량을 판정할 수 있는 극저탄소강의 용강탄소량 측정방법을 제공하는데 목적이 있다.Therefore, in order to solve the problems of the conventional method as described above, when the molten steel of ultra-low carbon steel is depressurized and refined in a vacuum degassing apparatus, the amount of exhaust gas discharged is measured per minute, and carbon monoxide in the gas is measured. The purpose of the present invention is to provide a method for measuring the amount of molten carbon in ultra low carbon steels by quantitatively analyzing (CO) components, calculating the decarburization amount per unit time of molten steel, and comparing it with the theoretical decarburization amount. There is this.

이하, 본 발명은 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 미탈산 극저탄소강 용량의 진공탈가스 처리중에 발생되는 배기가스를 빛의 투과 반사량 차이를 이용하여 일산화탄소 농도(X)를 측정하는 단계 ; 상기 배기가스의 총배출량(Qt)을 측정하는 단계 ; 상기 측정한 배기가스의 총배출량(Qt)으로부터 환류가스로 사용되는 아르곤가스와 진공탈가스 설비에서의 공기 누출에 의한 질소, 산소 등의 포함을 고려하여, 보정계수(Rc)를 구하는 단계 ; 조업컴퓨터로부터 용강중 초기탄소량([C]i)과 목표탄소량([C]t)을 읽는 단계 ; 아래의 식(1) 및 식(2)와 같이 상기 초기탄소량([C]i)과 목표탄소량([C]t)을 이용하여 용강의 이론적 탈탄시간을 계산하는 단계;The present invention comprises the steps of measuring the carbon monoxide concentration (X) by using the difference in the amount of reflection of the transmission of the exhaust gas generated during the vacuum degas treatment of the non-deoxidation ultra-low carbon steel capacity; Measuring a total discharge amount Qt of the exhaust gas; Obtaining a correction factor (Rc) by considering argon gas used as reflux gas and nitrogen, oxygen, etc. due to air leakage from a vacuum degassing facility from the measured total discharge amount Qt of the exhaust gas; Reading the initial carbon amount ([C] i ) and the target carbon amount ([C] t ) in the molten steel from the operating computer; Calculating theoretical decarburization time of molten steel using the initial carbon amount [C] i and the target carbon amount [C] t as shown in Equations (1) and (2) below;

아래 식(3)과 같이 용강중 탈탄시간(t-1)에서의 탄소함량 ([C]t-1)을 계산하는 단계;Calculating the carbon content ([C] t-1 ) at the decarburization time (t-1) in molten steel as shown in Equation (3) below;

아래 식(4)와 같이, 용강중 탈탄시간(t-1)에서의 탄소함량([C]t-1)과 용강중 시간 t에서의 탄소함량([C]t)을 이용하여 단위시간당 CO 발생량(QCO,1)을 계산하는 단계;As shown in the following formula (4), molten steel decarburized time (t-1) carbon content ([C] t-1) and the molten steel time t carbon content ([C] t) for the unit time CO generation amount used in the in the ( Calculating Q CO, 1 );

하기식(5)와 같이, 상기 측정한 배기가스의 총배출량(Qt)로부터 배기가스에 포함된 CO 측정량(QCO,2)을 구하는 단계;Obtaining a CO measurement amount (Q CO, 2 ) included in the exhaust gas from the measured total emission amount Qt of the exhaust gas as shown in Equation (5);

아래식(6)과 같이 상기 배기가스에 포함된 CO측정량 (QCO,2)을 보정하는 단계;Correcting the CO measurement amount (Q CO, 2 ) included in the exhaust gas as shown in Equation (6) below;

아래식(7)과 같이 상기 배기가스에 포함된 CO 보정량(QCO,3)이 단위시간당 CO 발생량(QCO,1)과 비교하는 단계;Comparing the amount of CO correction (Q CO, 3 ) included in the exhaust gas with the amount of CO generation (Q CO, 1 ) per unit time as shown in Equation (7) below;

용강중 탄소함량을 판정하는 단계 ; 를 포함하여 구성된 극저탄소강의 용강탄소량 측정방법이다.Determining the carbon content in the molten steel; Molten steel carbon measurement method of ultra-low carbon steel, including the.

이하, 본 발명의 작용에 관하여 상세히 설명한다.Hereinafter, the operation of the present invention will be described in detail.

제1도를 참조하면 극저탄소강의 미탈산 용강을 진공탈가스 설비에서 감압정련하는 경우, 용강중 탄소와 용강중 용해산소가 반응하여 탄산가스가 생성되며, 이들은 진공탈가스 설비를 통하여 배출되므로, 먼저 배기가스 중에 함유되어 있는 분자들 함유량에 의한 빛의 투과반사량 차이를 이용하여 일정주기마다 표본한 배기가스량에 적외선을 비추어 배기가스중 일산화탄소 농도(X)를 측정한다. 그리고, 가스유량 측정기를 사용하여, 일산화탄소 농도 측정주기와 동일한 주기로 진공탈가스 설비의 배기가스 총 배출량(Qt)을 측정하며, 이때 일산화탄소 농도(X)와 배기가스 총 배출량(Qt)은 일정주기마다 컴퓨터에 의해 감지되도록 사전에 설치한다.Referring to FIG. 1, in the case of depressurizing and refining ultra-low carbon steel deoxidized molten steel in a vacuum degassing facility, carbon in molten steel and dissolved oxygen in molten steel react to generate carbon dioxide, which is discharged through the vacuum degassing facility. The carbon monoxide concentration (X) in the exhaust gas is measured by reflecting infrared rays on the amount of exhaust gas sampled at regular intervals by using the difference in the amount of light transmitted by the molecules contained in the gas. The gas flow meter is used to measure the total emissions Qt of the vacuum degassing facility at the same period as the carbon monoxide concentration measurement cycle, wherein the concentrations of carbon monoxide (X) and the total emissions Qt are determined at regular intervals. Install in advance to be detected by the computer.

진공탈가스 설비로부터 배출되는 배기가스에는 환류가스로 사용되는 아르곤가스와 진공탈가스 설비에서의 공기누출에 의한 질소, 산소등이 포함되므로 이들의 계산치에 대한 기여도를 최소화시키고, 계산치의 신뢰도를 향상시키기 위해서 보정계수(Rc)를 설정하는 것이 바람직하다. 따라서, 진공탈가스 설비에서의 정련개시후 3-6분 시점에서 여러번의 CO 가스 측정치와 미리 계산된 CO 가스량을 이용하여, 보정계수(Rc)를 설정한다.The exhaust gas discharged from the vacuum degassing equipment includes argon gas used as reflux gas and nitrogen, oxygen, etc. due to air leakage from the vacuum degassing equipment, thereby minimizing the contribution to these calculated values and improving the reliability of the calculated values. In order to achieve this, it is preferable to set the correction coefficient Rc. Therefore, at 3-6 minutes after the start of refining in the vacuum degassing facility, the correction coefficient Rc is set using several CO gas measurements and a precalculated amount of CO gas.

한편, 공정컴퓨터로부터 초기탄소량([C]i) 및 목표탄소량([C]t)을 읽고, 식(2)를 이용하여, 이론적 탈탄시간을 산정하며 식(2)에서 Kc는 탈탄반응 계수이다. 상기의 결과에 근거하여 탈탄시간(t-1) 시점에서의 용강중 탄소함량([C]t-1)을 식(3)을 이용하여 계산할 수 있다.On the other hand, the initial carbon amount ([C] i ) and the target carbon amount ([C] t ) are read from the process computer, and the theoretical decarburization time is calculated using Eq. (2), where Kc is a decarburization reaction. Coefficient. Based on the above results, the carbon content ([C] t-1 ) in the molten steel at the time of decarburization time (t-1) can be calculated using Equation (3).

이어서, 용강중 탈탄시간(t-1)로부터 t시간까지의 단위시간당 CO 발생량(QCO,1)을 식(4)을 이용하여 구한다.Subsequently, the amount of CO generated (Q CO, 1 ) per unit time from the decarburization time (t-1) to the t hour in molten steel is obtained by using Equation (4).

즉, 먼저 탈탄 시간(t-1) 및 t에서의 탄소성분차 ([C]t-1)-([C]t)를 계산하고, 여기에 용강량(Wmalt)과 C가 CO로 될 때의 당량변화(=28/12)를 곱함으로써, 단위시간당 CO 발생량 (QCO,1)은 Kg 단위로 산정한다.That is, first, the carbon content difference ([C] t-1 )-([C] t ) at decarburization time (t-1) and t is calculated, and the molten steel amount (W malt ) and C are CO. By multiplying the equivalence change at the time (= 28/12), the amount of CO generated per unit time (Q CO, 1 ) is calculated in Kg units.

그리고, 상기 측정한 배기가스의 총배출량(Qt)을 이용하여 배기가스에 포함된 CO 측정량(QCO,2)은 배기가스 총배출량(Qt)과 측정된 배기가스중 일산화탄소 농도(X)를 곱하여, 식 (5)과 같이 계산하며, 여기에 보정계수(Rc)를 감안하여 식(6)을 이용하여 배기가스에 포함된 CO 측정량(QCO,2)을 보정한다.In addition, the CO measurement amount Q CO, 2 included in the exhaust gas using the measured total emission amount Qt of the exhaust gas is equal to the total emission amount Qt of the exhaust gas and the carbon monoxide concentration X in the measured exhaust gas. By multiplying, it calculates as Formula (5), and corrects the measured CO quantity (Q CO, 2 ) contained in the exhaust gas using Formula (6) in consideration of the correction factor (Rc).

마지막 단계로써, 상기와 같이 구한 배기가스에 포함된 CO 보정량(QCO,3)를 단위시간당 CO 발생량(QCO,1)과 비교하여, 배기가스에 포함된 CO 보정량(QCO,3)이 단위시간당 CO 발생량(QCO,1)보다 작게 되었을 때 이는 용강중 탄소함량이 극저탄소강의 목표탄소량 이하가 되었음을 나타내므로, 탈탄작업을 종료할 수 있다.As a final step, to the CO correction amount (Q CO, 3) contained in the exhaust gas obtained as described above and compare units per hour CO generation amount (Q CO, 1), the CO correction amount (Q CO, 3) contained in the exhaust gas is When the amount of CO generated per unit time (Q CO, 1 ) is less than this indicates that the carbon content in the molten steel is less than the target carbon content of the ultra-low carbon steel, the decarburization operation can be terminated.

특히 이와 같은 마지막 단계는 그래프화시켜 컴퓨터에 나타냄으로써, 조업자가 육안으로 확인할 수 있도록 할 경우 더욱 효과적이다.In particular, this last step is graphed and displayed on a computer, which is more effective if the operator can visually confirm it.

이하 본 발명의 실시예를 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail.

[실시예]EXAMPLE

제2도는 극저탄소강의 미탈산 용강을 RH-OB 진공탈가스 설비에서 탈탄처리시 30초 주기로 얻은 배가스 분석정보중 배기가스 총유량(Qt)과 배기가스 중 CO함량을 나타낸다. 본 실시예에서 극저탄소강 용강의 초기 탄소량([C]i)은 350ppm, 목표탄소량([C]t)은 50ppm이며, 이때 상기 배기가스의 총배출량(Qt)으로부터 아르곤가스 및 가스누출을 고려하여, 보정계수(Rc)를 구한 결과 그 값은 1.05에 달하였다. 그리고, 식(2)에 의거 계산된 t는 약 17분이었으며, 따라서 탈탄시간(t-1) 및 용강중 탈탄시간에서의 탄소함량([C]t-1)은 각각 16분, 55.6ppm이다. 이어서 식(4)를 적용하여 구한 단위시간당 CO 발생량(QCO,1)은 3.6Kg/min이었다.FIG. 2 shows the total amount of exhaust gas (Qt) and the CO content of the exhaust gas in the flue gas analysis information obtained in the decarburization process of the ultra low carbon steel denitrified molten steel in the RH-OB vacuum degassing facility at 30 second intervals. In this embodiment, the initial carbon amount [C] i of the ultra-low carbon steel molten steel is 350 ppm, and the target carbon amount [C] t is 50 ppm, wherein the argon gas and the gas leak are discharged from the total emission amount Qt of the exhaust gas. In consideration of this, the correction coefficient Rc was found to be 1.05. The calculated t based on Eq. (2) was about 17 minutes. Therefore, the carbon content ([C] t-1 ) at the decarburization time (t-1) and the decarburization time in molten steel was 16 minutes and 55.6 ppm, respectively. Subsequently, the amount of CO generated (Q CO, 1 ) per unit time determined by applying Equation (4) was 3.6 Kg / min.

한편, 제2도의 배기가스 분석정보로부터 구한 배기가스에 포함된 CO 함량에 제3도에 나타내었으며, 여기서 A는 보정하기전 배기가스에 포함된 CO 측정량(QCO,2), B는 보정후 배기가스에 포함된 CO 보정량(QCO,3)을 각각 나타내며, C는 탈탄시간(t-1)로부터 t까지의 단위시간에 배출될 수 있는 단위시간당 CO 발생량(QCO,1)을 표시한다. 따라서, 보정후 배기가스에 포함된 CO 보정량(A)이 단위시간당 CO 발생량(C)보다 작아지는 점 D에서의 용강중 탄소성분이 목표성분(50ppm) 이하로 되는 최초의 시간이며, 이 지점에서 탈탄을 종료하는 것이 매우 효과적이다.On the other hand, the CO content contained in the exhaust gas obtained from the exhaust gas analysis information of FIG. 2 is shown in FIG. 3, where A is the amount of CO measured in the exhaust gas (Q CO, 2 ) and B is corrected before correction. It represents the CO correction amount (Q CO, 3 ) contained in the exhaust gas afterwards, respectively, and C represents the amount of CO generation (Q CO, 1 ) per unit time that can be discharged in the unit time from decarburization time (t-1) to t. do. Therefore, it is the first time that the carbon component in the molten steel at the point D becomes less than the target component (50 ppm) at the point D at which the CO correction amount (A) contained in the exhaust gas after correction becomes smaller than the CO generation amount (C) per unit time. It is very effective to end it.

따라서 본 실시예에서는 D점에서의 용강 시료를 채취하고 분석한 결과, 용강의 탄소성분은 48ppm으로써 목표탄소성분과 잘 일치하였고, D지점에서 탈탄을 종료하는 것이 효과적임을 알 수 있다. 그리고 상기 D지점에서 탈탄반응을 종료시킬 경우, 탈탄처리시간을 약 2분 단축시키게 된다.Therefore, in the present embodiment, the molten steel sample was collected and analyzed at point D, and the carbon component of the molten steel was 48 ppm, which was in good agreement with the target carbon component, and it was found that it was effective to terminate the decarburization at the point D. When the decarburization reaction is terminated at the point D, the decarburization time is shortened by about 2 minutes.

본 발명은 극저탄소강의 미탈산 용강을 진공탈가스 설비에서 정련할 때, 용강중 탄소량을 정확하게 판정하고, 이를 조업자에게 고지한다. 따라서, 극저탄소강의 탈탄시간을 단축할 수 있으며, RH 내화물 수명연장을 통해 설비를 보다 효율적으로 사용할 수 있으며, 강의 생산성을 향상시킬 수 있는 효과가 있으며 처리도중 데이터가 누락되더라도 목표성분 도달여부를 판정하는데 전혀 영향이 없으며, 모니터로도 결과를 쉽게 알 수 있어 조업에 적용하기 용이하며 가동율이 매우 우수한 효과가 있다.The present invention accurately determines the amount of carbon in the molten steel when refining the ultra-low carbon steel undeoxidized molten steel in a vacuum degassing facility, and notifies the operator of this. Therefore, it is possible to shorten the decarburization time of the ultra low carbon steel, to use the equipment more efficiently through the extension of the life of RH refractory, to improve the productivity of the steel, and to determine whether the target component is reached even if data is lost during processing. It has no effect at all, and the result can be easily seen by the monitor, so it is easy to apply to the operation and the operation rate is very excellent.

Claims (1)

미탈산 극저탄소강 용강의 진공탈가스 처리중에 발생되는 배기가스를 빛의 투과반사량 차이를 이용하여 이산화탄소 농도(X)를 측정하는 단계; 상기 배기가스의 총배출량(Qt)을 측정하는 단계; 상기 측정한 배기가스의 총배출량(Qt)으로부터 환류가스로 사용되는 아르곤가스와 진공탈가스 설비에서의 공기누출에 의한 질소, 산소 등의 포함을 고려하여 보정계수(Rc)를 구하는 단계; 조업컴퓨터로부터 용강중 초기탄소량([C]i)과 목표탄소량([C]t)을 읽는 단계; 아래의 식(1) 및 식(2)와 같이 상기 초기탄소량([C]i)과 목표탄소량([C]t)을 이용하여 용강의 이론적 탈탄시간을 계산하는 단계;Measuring the carbon dioxide concentration (X) by using the difference in the amount of reflected light transmitted through the exhaust gas generated during vacuum degassing treatment of the non-deoxidation ultra low carbon steel molten steel; Measuring a total discharge amount Qt of the exhaust gas; Obtaining a correction factor (Rc) from the measured total amount of exhaust gas (Qt) by considering argon gas used as reflux gas and nitrogen, oxygen, etc. due to air leakage from a vacuum degassing facility; Reading the initial carbon amount [C] i and the target carbon amount [C] t in the molten steel from the operating computer; Calculating theoretical decarburization time of molten steel using the initial carbon amount [C] i and the target carbon amount [C] t as shown in Equations (1) and (2) below; 아래 식(3)과 같이 용강중 탈탄시간(t-1)에서의 탄소함량 ([C]t-1)을 계산하는 단계;Calculating the carbon content ([C] t-1 ) at the decarburization time (t-1) in molten steel as shown in Equation (3) below; 아래 식(4)와 같이, 용강중 탈탄시간(t-1)에서의 탄소함량([C]t-1)과 용강중 시간 t에서의 탄소함량([C]t)을 이용하여 단위시간당 CO 발생량(QCO,1)을 계산하는 단계;As shown in the following formula (4), molten steel decarburized time (t-1) carbon content ([C] t-1) and the molten steel time t carbon content ([C] t) for the unit time CO generation amount used in the in the ( Calculating Q CO, 1 ); 하기식(5)와 같이, 상기 측정한 배기가스의 총배출량(Qt)로부터 포함된 CO 측정량(QCO,2)을 구하는 단계;Obtaining a CO measurement amount (QCO, 2) included from the measured total emission amount (Qt) of the exhaust gas as shown in Equation (5); 아래식(6)과 같이 상기 배기가스에 포함된 CO측정량 (QCO,2)을 보정하는 단계;Correcting the CO measurement amount (QCO, 2 ) included in the exhaust gas as shown in Equation (6) below; 아래식(7)과 같이 상기 배기가스에 포함된 CO 보정량(QCO,3)이 단위시간당 CO 발생량(QCO,1)과 비교하는 단계;Comparing the amount of CO correction (QCO, 3 ) included in the exhaust gas with the amount of CO generation (QCO, 1) per unit time as shown in Equation (7) below; 용강중 탄소함량을 판정하는 단계를 포함하여 구성된 것을 특징으로 하는 극저탄소강의 용강탄소량 측정방법.A method for measuring molten steel carbon of an ultra low carbon steel, comprising the step of determining the carbon content in molten steel.
KR1019930031770A 1993-12-31 1993-12-31 Carbon concentration measuring method in low carbon steel KR970002502B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930031770A KR970002502B1 (en) 1993-12-31 1993-12-31 Carbon concentration measuring method in low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930031770A KR970002502B1 (en) 1993-12-31 1993-12-31 Carbon concentration measuring method in low carbon steel

Publications (2)

Publication Number Publication Date
KR950019699A KR950019699A (en) 1995-07-24
KR970002502B1 true KR970002502B1 (en) 1997-03-05

Family

ID=19374701

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930031770A KR970002502B1 (en) 1993-12-31 1993-12-31 Carbon concentration measuring method in low carbon steel

Country Status (1)

Country Link
KR (1) KR970002502B1 (en)

Also Published As

Publication number Publication date
KR950019699A (en) 1995-07-24

Similar Documents

Publication Publication Date Title
RU2539501C2 (en) Converter process control by exit gas signals
KR970002502B1 (en) Carbon concentration measuring method in low carbon steel
WO2020148927A1 (en) Composition analysis device and composition analysis method
WO2019220800A1 (en) Melt component estimation device, melt component estimation method, and method for producing melt
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
JPS6232248B2 (en)
JP2017089001A (en) Molten metal condition estimation device, molten metal condition estimation method, and manufacturing method of molten metal
US4251270A (en) Method of controlling steel making process under atmospheric pressure
KR970005385B1 (en) Control method of carbon concentration with low carbon steel
JP3891564B2 (en) Control method of decarburization time in vacuum decarburization of molten steel
KR20000045516A (en) Method and device for predicting concentration of carbon in molten metal in electric furnace work
KR101570582B1 (en) Vacuum Oxygen decarburization apparatus of chromium comprising melting steel and vacuum oxygen decarburization method using the apparatus
JPH06256832A (en) Blowing method of converter
KR100424816B1 (en) Vacuum Oxygen decarburization apparatus of chromium comprising melting steel
KR20010028813A (en) A method for controlling carbon contents in molten steel when refining the ultra low carbon steel
SU1010140A1 (en) Method for vacuum treating molten steel in ladle
KR20180074437A (en) Apparatus for off-gas measure and this measure using a decarbonizing predicting in molten steel
JP3415997B2 (en) Guidance method for vacuum decarburization treatment of melting
EP3943618B1 (en) Blowing control method and blowing control apparatus for converter type dephosphorization refining furnace
JPH09272913A (en) Method for estimating carbon concentration in molten steel
JPH03199306A (en) Method for estimating vacuum decarburization
JPS6247418A (en) Method for estimating oxygen concentration in molten steel
JP2730339B2 (en) How to decarburize stainless steel
KR940015511A (en) How to measure dissolved oxygen and carbon in molten steel
JPS6011085B2 (en) Decarburization measurement device in vacuum decarburization furnace

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020228

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee