JP3891564B2 - Control method of decarburization time in vacuum decarburization of molten steel - Google Patents

Control method of decarburization time in vacuum decarburization of molten steel Download PDF

Info

Publication number
JP3891564B2
JP3891564B2 JP2002324559A JP2002324559A JP3891564B2 JP 3891564 B2 JP3891564 B2 JP 3891564B2 JP 2002324559 A JP2002324559 A JP 2002324559A JP 2002324559 A JP2002324559 A JP 2002324559A JP 3891564 B2 JP3891564 B2 JP 3891564B2
Authority
JP
Japan
Prior art keywords
molten steel
decarburization
vacuum
time
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002324559A
Other languages
Japanese (ja)
Other versions
JP2004156119A (en
Inventor
宗泰 那須
憲一 五明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWASO ELECTRIC INDUSTRIAL KABUSHIKI KAISHA
Nippon Steel Corp
Original Assignee
KAWASO ELECTRIC INDUSTRIAL KABUSHIKI KAISHA
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWASO ELECTRIC INDUSTRIAL KABUSHIKI KAISHA, Nippon Steel Corp filed Critical KAWASO ELECTRIC INDUSTRIAL KABUSHIKI KAISHA
Priority to JP2002324559A priority Critical patent/JP3891564B2/en
Publication of JP2004156119A publication Critical patent/JP2004156119A/en
Application granted granted Critical
Publication of JP3891564B2 publication Critical patent/JP3891564B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、極低炭素鋼(IF鋼)をRH真空脱ガス装置等の減圧還流設備において溶製するに際し、脱炭処理時間をリアルタイムかつダイナミックに制御する方法に関する。
【0002】
【従来の技術】
従来、RH真空脱ガス装置に代表されるように、溶鋼を不活性ガスから成る還流ガスにより減圧槽内に還流せしめ、炭素と酸素の結合により生じるCOガス及び/又はCO
ガスを排出せしめる減圧脱炭処理により極低炭素鋼を溶製するプロセスが公知である。
【0003】
ところで、従来は、脱炭処理中に、サンプラで溶鋼試料を採取することにより分析し、脱炭が所定のレベルまで達しているか否かを確認しながら脱炭処理を行っていたが、精錬中の溶鋼のサンプリングは困難であると共に、試料中の炭素含有量を分析するために時間がかかるという問題がある。
【0004】
そこで、近年、溶鋼用の酸素プローブが開発されるに伴い、減圧脱炭処理中に溶鋼中の炭素濃度を計算により測定する技術が提案されている。例えば、特開昭62−174317号公報、特許第3126374号公報、特許第3287204号公報等に開示されている技術が公知である。
【0005】
【発明が解決しようとする課題】
然しながら、特開昭62−174317号公報に開示された技術は、溶鋼中の酸素量のみに基づいて脱炭反応の進行状況を推測するものであるため、極めて精度が低く、実用に耐えない。
【0006】
また、特許第3126374号公報に開示された技術は、炭素濃度60ppm以上の領域において、熱収支、酸素収支、成分収支計算に基づき溶鋼中炭素濃度と溶鋼温度をスタティック制御し、炭素濃度60ppm以下の領域においては、溶鋼の成分分析結果及び温度測定結果に基づき溶鋼中炭素濃度及び溶鋼温度を連続的に推定するものである。然しながら、前述の収支計算は、損失(ロス)の影響を受けることが不可避であるから、計算値の信頼性が低いという問題がある。また、結局は、サンプリングによる成分の分析を必要とする構成であるから、上述のような問題解決のためには不十分である。
【0007】
更に、特許第3287204号公報等に開示された技術は、操業中の溶鋼中炭素濃度〔C〕を溶鋼温度T、溶鋼中酸素濃度〔O〕、排ガス流量G、溶鋼還流用ガス流量F、真空槽内圧力P、排ガス中CO濃度及びCO
濃度〔CO〕に基づいて計算により連続的に推定するものであり、前述の2つの技術が含む問題を解決している。然しながら、流量計により測定した排ガス量から、更に、成分分析計によりCO濃度及びCO
濃度を正確に測定することは容易でなく、この点に誤差が生じると、目的とする溶鋼中炭素濃度〔C〕の値に大きな影響を受けるという問題がある。しかも、この技術は、操業中、測定を連続して行い、溶鋼中炭素濃度〔C〕を連続的に推定することにより、炭素濃度推定値が目標値に達した時点で脱炭処理を終了せしめるものであるから、脱炭処理の開始から終了まで一貫してモニタリングを実施しなければならないという問題がある。
【0008】
【課題を解決するための手段】
本発明は、RH真空脱ガス装置等の減圧還流設備において、極低炭素鋼(IF鋼)を溶製するに際し、信頼性の高い測定条件からの測定値により、溶鋼中炭素値を高精度の下で計算することができ、しかも、操業中、随時、測定を行うことにより、溶鋼の目標炭素値を得るまでの残り要処理時間を推定することができるようにした溶鋼の減圧脱炭法における脱炭処理時間の制御方法を提供する。
【0009】
従って、本発明によれば、推定された残り要処理時間の経過により脱炭処理を終了すれば良いので、不必要な長時間にわたる脱炭処理を行うことから生じる生産性の問題や、炉内耐火物寿命の低下、真空度維持のためのエネルギーコストの増大、還流アルゴンガスの使用量の増大という問題を解決することができる。
【0010】
そこで、本発明が第一の手段として構成したところは、溶鋼を不活性ガスから成る還流ガスにより減圧槽内に還流せしめ、炭素と酸素の結合により生じるCOガス及び/又はCO
ガスを排出せしめる減圧脱炭処理により極低炭素鋼を溶製するプロセスにおいて、脱炭処理中の溶鋼中の中間酸素値x6を測定し、該中間酸素値を測定した時刻t(ox)から脱炭処理後における溶鋼の目標炭素値x9を得るまでの残り要処理時間Δt(sec)を、下記の式1により算出して推定する点にある。
式1:Δt(sec)=f(x1,x2,x3,x4,x5,x6,x7,x8,x9)
但し、x1は溶鋼の脱炭処理前の炭素値、x2は溶鋼の脱炭処理初期の酸素値、x3は溶鋼の脱炭処理初期酸素炭素比(x2〔O〕/x1〔C〕)、x4は酸素投入量Voから求めた値、x5は脱炭処理中の溶鋼の中間温度、x6は脱炭処理中の溶鋼の中間酸素値、x7は槽内真空度Pcとx6の測定時刻t(ox)から求めた値、x8は槽内真空度Pcと還流ガス量Vcとx6の測定時刻t(ox)から求めた値、x9は溶鋼の脱炭処理後の目標炭素値である。
【0011】
また、本発明が第二の手段として構成したところは、溶鋼を不活性ガスから成る還流ガスにより減圧槽内に還流せしめ、炭素と酸素の結合により生じるCOガス及び/又はCO
ガスを排出せしめる減圧脱炭処理により極低炭素鋼を溶製するプロセスにおいて、脱炭処理中の溶鋼中における特定時の瞬時値としての炭素量〔C〕(ppm)を下記の式5により算出し、該算出値から脱炭処理後における溶鋼の目標炭素値x9を得るまでの残り要処理時間Δt(sec)を推定する点にある。
式5:〔C〕(ppm)=f(x1,x2,x3,x4,x5,x6,x7,x8,x9、x10)
但し、x1は溶鋼の脱炭処理前の炭素値、x2は溶鋼の脱炭処理初期の酸素値、x3は溶鋼の脱炭処理初期酸素炭素比(x2〔O〕/x1〔C〕)、x4は酸素投入量Voから求めた値、x5は脱炭処理中の溶鋼の中間温度、x6は脱炭処理中の溶鋼の中間酸素値、x7は槽内真空度Pcとx6の測定時刻t(ox)から求めた値、x8は槽内真空度Pcと還流ガス量Vcとx6の測定時刻t(ox)から求めた値、x9は溶鋼の脱炭処理後の目標炭素値、x10はx6の測定時刻t(ox)と槽内真空度Pcと還流ガス量Vcから求めた値である。
【0012】
【発明の実施の形態】
以下図面に基づいて本発明の好ましい実施形態を詳述する。
【0013】
図1は、極低炭素鋼(IF鋼)を溶製するための減圧還流設備として代表的なRH真空脱ガス装置を示している。転炉等で精錬された溶鋼1を収容した取鍋2の上方にはRH真空脱ガス装置3が設けられている。
【0014】
RH真空脱ガス装置3を構成する真空槽4は、それぞれ溶鋼1に浸漬された上昇管5と下降管6を備え、上昇管5に対して還流ガス供給管7を介してアルゴンガス等の不活性ガスを導入することにより、溶鋼1を取鍋2から上昇管5を介して真空槽4に進入せしめ、真空槽4から下降管6を介して取鍋2に復帰せしめるように還流させる。
【0015】
真空槽4は、上部の排気管8から排ガスを排出せしめる真空排気手段9を設けている。図例の場合、槽内に酸素を導入するための上吹酸素ランス等の酸素供給手段10を設けているが、このような構成に限られるものではない。
【0016】
従って、取鍋2と真空槽4の間を還流せしめられる溶鋼1は、真空槽4の内部において、酸素〔O〕と溶鋼中の炭素〔C〕を結合せしめられ、これにより生じたCOガス及び/又はCO
ガスを還流ガスと共に排気管8から槽外へ排気され、溶鋼中の炭素濃度を次第に低下する。
【0017】
溶鋼中炭素量を高精度の下で計算するための信頼性の高い測定条件として、本発明は、Pc:槽内真空度〔torr〕、Vc:還流ガスの還流量〔Nl/min〕、Vo:酸素投入量(OB流量)〔Nm3/h〕、溶鋼温度、溶鋼中酸素値を測定する。
【0018】
このため、真空槽4の槽内真空度(Pc)を測定するための真空度計11、OB流量(Vo)を測定するための還流ガス流量計12、OB流量を測定するための酸素流量計13、溶鋼中酸素濃度を測定するための酸素プローブ14が設けられており、該酸素プローブ14は、溶鋼温度の検出が可能である。
【0019】
このようなRH真空脱ガス装置3における溶鋼の脱炭処理時間(t)と真空槽4の槽内真空度(Pc)の関係を図2に示している。図2において、横軸に脱炭処理時間(t)を示し、縦軸に槽内の気圧、即ち真空度(Pc)を示している。槽内の気圧は、処理開始から次第に低下し、所定時間経過後に急激に低下した後、その後、ほぼ平衡状態で進行する。
【0020】
また、溶鋼の脱炭処理時間(t)と鋼中の炭素濃度(ppm)の関係を図3に示している。図3において、横軸に脱炭処理時間(t)を示し、縦軸に鋼中の炭素濃度(ppm)を示している。図2と図3を対比すると明らかなように、鋼中の炭素濃度(ppm)は、処理開始から急激に低下し、所定時間経過後に穏やかに低下することにより目標値〔C〕に達する。
【0021】
本発明は、脱炭処理中、所定時、溶鋼温度及び溶鋼中酸素濃度を測定することにより、溶鋼の炭素目標値〔C〕を得るまでの残り要処理時間(Δt)を推定し、要処理時間の経過後、速やかに脱炭処理を終了せしめる。この際、溶鋼中の炭素濃度(ppm)は、図3に示すように、穏やかな低下を示す部分Sから目標値〔C〕に至るまでの間において処理時間(t)にほぼ比例する脱炭進行を示すので、溶鋼の測定をこの部分S(つまり減圧脱炭処理を開始した時刻ts(即ちt=0)から所定時間経過後の時刻te)で行うことにより、残り要処理時間(Δt)を正確に推定することができる。
【0022】
溶鋼における特定時の瞬時値としての炭素濃度〔C〕(ppm)を求めることにより、脱炭処理のための残り要処理時間Δtを推定するため、本発明は、信頼性の高い測定条件として、次の測定値を使用する。
Pc:槽内真空度〔torr〕
Vc:還流ガスの還流量〔Nl/min〕
Vo:酸素投入量(OB流量)〔Nm3/h〕
x1:溶鋼の脱炭処理前の炭素値(濃度ppm)
x2:溶鋼の脱炭処理初期酸素値
x3:溶鋼の脱炭処理初期酸素炭素比(x2〔O〕/x1〔C〕)
x4:酸素投入量Voから求めた値
x5:脱炭処理中の溶鋼の中間温度
x6:脱炭処理中の溶鋼の中間酸素値
x7:槽内真空度Pcとx6の測定時刻t(ox)から求めた値
x8:槽内真空度Pcと還流ガス量Vcとx6の測定時刻t(ox)から求めた値
x9:溶鋼の脱炭処理後の目標炭素値〔C〕
x10:x6の測定時刻t(ox)と槽内真空度Pcと還流ガス量Vcから求めた値
【0023】
(脱炭処理のための残処理時間Δtの推定)
脱炭処理中の溶鋼中の中間酸素値x6を測定し、該中間酸素値を測定した時刻t(ox)から脱炭処理後における溶鋼の目標炭素値x9を得るまでの残り要処理時間Δt(sec)は、下記の式1に基づいて計算により推定される。
式1:
Δt(sec)=f(x1,x2,x3,x4,x5,x6,x7,x8,x9)
【0024】
前記x4は、下記の数式10により求められる。
【数10】
【0025】
前記x7は、下記の数式11により求められる。
【数11】
【0026】
前記x8は、下記の数式12により求められる。
【数12】
【0027】
ところで、残り要処理時間Δt(sec)を求めるための式1は、具体的には経験(過去の脱炭処理実績)から求めた決定係数(定数)を用いた下記の式1Aにより実施することが好ましい。
式1A:
Δt(sec)=CO+C1・X1+C2・X2+C3・X3+C4・X4+C5・X5+C6・X6+C7・X7+C8・X8+C9・X9
【0028】
本発明者らが知得したところによれば、前記C1〜C9の係数(定数)は、例えば、図4に示す表1の値が用いられる。
【0029】
(溶鋼中の炭素濃度〔C〕(ppm)を求める方法)
残り要処理時間Δt(sec)を推定(算出)するために、上述した式1及び式1Aでは積分値の時間平均値を求めたが、これに代えて、脱炭処理中の溶鋼中における炭素濃度〔C〕(ppm)を下記の式5により特定時の瞬時値として算出し、該算出値から脱炭処理後における溶鋼の目標炭素値x9を得るまでの残り要処理時間Δt(sec)を推定することができる。
式5:
〔C〕(ppm)=f(x1,x2,x3,x4,x5,x6,x7,x8,x9、x10)
【0030】
前記x4は、下記の数式13(上述した数式10と同じである)により求められる。
【数13】
【0031】
前記x7は、下記の数式14(上述した数式11と同じである)により求められる。
【数14】
【0032】
前記x8は、下記の数式15(上述した数式12と同じである)により求められる。
【数15】
【0033】
前記x10は、下記の数式16により求められる。
【数16】
尚、t(P)は、t(P)=teであり減圧脱炭処理開始から所定時間経過後の時刻である
【0034】
ところで、脱炭処理中における溶鋼中の炭素濃度〔C〕(ppm)を求めるための式5は、具体的には経験(過去の脱炭処理実績)から求めた決定係数(定数)を用いた下記の式5Aにより実施することが好ましい。
式5A:
〔C〕(ppm)=CO+C1・X1+C2・X2+C3・X3+C4・X4+C5・X5+C6・X6+C7・X7+C8・X8+C9・X9+C10・X10
【0035】
本発明者らが知得したところによれば、前記C1〜C10の係数(定数)は、例えば、図5に示す表2の値が用いられる。
【0036】
RH真空脱ガス装置を使用した減圧脱炭処理により極低炭素鋼を溶製するプロセスにおいて、本発明の方法により算出された残り要処理時間Δt(sec)に基づいて、脱炭処理を終了した極低炭素鋼の結果を図6に示す。図6において、横軸は炭素濃度の実績値を示し、縦軸は脱炭処理終了時の炭素濃度推定値を示しており、脱炭処理終了時の炭素濃度の実績値と推定値を比較して示している。図中、Aは目標値〔C〕であり、B及びCはばらつきの上下範囲を示している。本発明の方法に基づく脱炭処理終了時における炭素濃度推定値によれば、溶鋼中の炭素濃度〔C〕を目標値Aから上下B、Cの範囲において±5ppmの精度で正確に制御できることが判明した。また、過去データを用いた逆算値によれば、時間制御の精度は、±100秒の精度で正確に制御できることが判明した。
【0037】
図7は、本発明を実施するための作業手順を示しており、脱炭処理を制御するプロセスコンピュータ16と、該コンピュータに内蔵され又は外付けされた信号処理演算器17により、脱炭処理時間(中間酸素値を測定した時刻t(ox)から脱炭処理を終了するまでの残り要処理時間Δt(sec))を算出して推定する工程の1例を示している。
【0038】
減圧脱炭処理が開始されると(ステップS1)、タイマーにより時間〔Time〕の計測と、真空度計11による槽内真空度:Pc〔torr〕の測定と、還流ガス流量計12による還流ガスの還流量:Vc〔Nl/min〕の測定が開始され、それぞれの測定値が信号処理演算器17に入力される。この際、溶鋼の脱炭処理前の炭素値(炭素濃度ppm):x1と、溶鋼の脱炭処理後の目標炭素値〔C〕:x9が信号処理演算器17に入力される。
【0039】
引き続き、酸素プローブ14により、第一回目の酸素測定が行われ(ステップS2)、溶鋼の脱炭処理初期の酸素値(酸素濃度ppm):x2が信号処理演算器17に入力される。
【0040】
その後、酸素供給手段10による酸素投入が開始されると(ステップS3)、酸素流量計13による酸素投入量(OB流量)Vo〔Nm3/h〕の計測が行われ、プロセスコンピュータ16を介して上述の計算式により求められた値:x4が信号処理演算器17に入力される。
【0041】
酸素の投入により溶鋼の減圧脱炭が開始されるが(ステップS4)、脱炭処理の間、連続して、槽内真空度:Pc〔torr〕と還流ガスの還流量:Vc〔Nl/min〕の測定値が信号処理演算器17に入力され続ける。
【0042】
所定時間の経過により脱炭処理が進行した時点(図3に示す部分Sの時点)において、酸素プローブ14により、第二回目の酸素測定が行われ(ステップS5)、該測定の時刻:t(ox)と、脱炭処理中における溶鋼の中間温度:x5及び中間酸素値(酸素濃度ppm):x6が信号処理演算器17に入力される。
【0043】
前記ステップS5の実施とほぼ同時に、信号処理演算器17は、以上のようにして入力されたデータに基づいて測定時刻t(ox)から目標値〔C〕までに要する残り要処理時間Δt(sec)を計算により求め、プロセスコンピュータ16に向けて出力する。そこで、プロセスコンピュータ16は、残り要処理時間Δt(sec)をカウントし、時間の経過と同時に、脱炭処理を終了せしめるべく指令を出力する(ステップS6)。
【0044】
【発明の効果】
本発明によれば、RH真空脱ガス装置等の減圧還流設備において、極低炭素鋼(IF鋼)を溶製するに際し、信頼性の高い測定条件からの測定値により、溶鋼中炭素値を高精度の下で計算することができ、しかも、操業中、随時、測定を行うことにより、溶鋼の目標炭素値を得るまでの残り要処理時間Δt(sec)を推定することができる。このため、推定された残り要処理時間Δt(sec)の経過により脱炭処理を終了すれば良いので、不必要な長時間にわたる脱炭処理を行うことから生じる生産性の問題や、炉内耐火物寿命の低下、真空度維持のためのエネルギーコストの増大、還流アルゴンガスの使用量の増大という問題を解決できるという効果がある。
【0045】
しかも、本発明によれば、脱炭処理中、所定時、溶鋼温度及び溶鋼中酸素濃度を測定することにより、溶鋼の炭素目標値〔C〕を得るまでの残り要処理時間(Δt)を算出して推定するに際し、脱炭処理中の溶鋼の中間温度:x5と中間酸素値:x6を図3に符号Sで示すような穏やかな脱炭進行を示す時点において測定することにより、残り要処理時間(Δt)を正確に推定することができ、しかも、瞬時値としての中間温度:x5と中間酸素値:x6を測定すれば足りるという利点がある。
【図面の簡単な説明】
【図1】本発明を実施するRH真空脱ガス装置の1例を示す断面図である。
【図2】溶鋼の脱炭処理における処理時間と真空度の関係を示す図である。
【図3】溶鋼の脱炭処理における処理時間と鋼中炭素量の関係を示す図である。
【図4】本発明の方法を実施するための係数の1例を示す表である。
【図5】本発明の方法を実施するための係数の他例を示す表である。
【図6】本発明を実施した結果として得られた炭素濃度推定値と実績値を比較した図である。
【図7】本発明を実施するための作業手順を示す図である。
【符号の説明】
1 溶鋼
2 取鍋
3 RH真空脱ガス装置
4 真空槽
5 上昇管
6 下降管
7 還流ガス供給管
8 排気管
9 排気手段
10 酸素供給手段
11 真空度計
12 還流ガス流量計
13 酸素流量計
14 酸素プローブ
16 プロセスコンピュータ
17 信号処理演算器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for dynamically controlling a decarburization processing time in real time when melting ultra-low carbon steel (IF steel) in a reduced pressure reflux facility such as an RH vacuum degassing apparatus.
[0002]
[Prior art]
Conventionally, as represented by an RH vacuum degassing apparatus, molten steel is refluxed in a vacuum tank with a reflux gas composed of an inert gas, and CO gas and / or CO 2 generated by the combination of carbon and oxygen is used.
A process for melting ultra-low carbon steel by vacuum decarburization treatment that exhausts gas is known.
[0003]
By the way, in the past, during the decarburization process, analysis was performed by collecting a molten steel sample with a sampler, and the decarburization process was performed while confirming whether the decarburization had reached a predetermined level. The sampling of molten steel is difficult, and it takes time to analyze the carbon content in the sample.
[0004]
Therefore, in recent years, with the development of oxygen probes for molten steel, a technique has been proposed for measuring the carbon concentration in molten steel during the vacuum decarburization process. For example, techniques disclosed in Japanese Patent Application Laid-Open No. 62-174317, Japanese Patent No. 3126374, Japanese Patent No. 3287204, and the like are known.
[0005]
[Problems to be solved by the invention]
However, since the technique disclosed in Japanese Patent Application Laid-Open No. 62-174317 estimates the progress of the decarburization reaction based only on the amount of oxygen in the molten steel, it is extremely inaccurate and unpractical.
[0006]
In addition, the technology disclosed in Japanese Patent No. 3126374 discloses that the carbon concentration in the molten steel and the molten steel temperature are statically controlled based on the heat balance, oxygen balance, and component balance calculation in the region where the carbon concentration is 60 ppm or more, and the carbon concentration is 60 ppm or less. In the region, the carbon concentration in the molten steel and the molten steel temperature are continuously estimated based on the component analysis result and the temperature measurement result of the molten steel. However, since the above-described balance calculation is inevitable to be affected by loss, there is a problem that the reliability of the calculated value is low. In the end, the configuration requires analysis of components by sampling, and is insufficient for solving the above-described problem.
[0007]
Further, the technology disclosed in Japanese Patent No. 3287204 discloses the molten steel carbon concentration [C] during operation, the molten steel temperature T, the molten steel oxygen concentration [O], the exhaust gas flow rate G, the molten steel recirculation gas flow rate F, the vacuum Tank pressure P, exhaust gas CO concentration and CO 2
This is continuously estimated by calculation based on the concentration [CO], and solves the problems involved in the above two techniques. However, from the amount of exhaust gas measured with a flow meter, the CO concentration and CO 2
It is not easy to accurately measure the concentration, and if an error occurs at this point, there is a problem that the target value of carbon concentration [C] in molten steel is greatly affected. In addition, this technique performs measurement continuously during operation, and continuously estimates the carbon concentration [C] in the molten steel, thereby terminating the decarburization process when the estimated carbon concentration reaches the target value. Therefore, there is a problem that monitoring must be performed consistently from the start to the end of the decarburization process.
[0008]
[Means for Solving the Problems]
In the present invention, when melting ultra-low carbon steel (IF steel) in a reduced-pressure reflux facility such as an RH vacuum degassing apparatus, the carbon value in molten steel is highly accurately determined by measurement values from highly reliable measurement conditions. In the vacuum decarburization method for molten steel, the remaining time required for obtaining the target carbon value of the molten steel can be estimated by performing measurements at any time during operation. A method for controlling the decarburization time is provided.
[0009]
Therefore, according to the present invention, the decarburization process only needs to be terminated after the estimated remaining required process time has elapsed. It is possible to solve the problems of a decrease in the refractory life, an increase in energy cost for maintaining the degree of vacuum, and an increase in the amount of reflux argon gas used.
[0010]
Therefore, the first means of the present invention is that the molten steel is refluxed into the decompression tank with a reflux gas composed of an inert gas, and CO gas and / or CO 2 generated by the combination of carbon and oxygen.
In the process of melting ultra-low carbon steel by decompression decarburization treatment that exhausts gas, the intermediate oxygen value x6 in the molten steel during decarburization treatment is measured, and the intermediate oxygen value is removed from the time t (ox) at which the intermediate oxygen value was measured. The remaining required processing time Δt (sec) until the target carbon value x9 of the molten steel after the charcoal treatment is obtained is calculated and estimated by the following equation 1.
Formula 1: Δt (sec) = f (x1, x2, x3, x4, x5, x6, x7, x8, x9)
However, x1 is a carbon value before decarburization treatment of molten steel, x2 is an oxygen value at the beginning of decarburization treatment of molten steel, x3 is an initial oxygen-carbon ratio of the molten steel (x2 [O] / x1 [C]), x4 Is a value obtained from the oxygen input amount Vo, x5 is an intermediate temperature of the molten steel being decarburized, x6 is an intermediate oxygen value of the molten steel being decarburized, x7 is a measurement time t (ox of the in-vessel vacuum degree Pc and x6 ), X8 is a value obtained from the in-vessel vacuum degree Pc, the reflux gas amount Vc and the measurement time t (ox) of x6, and x9 is a target carbon value after the decarburization treatment of the molten steel.
[0011]
Further, the present invention is configured as a second means in which molten steel is refluxed in a vacuum tank with a reflux gas composed of an inert gas, and CO gas and / or CO 2 generated by the combination of carbon and oxygen.
In the process of melting ultra-low carbon steel by vacuum decarburization that discharges gas, the carbon content [C] (ppm) as the instantaneous value at the specific time in the molten steel during decarburization is calculated by the following formula 5. The remaining processing time Δt (sec) required to obtain the target carbon value x9 of the molten steel after the decarburization process is estimated from the calculated value.
Formula 5: [C] (ppm) = f (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)
However, x1 is a carbon value before decarburization treatment of molten steel, x2 is an oxygen value at the beginning of decarburization treatment of molten steel, x3 is an initial oxygen-carbon ratio of the molten steel (x2 [O] / x1 [C]), x4 Is a value obtained from the oxygen input amount Vo, x5 is an intermediate temperature of the molten steel being decarburized, x6 is an intermediate oxygen value of the molten steel being decarburized, x7 is a measurement time t (ox of the in-vessel vacuum degree Pc and x6 ), X8 is a value obtained from the measurement time t (ox) of the in-vessel vacuum degree Pc and the reflux gas amount Vc, and x6, x9 is a target carbon value after decarburization treatment of molten steel, and x10 is a measurement of x6. This is a value obtained from the time t (ox), the degree of vacuum in the tank Pc, and the amount of reflux gas Vc.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 1 shows a typical RH vacuum degassing apparatus as a vacuum reflux equipment for melting ultra-low carbon steel (IF steel). An RH vacuum degassing device 3 is provided above a ladle 2 containing molten steel 1 refined by a converter or the like.
[0014]
The vacuum tank 4 constituting the RH vacuum degassing device 3 includes a rising pipe 5 and a down pipe 6 that are immersed in the molten steel 1, respectively. By introducing the active gas, the molten steel 1 is caused to enter the vacuum tank 4 from the ladle 2 via the riser pipe 5 and refluxed so as to be returned to the ladle 2 via the downcomer pipe 6 from the vacuum tank 4.
[0015]
The vacuum chamber 4 is provided with a vacuum exhaust means 9 that exhausts exhaust gas from an exhaust pipe 8 at the top. In the case of the illustrated example, an oxygen supply means 10 such as an upper blowing oxygen lance for introducing oxygen into the tank is provided, but it is not limited to such a configuration.
[0016]
Accordingly, the molten steel 1 that is refluxed between the ladle 2 and the vacuum chamber 4 is combined with oxygen [O] and carbon [C] in the molten steel inside the vacuum chamber 4, and the generated CO gas and / Or CO 2
The gas is exhausted from the exhaust pipe 8 together with the reflux gas to the outside of the tank, and the carbon concentration in the molten steel is gradually lowered.
[0017]
As highly reliable measurement conditions for calculating the amount of carbon in molten steel with high accuracy, the present invention includes Pc: degree of vacuum in the tank [torr], Vc: reflux amount of reflux gas [Nl / min], Vo : Oxygen input amount (OB flow rate) [Nm3 / h], molten steel temperature, and oxygen value in molten steel are measured.
[0018]
For this reason, a vacuum gauge 11 for measuring the vacuum degree (Pc) in the vacuum tank 4, a reflux gas flow meter 12 for measuring the OB flow rate (Vo), and an oxygen flow meter for measuring the OB flow rate. 13. An oxygen probe 14 for measuring the oxygen concentration in the molten steel is provided, and the oxygen probe 14 can detect the molten steel temperature.
[0019]
FIG. 2 shows the relationship between the decarburization time (t) of the molten steel in the RH vacuum degassing apparatus 3 and the vacuum degree (Pc) in the vacuum chamber 4. In FIG. 2, the horizontal axis represents the decarburization time (t), and the vertical axis represents the pressure in the tank, that is, the degree of vacuum (Pc). The atmospheric pressure in the tank gradually decreases from the start of the treatment, rapidly decreases after a predetermined time has elapsed, and then proceeds in an almost equilibrium state.
[0020]
Moreover, the relationship between the decarburization processing time (t) of molten steel and the carbon concentration (ppm) in steel is shown in FIG. In FIG. 3, the horizontal axis represents the decarburization time (t), and the vertical axis represents the carbon concentration (ppm) in the steel. As is clear from the comparison between FIG. 2 and FIG. 3, the carbon concentration (ppm) in the steel rapidly decreases from the start of the treatment, and reaches the target value [C] by gently decreasing after a predetermined time.
[0021]
The present invention estimates the remaining required processing time (Δt) until obtaining the target carbon value [C] of the molten steel by measuring the molten steel temperature and the oxygen concentration in the molten steel at a predetermined time during the decarburization processing. After a lapse of time, the decarburization process is immediately terminated. At this time, as shown in FIG. 3, the carbon concentration (ppm) in the molten steel is decarburized substantially proportional to the processing time (t) from the portion S showing a moderate decrease to the target value [C]. Since the progress is indicated, the measurement of the molten steel is performed at this portion S (that is, the time te after a predetermined time has elapsed from the time ts at which the vacuum decarburization process is started (ie, t = 0)) , thereby remaining processing time (Δt) Can be estimated accurately.
[0022]
By estimating the carbon concentration [C] (ppm) as an instantaneous value at a specific time in molten steel, the remaining treatment time Δt for decarburization treatment is estimated. Therefore, the present invention is used as a highly reliable measurement condition. Use the following measurements:
Pc: degree of vacuum in the tank [torr]
Vc: Reflux amount of reflux gas [Nl / min]
Vo: Oxygen input amount (OB flow rate) [Nm3 / h]
x1: Carbon value (concentration ppm) before decarburization of molten steel
x2: Initial decarburization oxygen value of molten steel x3: Initial decarburization oxygen ratio of molten steel (x2 [O] / x1 [C])
x4: Value obtained from oxygen input amount Vo x5: Intermediate temperature of molten steel during decarburization treatment x6: Intermediate oxygen value of molten steel during decarburization treatment x7: From measurement time t (ox) of in-vessel vacuum degree Pc and x6 Obtained value x8: Value obtained from measurement time t (ox) of tank vacuum degree Pc, reflux gas amount Vc and x6 x9: Target carbon value after decarburization treatment of molten steel [C]
x10: A value obtained from the measurement time t (ox) of x6, the degree of vacuum Pc in the tank, and the amount of reflux gas Vc.
(Estimation of remaining treatment time Δt for decarburization treatment)
The intermediate oxygen value x6 in the molten steel being decarburized is measured, and the remaining required processing time Δt (from the time t (ox) at which the intermediate oxygen value is measured until the target carbon value x9 of the molten steel after decarburizing is obtained. sec) is estimated by calculation based on Equation 1 below.
Formula 1:
Δt (sec) = f (x1, x2, x3, x4, x5, x6, x7, x8, x9)
[0024]
Said x4 is calculated | required by the following Numerical formula 10.
[Expression 10]
[0025]
Said x7 is calculated | required by the following Numerical formula 11.
[Expression 11]
[0026]
Said x8 is calculated | required by the following Numerical formula 12.
[Expression 12]
[0027]
By the way, Equation 1 for obtaining the remaining required processing time Δt (sec) is specifically implemented by the following Equation 1A using a determination coefficient (constant) obtained from experience (past decarburization treatment results). Is preferred.
Formula 1A:
Δt (sec) = CO + C1 * X1 + C2 * X2 + C3 * X3 + C4 * X4 + C5 * X5 + C6 * X6 + C7 * X7 + C8 * X8 + C9 * X9
[0028]
According to the knowledge of the present inventors, the values in Table 1 shown in FIG. 4 are used as the coefficients (constants) of C1 to C9, for example.
[0029]
(Method for obtaining carbon concentration [C] (ppm) in molten steel)
In order to estimate (calculate) the remaining required processing time Δt (sec), the time average value of the integral value was obtained in the above-described Equation 1 and Equation 1A, but instead of this, carbon in the molten steel during the decarburization treatment was obtained. The concentration [C] (ppm) is calculated as an instantaneous value at the time of specification by the following formula 5, and the remaining processing time Δt (sec) required until obtaining the target carbon value x9 of the molten steel after the decarburization processing from the calculated value Can be estimated.
Formula 5:
[C] (ppm) = f (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)
[0030]
Said x4 is calculated | required by the following Numerical formula 13 (It is the same as the numerical formula 10 mentioned above.).
[Formula 13]
[0031]
Said x7 is calculated | required by the following Numerical formula 14 (It is the same as the numerical formula 11 mentioned above.).
[Expression 14]
[0032]
Said x8 is calculated | required by the following Numerical formula 15 (It is the same as the numerical formula 12 mentioned above.).
[Expression 15]
[0033]
Said x10 is calculated | required by the following Numerical formula 16.
[Expression 16]
Note that t (P) is t (P) = te and is the time after a predetermined time has elapsed since the start of the vacuum decarburization process .
[0034]
By the way, the equation 5 for obtaining the carbon concentration [C] (ppm) in the molten steel during the decarburization process specifically uses a determination coefficient (constant) obtained from experience (past decarburization process results). It is preferable to carry out according to the following formula 5A.
Formula 5A:
[C] (ppm) = CO + C1 * X1 + C2 * X2 + C3 * X3 + C4 * X4 + C5 * X5 + C6 * X6 + C7 * X7 + C8 * X8 + C9 * X9 + C10 * X10
[0035]
According to what the present inventors have known, for example, the values in Table 2 shown in FIG. 5 are used as the coefficients (constants) of C1 to C10.
[0036]
In the process of melting ultra-low carbon steel by vacuum decarburization using an RH vacuum degasser, the decarburization process was completed based on the remaining required processing time Δt (sec) calculated by the method of the present invention. The result of ultra-low carbon steel is shown in FIG. In FIG. 6, the horizontal axis indicates the actual value of the carbon concentration, and the vertical axis indicates the estimated carbon concentration value at the end of the decarburization process. The actual value of the carbon concentration at the end of the decarburization process is compared with the estimated value. It shows. In the figure, A is the target value [C], and B and C indicate the upper and lower ranges of variation. According to the estimated carbon concentration at the end of the decarburization process based on the method of the present invention, the carbon concentration [C] in the molten steel can be accurately controlled with an accuracy of ± 5 ppm in the range from the target value A up and down B and C. found. Also, according to the back calculation value using the past data, it has been found that the accuracy of the time control can be accurately controlled with an accuracy of ± 100 seconds.
[0037]
FIG. 7 shows a work procedure for carrying out the present invention. A process computer 16 for controlling the decarburization process and a signal processing arithmetic unit 17 incorporated in or externally attached to the computer are used for the decarburization process time. An example of a process of calculating and estimating (remaining required processing time Δt (sec) from the time t (ox) when the intermediate oxygen value is measured until the decarburization process is completed) is shown.
[0038]
When the vacuum decarburization process is started (step S1), the time [Time] is measured by a timer, the in-vessel vacuum degree by the vacuum gauge 11: Pc [torr], and the reflux gas by the reflux gas flow meter 12 The measurement of the amount of reflux: Vc [Nl / min] is started, and each measured value is input to the signal processing calculator 17. At this time, the carbon value (carbon concentration ppm) before the decarburization treatment of the molten steel: x1 and the target carbon value [C]: x9 after the decarburization treatment of the molten steel are input to the signal processing calculator 17.
[0039]
Subsequently, the first oxygen measurement is performed by the oxygen probe 14 (step S2), and an oxygen value (oxygen concentration ppm): x2 at the initial stage of decarburization processing of the molten steel is input to the signal processing calculator 17.
[0040]
Thereafter, when the oxygen supply by the oxygen supply means 10 is started (step S3), the oxygen flow rate (OB flow rate) Vo [Nm3 / h] is measured by the oxygen flow meter 13, and the above-described process is performed via the process computer 16. The value x4 obtained by the above formula is input to the signal processing arithmetic unit 17.
[0041]
Oxygen is introduced to start decarburization of the molten steel under reduced pressure (step S4). During the decarburization process, the degree of vacuum in the tank: Pc [torr] and the reflux amount of the reflux gas: Vc [Nl / min ] Is continuously input to the signal processing arithmetic unit 17.
[0042]
At the time when the decarburization process has progressed after the lapse of a predetermined time (time of the portion S shown in FIG. 3), the oxygen probe 14 performs a second oxygen measurement (step S5), and the time of the measurement: t ( ox) and intermediate temperature of molten steel during decarburization processing: x5 and intermediate oxygen value (oxygen concentration ppm): x6 are input to the signal processing calculator 17.
[0043]
Almost simultaneously with the execution of step S5, the signal processing arithmetic unit 17 performs the remaining required processing time Δt (sec) required from the measurement time t (ox) to the target value [C] based on the data input as described above. ) Is calculated and output to the process computer 16. Therefore, the process computer 16 counts the remaining required processing time Δt (sec), and outputs a command to end the decarburization processing as time elapses (step S6).
[0044]
【The invention's effect】
According to the present invention, when melting ultra-low carbon steel (IF steel) in a vacuum reflux facility such as an RH vacuum degassing apparatus, the carbon value in molten steel is increased by the measured value from highly reliable measurement conditions. It can be calculated with accuracy, and the remaining processing time Δt (sec) until the target carbon value of the molten steel is obtained can be estimated by performing measurements at any time during operation. For this reason, it is sufficient that the decarburization process is terminated after the estimated remaining required processing time Δt (sec), so that productivity problems caused by performing the decarburization process over an unnecessarily long time or in-furnace refractory There is an effect that it is possible to solve problems such as a decrease in the service life, an increase in energy cost for maintaining the degree of vacuum, and an increase in the amount of refluxing argon gas used.
[0045]
Moreover, according to the present invention, during the decarburization process, by measuring the molten steel temperature and the oxygen concentration in the molten steel at a predetermined time, the remaining processing time (Δt) required until obtaining the carbon target value [C] of the molten steel is calculated. In the estimation, the intermediate temperature: x5 and the intermediate oxygen value: x6 of the molten steel during the decarburization process are measured at a point in time when the mild decarburization progresses as indicated by a symbol S in FIG. The time (Δt) can be accurately estimated, and there is an advantage that it is sufficient to measure the intermediate temperature: x5 and the intermediate oxygen value: x6 as instantaneous values.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an RH vacuum degassing apparatus for carrying out the present invention.
FIG. 2 is a diagram showing the relationship between the treatment time and the degree of vacuum in molten steel decarburization treatment.
FIG. 3 is a diagram showing the relationship between the treatment time and the amount of carbon in steel in the decarburization treatment of molten steel.
FIG. 4 is a table showing an example of coefficients for carrying out the method of the present invention.
FIG. 5 is a table showing other examples of coefficients for carrying out the method of the present invention.
FIG. 6 is a diagram comparing an estimated value of carbon concentration obtained as a result of carrying out the present invention with an actual value.
FIG. 7 is a diagram showing a work procedure for carrying out the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Molten steel 2 Ladle 3 RH vacuum degassing apparatus 4 Vacuum tank 5 Rising pipe 6 Lowering pipe 7 Reflux gas supply pipe 8 Exhaust pipe 9 Exhaust means 10 Oxygen supply means 11 Vacuum meter 12 Reflux gas flow meter 13 Oxygen flow meter 14 Oxygen Probe 16 Process computer 17 Signal processing arithmetic unit

Claims (9)

溶鋼を不活性ガスから成る還流ガスにより減圧槽内に還流せしめ、炭素と酸素の結合により生じるCOガス及び/又はCO
ガスを排出せしめる減圧脱炭処理により極低炭素鋼を溶製するプロセスにおいて、
脱炭処理中の溶鋼中の中間酸素値x6を測定し、該中間酸素値を測定した時刻t(ox)から脱炭処理後における溶鋼の目標炭素値x9を得るまでの残り要処理時間Δt(sec)を、下記の式1により算出して推定することを特徴とする溶鋼の減圧脱炭法における脱炭処理時間の制御方法。
式1:Δt(sec)=f(x1,x2,x3,x4,x5,x6,x7,x8,x9)
但し、x1は溶鋼の脱炭処理前の炭素値、x2は溶鋼の脱炭処理初期の酸素値、x3は溶鋼の脱炭処理初期酸素炭素比(x2〔O〕/x1〔C〕)、x4は酸素投入量Voから求めた値、x5は脱炭処理中の溶鋼の中間温度、x6は脱炭処理中の溶鋼の中間酸素値、x7は槽内真空度Pcとx6の測定時刻t(ox)から求めた値、x8は槽内真空度Pcと還流ガス量Vcとx6の測定時刻t(ox)から求めた値、x9は溶鋼の脱炭処理後の目標炭素値である。
The molten steel is refluxed into the decompression tank with a reflux gas composed of an inert gas, and CO gas and / or CO 2 generated by the combination of carbon and oxygen.
In the process of melting ultra-low carbon steel by vacuum decarburization treatment that exhausts gas,
The intermediate oxygen value x6 in the molten steel being decarburized is measured, and the remaining required processing time Δt (from the time t (ox) at which the intermediate oxygen value is measured until the target carbon value x9 of the molten steel after decarburizing is obtained. sec) is calculated by the following equation 1 and estimated, and a method for controlling the decarburization processing time in the vacuum decarburization method for molten steel.
Formula 1: Δt (sec) = f (x1, x2, x3, x4, x5, x6, x7, x8, x9)
However, x1 is a carbon value before decarburization treatment of molten steel, x2 is an oxygen value at the beginning of decarburization treatment of molten steel, x3 is an initial oxygen-carbon ratio of the molten steel (x2 [O] / x1 [C]), x4 Is a value obtained from the oxygen input amount Vo, x5 is an intermediate temperature of the molten steel being decarburized, x6 is an intermediate oxygen value of the molten steel being decarburized, x7 is a measurement time t (ox of the in-vessel vacuum degree Pc and x6 ), X8 is a value obtained from the in-vessel vacuum degree Pc, the reflux gas amount Vc and the measurement time t (ox) of x6, and x9 is a target carbon value after the decarburization treatment of the molten steel.
前記x4を下記の数式2により求めることを特徴とする請求項1に記載の溶鋼の減圧脱炭法における脱炭処理時間の制御方法。
但し、VoはOB流量(酸素投入量)〔Nm3/h〕、tsは減圧脱炭処理を開始した時刻、teは減圧脱炭処理開始から所定時間経過後の時刻である。
The method for controlling the decarburization processing time in the vacuum decarburization method for molten steel according to claim 1, wherein x4 is obtained by the following mathematical formula 2.
However, Vo is the OB flow rate (oxygen input amount) [Nm3 / h], ts is the time when the vacuum decarburization process is started, and te is the time after a predetermined time has elapsed from the start of the vacuum decarburization process .
前記x7を下記の数式3により求めることを特徴とする請求項1に記載の溶鋼の減圧脱炭法における脱炭処理時間の制御方法。
但し、Pcは槽内真空度〔torr〕、t=0は減圧脱炭処理を開始した時刻、t(ox)は脱炭処理中の溶鋼の中間酸素値の測定時刻である。
The method of controlling the decarburization processing time in the vacuum decarburization method for molten steel according to claim 1, wherein x7 is obtained by the following mathematical formula 3.
Where Pc is the degree of vacuum in the tank [torr], t = 0 is the time when the vacuum decarburization process is started, and t (ox) is the measurement time of the intermediate oxygen value of the molten steel during the decarburization process.
前記x8を下記の数式4により求めることを特徴とする請求項1に記載の溶鋼の減圧脱炭法における脱炭処理時間の制御方法。
但し、Pcは槽内真空度〔torr〕、Vcは還流ガス量〔Nl/min〕、t=0は減 圧脱炭処理を開始した時刻、t(ox)は脱炭処理中の溶鋼の中間酸素値の測定時刻である。
The method of controlling the decarburization processing time in the vacuum decarburization method for molten steel according to claim 1, wherein x8 is obtained by the following mathematical formula 4.
However, Pc is intracisternal vacuum [torr], Vc is the amount recirculated gas [Nl / min], t = 0 time that initiated the reduction 圧脱charcoal treatment, t (ox) an intermediate of the molten steel during decarburization process It is the measurement time of the oxygen value.
溶鋼を不活性ガスから成る還流ガスにより減圧槽内に還流せしめ、炭素と酸素の結合により生じるCOガス及び/又はCO
ガスを排出せしめる減圧脱炭処理により極低炭素鋼を溶製するプロセスにおいて、
脱炭処理中の溶鋼中における特定時の瞬時値としての炭素量〔C〕(ppm)を下記の式5により算出し、該算出値から脱炭処理後における溶鋼の目標炭素値x9を得るまでの残り要処理時間Δt(sec)を推定することを特徴とする溶鋼の減圧脱炭法における脱炭処理時間の制御方法。
式5:〔C〕(ppm)=f(x1,x2,x3,x4,x5,x6,x7,x8,x9、x10)
但し、x1は溶鋼の脱炭処理前の炭素値、x2は溶鋼の脱炭処理初期の酸素値、x3は溶鋼の脱炭処理初期酸素炭素比(x2〔O〕/x1〔C〕)、x4は酸素投入量Voから求めた値、x5は脱炭処理中の溶鋼の中間温度、x6は脱炭処理中の溶鋼の中間酸素値、x7は槽内真空度Pcとx6の測定時刻t(ox)から求めた値、x8は槽内真空度Pcと還流ガス量Vcとx6の測定時刻t(ox)から求めた値、x9は溶鋼の脱炭処理後の目標炭素値、x10はx6の測定時刻t(ox)と槽内真空度Pcと還流ガス量Vcから求めた値である。
The molten steel is refluxed into the decompression tank with a reflux gas composed of an inert gas, and CO gas and / or CO 2 generated by the combination of carbon and oxygen.
In the process of melting ultra-low carbon steel by vacuum decarburization treatment that exhausts gas,
The amount of carbon [C] (ppm) as an instantaneous value at a specific time in the molten steel being decarburized is calculated by the following equation 5, and until the target carbon value x9 of the molten steel after decarburizing is obtained from the calculated value A method for controlling the decarburization processing time in the vacuum decarburization method for molten steel, characterized in that the remaining required processing time Δt (sec) is estimated.
Formula 5: [C] (ppm) = f (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)
However, x1 is a carbon value before decarburization treatment of molten steel, x2 is an oxygen value at the beginning of decarburization treatment of molten steel, x3 is an initial oxygen-carbon ratio of the molten steel (x2 [O] / x1 [C]), x4 Is a value obtained from the oxygen input amount Vo, x5 is an intermediate temperature of the molten steel being decarburized, x6 is an intermediate oxygen value of the molten steel being decarburized, x7 is a measurement time t (ox of the in-vessel vacuum degree Pc and x6 ), X8 is a value obtained from the measurement time t (ox) of the in-vessel vacuum degree Pc and the reflux gas amount Vc, and x6, x9 is a target carbon value after decarburization treatment of molten steel, and x10 is a measurement of x6. This is a value obtained from the time t (ox), the degree of vacuum in the tank Pc, and the amount of reflux gas Vc.
前記x4を下記の数式6により求めることを特徴とする請求項5に記載の溶鋼の減圧脱炭法における脱炭処理時間の制御方法。
但し、VoはOB流量(酸素投入量)〔Nm3/h〕、tsは減圧脱炭処理を開始した時刻、teは減圧脱炭処理開始から所定時間経過後の時刻である。
6. The method of controlling a decarburization processing time in a vacuum decarburization method for molten steel according to claim 5, wherein x4 is obtained by the following mathematical formula 6.
However, Vo is the OB flow rate (oxygen input amount) [Nm3 / h], ts is the time when the vacuum decarburization process is started, and te is the time after a predetermined time has elapsed from the start of the vacuum decarburization process .
前記x7を下記の数式7により求めることを特徴とする請求項5に記載の溶鋼の減圧脱炭法における脱炭処理時間の制御方法。
但し、Pcは槽内真空度〔torr〕、t=0は減圧脱炭処理を開始した時刻、t(ox)は脱炭処理中の溶鋼の中間酸素値の測定時刻である。
The method of controlling the decarburization processing time in the vacuum decarburization method for molten steel according to claim 5, wherein x7 is obtained by the following mathematical formula 7.
Where Pc is the degree of vacuum in the tank [torr], t = 0 is the time when the vacuum decarburization process is started, and t (ox) is the measurement time of the intermediate oxygen value of the molten steel during the decarburization process.
前記x8を下記の数式8により求めることを特徴とする請求項5に記載の溶鋼の減圧脱炭法における脱炭処理時間の制御方法。
但し、Pcは槽内真空度〔torr〕、Vcは還流ガス量[N1/min]、t=0は減圧脱炭処理を開始した時刻、t(ox)は脱炭処理中の溶鋼の中間酸素値の測定時刻である。
The method for controlling the decarburization processing time in the vacuum decarburization method for molten steel according to claim 5, wherein x8 is obtained by the following mathematical formula 8.
Where Pc is the degree of vacuum in the tank [torr], Vc is the reflux gas amount [N1 / min], t = 0 is the time when the vacuum decarburization process is started, and t (ox) is the intermediate oxygen of the molten steel being decarburized. The measurement time of the value .
前記x10を下記の数式9により求めることを特徴とする請求項5に記載の溶鋼の減圧脱炭法における脱炭処理時間の制御方法。
但し、Pcは槽内真空度〔torr〕、t(ox)は脱炭処理中の溶鋼の中間酸素値の測定時刻、Vcは還流ガス量〔Nl/min〕、t=0は減圧脱炭処理を開始した時刻、t(P)及びteはt(P)=teであり減圧脱炭処理開始から所定時間経過後の時刻である。
The method of controlling the decarburization processing time in the vacuum decarburization method for molten steel according to claim 5, wherein x10 is obtained by the following mathematical formula 9 .
However, Pc is the degree of vacuum in the tank [torr], t (ox) is the measurement time of the intermediate oxygen value of the molten steel being decarburized, Vc is the reflux gas amount [Nl / min], and t = 0 is the decarburization process under reduced pressure. , T (P) and te are t (P) = te, and are times after a predetermined time has elapsed since the start of the vacuum decarburization process .
JP2002324559A 2002-11-08 2002-11-08 Control method of decarburization time in vacuum decarburization of molten steel Expired - Lifetime JP3891564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324559A JP3891564B2 (en) 2002-11-08 2002-11-08 Control method of decarburization time in vacuum decarburization of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324559A JP3891564B2 (en) 2002-11-08 2002-11-08 Control method of decarburization time in vacuum decarburization of molten steel

Publications (2)

Publication Number Publication Date
JP2004156119A JP2004156119A (en) 2004-06-03
JP3891564B2 true JP3891564B2 (en) 2007-03-14

Family

ID=32804064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324559A Expired - Lifetime JP3891564B2 (en) 2002-11-08 2002-11-08 Control method of decarburization time in vacuum decarburization of molten steel

Country Status (1)

Country Link
JP (1) JP3891564B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5087840B2 (en) * 2005-12-22 2012-12-05 Jfeスチール株式会社 Decarburization end point judgment method in vacuum degassing equipment
CN102758052B (en) * 2012-07-10 2013-06-19 北京首钢自动化信息技术有限公司 Control method for RH vacuum processing mode
CN110592324B (en) * 2019-09-29 2021-12-28 马鞍山钢铁股份有限公司 RH refining method for reducing tapping temperature of IF steel converter
CN113416816B (en) * 2021-06-18 2022-04-05 马鞍山钢铁股份有限公司 Method and model for determining oxygen blowing amount of IF steel smelted by RH refining furnace through two-step method
CN115478133A (en) * 2022-10-08 2022-12-16 首钢股份公司迁安钢铁公司 RH baking device and method
CN117230281B (en) * 2023-11-14 2024-01-23 山西同航特钢有限公司 Production process of high-phosphorus IF steel

Also Published As

Publication number Publication date
JP2004156119A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP3891564B2 (en) Control method of decarburization time in vacuum decarburization of molten steel
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
JP6825711B2 (en) Molten component estimation device, molten metal component estimation method, and molten metal manufacturing method
JP6007887B2 (en) Vacuum degassing apparatus and method for decarburizing molten steel using the same
JP6376200B2 (en) Molten state estimation device, molten state estimation method, and molten metal manufacturing method
JP4816513B2 (en) Molten steel component estimation method
KR20040014599A (en) Method for decarbonization refining of chromium-containing molten steel
JP6822148B2 (en) Dehydrogenation refining method for molten steel
TWI778563B (en) Decarburization refining method of molten steel under reduced pressure
JP3415997B2 (en) Guidance method for vacuum decarburization treatment of melting
JP7376795B2 (en) Molten steel decarburization method in RH vacuum degassing equipment
JP4289214B2 (en) Method for decarburizing molten steel and method for producing molten steel
JP4715617B2 (en) Abnormality detection method, abnormality detection system, and abnormality detection device for detecting abnormality of vacuum degassing device
JPH11279625A (en) Manufacture of super-low carbon steel
JP6795133B1 (en) Blow control method and smelt control device for converter type dephosphorization smelting furnace
JP4075834B2 (en) Method for estimating component concentration of molten steel and method for producing ultra-low carbon steel
RU2802218C1 (en) Method for refining molten steel by vacuum decarburization
JP7376787B2 (en) Device for estimating phosphorus concentration in molten steel, statistical model construction device, method for estimating phosphorus concentration in molten steel, statistical model construction method, and program
JPH03134114A (en) Method for estimating carbon concentration in molten steel in rh refining
JP3293674B2 (en) Control method of end point carbon concentration in RH degassing process
JPH07242928A (en) Method for estimating carbon concentration in molten steel through rh type vacuum vessel
JP2020132999A (en) Control device and control method for vacuum degassing facility
KR101012834B1 (en) Method for predicting dissolved carbon quantity in vacuum degassing process
JP5353320B2 (en) Vacuum degassing method, vacuum degassing apparatus and manufacturing method for molten steel
JPH11172323A (en) Method for controlling carbon concentration in rh vacuum degassing treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3891564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term