KR960006598B1 - Method for removing impurities of a plating solution - Google Patents

Method for removing impurities of a plating solution Download PDF

Info

Publication number
KR960006598B1
KR960006598B1 KR1019930031646A KR930031646A KR960006598B1 KR 960006598 B1 KR960006598 B1 KR 960006598B1 KR 1019930031646 A KR1019930031646 A KR 1019930031646A KR 930031646 A KR930031646 A KR 930031646A KR 960006598 B1 KR960006598 B1 KR 960006598B1
Authority
KR
South Korea
Prior art keywords
plating
plating solution
sludge
solution
alkali
Prior art date
Application number
KR1019930031646A
Other languages
Korean (ko)
Other versions
KR950018687A (en
Inventor
이재영
손진군
변태봉
Original Assignee
포항종합제철주식회사
김종진
재단법인산업과학기술연구소
신창식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철주식회사, 김종진, 재단법인산업과학기술연구소, 신창식 filed Critical 포항종합제철주식회사
Priority to KR1019930031646A priority Critical patent/KR960006598B1/en
Publication of KR950018687A publication Critical patent/KR950018687A/en
Application granted granted Critical
Publication of KR960006598B1 publication Critical patent/KR960006598B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/02Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor with moving adsorbents
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/06Filtering particles other than ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2215/00Separating processes involving the treatment of liquids with adsorbents
    • B01D2215/02Separating processes involving the treatment of liquids with adsorbents with moving adsorbents
    • B01D2215/021Physically moving or fluidising the adsorbent beads or particles or slurry, excluding the movement of the entire columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc

Abstract

preparing Zn(OH)2 sludge by adding the equivalent ratio of alkali to effluent ZnCl2 sol. ; filtering the resultant Zn(OH)2 sludge, to dry at less 100 deg.C, to crush 0.01-0.5 mm particle size Zn(OH)2 coagulant; adding this coagulant 0.5-5 g/L to Zn-Ni plating sol. or NiCl2 plating sol.(for ZnM-Ni plating sol)for agitation, the settled down sludge (Cr (OH)6, Fe(OH)3, Al(OH)3) is easily removed by filtration. This method can reduce the waste ZnCl2 treatment cost and loss of plating ion owing to the much less PH change.

Description

도금 용액의 불순물 제거방법How to remove impurities from plating solution

본 발명은 도금용액의 불순물 제거 방법에 관한 것이며, 보다 상세히는 Zn-Ni 도금용액내의 불순물을 제거하는 방법에 관한 것이다.The present invention relates to a method for removing impurities in a plating solution, and more particularly, to a method for removing impurities in a Zn-Ni plating solution.

여기서 도금용액이란 실제 도금작업시 도금라인을 흐르고 있는 Zn-Ni 도금액과 Zn-Ni 도금액의 출발원료인 NiCl2용액을 의미한다.Here, the plating solution refers to a solution of NiCl 2 which is a starting material of the Zn-Ni plating solution and the Zn-Ni plating solution flowing in the plating line during the actual plating operation.

Zn-Ni 도금용액내에 존재하는 불순물로는 Pb,Cu,Cd등 중금속 원소와 Fe,Si,Cr,A1등 스러지 발생 원소로 크게 나누어 질 수 있다. 도금용액내의 중금속 이온은 전기화학적으로 귀하기 때문에 도금중에 우선 석출하여 여러가지 문제점을 발생시키므로 이에 대한 제거에 대하여 여러가지 방법이 제시되고 있다. 최근들어 도금작업시 생성되는 스러지 발생량과 도금 품질과의 관계가 알려지면서 도금액내의 스러지 발생원소인 Fe,Si,Cr,A1 등의 제거방법에 관한 노력이 기울여저 킬레이트 수지법, 자연 전위차 이 용법등이 일려져 있으며 본 발명자들은 알카리 투여를 통한 pH 조절법(한국 특허출원 93-27047)으로 스러지 형성 원소를 제거하는 방법을 제기한 바 있다.Impurities present in the Zn-Ni plating solution can be roughly divided into heavy metal elements such as Pb, Cu, Cd and sludge generating elements such as Fe, Si, Cr, and A1. Since heavy metal ions in the plating solution are electrochemically prone, they are first precipitated during plating, causing various problems. Therefore, various methods have been proposed for their removal. Recently, as the relationship between the amount of sludge generated during plating and the quality of plating is known, efforts have been made to remove the elements such as Fe, Si, Cr, and A1 in the plating solution. Usage and the like, and the present inventors have proposed a method for removing sludge-forming elements by pH control method (although Korean patent application 93-27047) through alkali administration.

한편, NiCl2는 Zn-Ni 도금용액의 출발원료가 되는 도금용액으로서 본 발명자는 폐 Ni 양극을 염산으로 용해하여 고순도 염화니켈을 제조하는 방법을 기출원한 바 있다(특허출원번호 93-12393). 이와같은 NiCl2제조공정에 있어서도 도금액내의 Fe, Cr과 같은 불순이온을 제거하기 위하여 알카리 투여를 통한 pH 조절방법이 제시되어 있다.On the other hand, NiCl 2 is a plating solution that is the starting material of the Zn-Ni plating solution, and the present inventors have previously filed a method for producing high purity nickel chloride by dissolving the waste Ni anode with hydrochloric acid (Patent Application No. 93-12393). . In such a NiCl 2 production process, a method of adjusting pH through alkali administration is proposed to remove impurity ions such as Fe and Cr in the plating solution.

종래의 알카리 투여를 통한 pH 조절방법은 Zn-Ni 도금 용액이나 NiCl2도금용액 KOH, NH4OH 등 알카리를 투여하여 pH를 조절하고, pH가 3∼5에서 Fe,Al,Cr 이온은 각각 Fe(OH)3, Al(OH)3, Cr(OH)3등으로 스러지화되며, 그후 여과기를 통하여 스러지를 제거하였다.In the conventional method of pH control through alkali administration, Zn-Ni plating solution, NiCl 2 plating solution KOH, NH 4 OH, etc. are administered by administering alkali to adjust the pH, and the pH is 3 to 5, Fe, Al, Cr ions are respectively Fe It was sludged with (OH) 3 , Al (OH) 3 , Cr (OH) 3 , and the like, and then the sludge was removed through a filter.

그러나 KOH, NH4OH 등과 같은 강알카리투여로 Fe,Al,Cr 등 불순물을 제거하는 방법은 알칼리 투여시 급격히 pH 변동으로 고가의 도금성분인 Ni 이온이 Ni(OH)2등으로 석출되어 유실 됨과 동시에, 알칼리 투입후에는 염산등으로 다시 pH를 조절하여야 하는 번거로움이 있었다.However, KOH, NH 4 method for removing impurities such as Fe, Al, Cr as a strong alkali administration, such as OH was soon as loss of expensive coating components of Ni ions sharply pH variation when the alkali dosage is precipitated with Ni (OH) 2, etc. At the same time, there was a need to adjust pH again with hydrochloric acid after alkali addition.

뿐만 아니라 알카리 투입법은 생성되는 스러지가 미세하므로 미세한 여과기 사용에 따른 여과속도가 저하하여 여과시간이 장시간 소요되는 단점이 있었다.In addition, the alkali dosing method has a disadvantage in that the produced sludge is fine, so that the filtration rate is reduced due to the use of a fine filter and the filtration time is long.

이에 본 발명의 목적은 이같은 종래의 방법의 문제점을 해결한 보다 개선된 불순물 제거방법을 제거하는데 있다.Accordingly, it is an object of the present invention to remove an improved impurity removal method which solves the problems of the conventional method.

이같은 본 발명의 목적은 Zn 도금작업시 발생하는 ZnC12폐 용액으로 부터 Zn(OH)2를 합성하고 그 Zn(OH)2를 알카리 대신 Zn-Ni 도금용액이나 NiC12용액에 투여함으로써 Fe,Al,Cr,Si 동 스러지 발생원소를 게거하는 본 발명의 방법에 따라 성취될 수 있는 것이다.The object of the present invention is to synthesize Zn (OH) 2 from the ZnC1 2 waste solution generated during Zn plating operation and to administer Fe, Al by Zn (OH) 2 to Zn-Ni plating solution or NiC1 2 solution instead of alkali. It can be achieved according to the method of the present invention for removing the element, Cr, Si copper.

본 발명의 방법에 의하면, Zn 및 Zn-Ni 도금 작업을 하는 도금라인에서 Zn 도급 작업시 배출되는 ZnC12도금액에 KOH, NaOH 등 알칼리를 당량비로 첨가하여 Zn(OH)2스러지를 제조하는 단계 : 상기 제조원 Zn(OH)2스러지를 여과한후 100℃ 이하에서 건조시킨후 분쇄하여 입자크기 0.01∼0.5mm 정도의 Zn(OH)2응집체를 제조하는 단계 : 상기 제조된 응집체를 Zn-Ni 도금용액이나 Zn-Ni 도금용액의 출발원료인 NiCl2용액에 각 도금액 1ι당 0.5∼5gr 투입하는 단계를 포함하는 도금용액의 불순물 제거 방법이 제공된다.According to the method of the present invention, in the Zn and Zn-Ni plating operation, Zn (OH) 2 sludge is prepared by adding alkali, such as KOH and NaOH, in an equivalent ratio to the ZnC1 2 plating solution discharged during the Zn subcontracting operation. The Zn (OH) 2 sludge was filtered and dried at 100 ° C. or less, and then pulverized to prepare Zn (OH) 2 aggregates having a particle size of about 0.01 to 0.5 mm. The present invention provides a method for removing impurities in a plating solution, comprising the step of adding 0.5 to 5 gr of each plating solution into a NiCl 2 solution, which is a starting material of a Zn-Ni plating solution.

이하 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 수용액내에서 금속 이온이 OH- 이온에 대한 친화력이 서로 다르다는 원리를 이용한 것이다. 즉, Zn은 OH-에 대한 결합력이 약한 반면 Al,Cr,Fe 등은 OH- 이온에 대한 친화력이 매우 강하며, 이에 따라 Al,Cr,Fe 등 이온이 존재하는 용액에 Zn(OH)2를 투여하게 되면, 다음과 같은 반응이 유발된다.The present invention utilizes the principle that metal ions have different affinity for OH- ions in aqueous solution. That is, Zn has a weak binding force to OH- while Al, Cr, Fe and the like have a very strong affinity for OH- ions. Thus, Zn (OH) 2 is formed in a solution in which ions such as Al, Cr, Fe and so on are present. When administered, the following reactions are induced.

즉, 투여된 Zn(OH)2는 Zn+2이온으로 용해하고 Cr+6, Fe+3, A1+3이온은 Cr(OH)6, Fe(OH)3, A1(OH)3등으로 스러지화하게 된다.That is, the administered Zn (OH) 2 is dissolved in Zn +2 ions, and Cr +6 , Fe +3 , A1 +3 ions are reduced to Cr (OH) 6 , Fe (OH) 3 , A1 (OH) 3, etc. It is intriguing.

상기에서 표현된 반응은 Zn(OH)2주변에서 일어나기 때문에 Zn(OH)2응집체를 투여하면 Zn(OH)2응집체 표면에 Fe,Cr,Al 수산화물 응집체나 얻어지고 이를 여과하면 쉽계 여과된다. 즉, Zn(OH)2응집체위에서 형성된 불순원소 응집체는 응집효과가 양호하므로 여과효율이 우수하다. 즉 단시간내에 여과할 수있는 것이다.The reaction represented in the above is filtered, Zn (OH) 2 occur, because in the vicinity Zn (OH) 2 administration of aggregates Zn (OH) 2 on the surface of the aggregates Fe, Cr, Al hydroxide or agglomerates are obtained when filtered swipgye. In other words, the impurity element aggregate formed on the Zn (OH) 2 aggregate has good filtration efficiency because of the good aggregation effect. That can be filtered in a short time.

또한 KOH 등 알카리 투입법과는 달리 Zn-Ni 도금액 및 NiC12용액의 pH 변동이 거의 없을 뿐만 아니라 오히려 도금성분인 Zn+2이온이 생성된다는 장점이 있는 것이다.In addition, unlike the alkali dosing method such as KOH, there is almost no pH variation in the Zn-Ni plating solution and NiC1 2 solution, but rather, Zn +2 ions, which are plating components, are generated.

본 발명의 방법에 따라 Zn(OH)2를 이용하여 도금용액중 불순물 제거방법에 대하여 설명한다.A method of removing impurities in a plating solution using Zn (OH) 2 according to the method of the present invention will be described.

본 발명의 제거방법에 사용되는 Zn(OH)2는 Zn+2이온이 포함된 수용액에 알카리인 NaOH, KOH를 투입하면 쉽게 생성된다.Zn (OH) 2 used in the removal method of the present invention is easily generated by adding alkali NaOH and KOH to an aqueous solution containing Zn +2 ions.

시약급 Zn(OH)2는 고가이기 때문에 본 발명에서는 Zn 도금작업시 발생하는 폐용액을 사용한다. 즉, Zn도금작업은 Zn 양극의 전기적인 용해와 Zn 이온의 강판 전착으로 이루어진다. 그러나, Zn 양극의 전기적인 용해외에 산성 도금이므로 H+이온에 의한 용해반응의 진행으로 Zn 도금 작업시 Zn 도금농도는 일정한 균형을 이루지 못하고 장시간 조업을 하게 되면 Zn 농도는 증가한다. Zn 농도의 증가는 물의 계속적인 투입으로 유지하지만 일정량 이상 증가하게 되면 도금조 용량관계로 배출시키게 된다. 따라서 Zn 도금공정에 발생하여 폐기되고 있는 ZnCl2용액에 알카리제를 가하여 여과하게 되면 쉽게 Zn(OH)2를 얻을 수 있다, 여과된 Zn(OH)2는 100℃ 이하에서 건조하여 완전히 해제한 후 Zn-Ni 도금용액이나 NiCl2원액제조시 불수눌 제거를 위하여 투여된다. 이때 건조온도를 100℃ 이상으로 높이면 Zn(OH)2→ZnO+H2O 등의 반응으로 Zn(OH)2등의 물성이 ZnO로 변화하기 때문에 이와같은 수산화물의 탈수를 막기 위하여 100℃ 이하로 한정한다. 또한, 투여량은 도금액1ι당 0,5g에서 5g까지가 적당하다. 0.5g/ι 이하를 투여하게되면 Fe,Si,Al,Cr 등의 완전한 제거가 이루어지지 않으며 5g/ι 이상 투여하게 되면 여과시 스러지가 증대하여 오히려 여과효율을 지하시킬 우려가 있다. Zn(OH)2를 합성하여 여과, 건조하여 분쇄할 때 Zn(OH)2용집체의 크기는 대단히 중요하다. 입자가 너무 작으면 여과효율이 불량해지며 입자가 너무 크게 되면 충분한 반응이 되지 못하여 제거효율이 불량하게 된다. 따라서, 적당한 응집체 크기가 필요하며 0.0lmm에서 5mm이내가 적당하다.Since reagent grade Zn (OH) 2 is expensive, the present invention uses waste solution generated during Zn plating. In other words, Zn plating is performed by electrical melting of Zn anode and electrodeposition of steel sheet of Zn ion. However, in addition to the electrical dissolution of the Zn anode, since the acid plating, the Zn plating concentration does not reach a constant balance during the Zn plating operation due to the progress of the dissolution reaction by H + ions. The increase in Zn concentration is maintained by continuous input of water, but if it is increased by a certain amount, it is discharged due to the capacity of the plating bath. Therefore, Zn (OH) 2 can be easily obtained by adding an alkaline agent to the ZnCl 2 solution which is generated and discarded in the Zn plating process and filtered. The filtered Zn (OH) 2 is dried at 100 ° C. or lower and completely released. It is administered for the removal of inertia when preparing Zn-Ni plating solution or NiCl 2 stock solution. At this time, if the drying temperature is higher than 100 ° C, the physical properties of Zn (OH) 2 are changed to ZnO due to the reaction of Zn (OH) 2 → ZnO + H 2 O and the like. It is limited. In addition, the dosage is suitably from 0,5g to 5g per one plating solution. If 0.5g / ι or less is administered, Fe, Si, Al, Cr, etc. are not completely removed, and if 5g / ι or more is administered, the sludge increases and there is a fear of underground filtration efficiency. Zn (OH) 2 synthesized and filtered, to dry pulverized Zn (OH) 2, the size of the aggregates for is very important. If the particles are too small, the filtration efficiency is poor, and if the particles are too large, the reaction will not be sufficient and the removal efficiency will be poor. Therefore, a suitable aggregate size is required and less than 0.0 mm to 5 mm is appropriate.

Zn(OH)2응집체를 게조한후 불순물 처리를 하는 방법은 다음과 같은 두가지 방법을 모두 사용할 수 있다. 첫째, Zn(OH)2를 도금용액에 투여하고 교반하면서 (1)과 같은 반응을 시킨 후 여과기로 여과하는 방법과 둘째, 여과기내에 Zn(OH)2를 미리 장입하고 도금용액을 통과시켜 여과기내에서 (1) 반응을 유도시키는 방법을 사용할 수 있다. 것째 방법은 제거효율 면에서 유리하며 둘째 방법은 처리조가 필요없고 연속작업에 유리하다는 장점이 있다.Impurity treatment after preparing Zn (OH) 2 aggregates can be performed using both of the following methods. First, Zn (OH) 2 was added to the plating solution, and the reaction was carried out as described in (1) while stirring. Second, Zn (OH) 2 was charged in advance into the filter and the plating solution was passed through the inside of the filter. In (1) a method of inducing a reaction can be used. The first method is advantageous in terms of removal efficiency, and the second method is advantageous in that it does not require a treatment tank and is advantageous for continuous operation.

본 발명은 KOH와 같은 알카리를 직접 도금용액에 투입하는 종래의 방법과는 달리 사전에 약 알칼리성의 Zn(OH)2응집체를 제조하여 이용하므로서 전술한 바와 같이 pH 변동이 적기 때문에 도금성분유실과 pH 조절이 불필요하다는 장점이 있을 뿐만아니라 적당한 크기의 응집체롤 만들수 있어서 여과효율이 좋다는 장점이의에도 궁극적으로 불순물 제거효과가 우수한 장점을 가짐으로써 도금작업시 문제가 되는 각종 불순물로 인한 영향을 최소화 할 수 있다. 또한, Zn 도금작업시 발생하는 폐 ZnCl2도금용액을 이용함으로써 폐수처리 비용절감을 물론 폐 자원활용에 따른 경제적인 이득을 얻을 수 있는 것이다.In the present invention, unlike the conventional method of directly injecting alkali such as KOH directly into the plating solution, a weak alkaline Zn (OH) 2 aggregate is prepared in advance, and thus the pH variation is small as described above. Not only does it have the advantage that it is unnecessary to control, but it also has the advantage of good filtration efficiency because it can make agglomerates of appropriate size, and ultimately has the advantage of excellent impurities removal effect, thereby minimizing the effects of various impurities that are problematic during plating work. have. In addition, by using the waste ZnCl 2 plating solution generated during the Zn plating operation, it is possible to reduce the cost of wastewater treatment and to obtain economic benefits from the utilization of waste resources.

이하 본 발명을 실시예에 따라 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예 1)(Example 1)

표 1은 Zn 도금작업시 폐기되는 ZnCl2도금용액의 성분을 나타낸 것으로서, 이에 의하면 Zn 도금액의 유효성분인 Zn,K,C1 이외에는 Fe가 다소 혼입되어 있는 것을 제외하고 중금속 성분들은 극미량 존재하는 고순도 도금액임을 알 수 있다.Table 1 shows the components of the ZnCl 2 plating solution discarded during the Zn plating operation, and according to this, except that Zn, K, C1, which is an active ingredient of the Zn plating solution, Fe is mixed in a high purity plating solution in which the heavy metal components are present in extremely small amounts. It can be seen that.

폐기되는 ZnCl2 용액내의 Zn 성분으로 부터 Zn(OH)2를 합성하기 위하여 알카리인 KOH를 당량비로 투여하였다. 즉, Zn 농도가 1.93몰/ι이기 때문에 폐 Zn 도금액 1/ι에 KOH 3.86몰을 투여하여 Zn(OH)21.93M을 얻을 수 있었다. 알카리 투입으로 생성된 Zn(OH)2는 여과하여 80℃로 건조한 후 유발로 가법게 분쇄하였다.Alkaline KOH was administered in equivalent ratio to synthesize Zn (OH) 2 from the Zn component in the discarded ZnCl 2 solution. That is, since Zn concentration was 1.93 mol / ι, Zn (OH) 2 1.93M was obtained by administering 3.86 mol of KOH to 1 / ι of waste Zn plating solution. Zn (OH) 2 produced by adding alkali was filtered and dried at 80 ° C., and then pulverized by induction.

얻어진 Zn(OH)2는 99.9% 이상의 고순도 분말이었으머 XRD로 확인결과 Zn(OH)2임을 확인할 수 있었다.The obtained Zn (OH) 2 was a high purity powder of 99.9% or more, and XRD confirmed that it was Zn (OH) 2 .

[표1]Table 1

(실시예 2)(Example 2)

여과 건조된 Zn(OH)2케이크를 분쇄하여 그 분체를 입도별로 분급하였다. Zn(OH)2응집체의 입경을 5μm, 74μm, 0.2mm, 0.4mm, 0 6mm로 분리한후 이를 입도별로 Zn-Ni 도금액 1ι에 2g씩 투여하였다. 또한 74μm 입경의 분말을 0.1g에서 10g까지 Zn(OH)2양을 변화시키며 투입하였다. 그후 5분간 교반처리한 후 스러지를 여과하여 Zn-Ni 도금액의 불순물 농도 변화를 조사하였다. 하기 표 2에 불순물 처리전의 도금액내의 불순이온 성분과 Zn(OH)2를 입도별로 투여한 후 도금액내의 불순물 성분을 비교하여 나타내었다. 한편 여과시 1/ 도금액을 5cm 직경의 5A급 여과지를 통과할때 소요되는 시간을 측정하여 여과속도를 측정하여 하기 표 2에 함께 나타내었다.The filter-dried Zn (OH) 2 cake was ground and the powder was classified by particle size. The particle diameters of the Zn (OH) 2 aggregates were separated into 5 μm, 74 μm, 0.2 mm, 0.4 mm, and 0 6 mm, and 2 g of Zn (OH) 2 was added to 1 n of Zn-Ni plating solution for each particle size. In addition, a 74 μm particle size powder was added while varying the amount of Zn (OH) 2 from 0.1 g to 10 g. After stirring for 5 minutes, the sludge was filtered to investigate the impurity concentration change of the Zn-Ni plating solution. Table 2 shows the impurity components in the plating solution and the impurity components in the plating solution after Zn (OH) 2 was administered by particle size before the impurity treatment. Meanwhile, the filtration rate was measured by measuring the time required to pass the 1 / plating solution through a 5 cm-diameter filter paper having a diameter of 5 cm, and the filtration rates thereof were shown in Table 2 below.

[표 2]TABLE 2

상기 표 2에서 알 수 있는 바와 같이 Zn(OH)2입자의 크기가 작을 수록 불순물 제거효과는 우수하였다. 그러나 입자크기가 너무 적은(5μm 이하) Zn(OH)2를 사용하면 불순물의 스러지 자체도 미세화하여 여과시 많은 시간이 소요되므로 적당한 크기를 갖는 것이 바람직한 것이다As can be seen in Table 2, the smaller the size of the Zn (OH) 2 particles, the better the impurity removal effect. However, if Zn (OH) 2 with too small particle size (less than 5μm) is used, it is preferable to have an appropriate size because the sludge of impurities itself is refined and it takes a lot of time to filter.

또한 입자가 큰 Zn(OH)2응집체는 수용액내에서 불순이온과의 충분한 반응이 일어나지 않기 때문에 0.5mm 이상의 입경을 사용할 경우 전체 불순물 농도를 10ppm 이하로 제조하기가 어려워진다. 따라서 여과효율과 불순물 제거효율을 고려하여 Zn(OH)2응집체의 크기는 0 01mm∼0 5mm 정도의 크기를 사용하는 것이 바람직하다. 또한 투입량이 증가하면 불순물 제거효과는 우수해지지만 여과효율이 저하하므로 이를 고려하여 0.5g∼5g/ι를 투여하는 것이 바람직한 것이다.In addition, since Zn (OH) 2 aggregates having large particles do not sufficiently react with impurities in an aqueous solution, it is difficult to produce a total impurity concentration of 10 ppm or less when a particle size of 0.5 mm or more is used. Therefore, in consideration of filtration efficiency and impurity removal efficiency, the size of the Zn (OH) 2 aggregate is preferably used in a size of about 0 mm to 0 mm. In addition, it is preferable to administer 0.5g to 5g / ι in consideration of this, as the amount of the dopant increases, but the impurities removal effect is excellent but the filtration efficiency is reduced.

(실시예 3)(Example 3)

한국특허출원 93-12393에서와 같은 방법으로 도금공장에서 발생하는 폐 Ni 양극을 염산으로 용해하여 NiCl2용액을 합성하였다. 그때 도금용액내의 불순물 성분을 표 3에 나타내었다(비교예 6). NiCl2용액내의 Fe,Si,Cr,Al 등을 제거하기 위하여 폐 ZnCl2용액으로 부터 합성한 74μm 크기의 Zn(OH)2분말 2g을 NiCl2大 투여한 후 여과한 여액을 분석하여 표 3에 나타내었다(발명재 6). 한편, Zn(OH)25g을 몰 1ι에 풀어 스러지로 만든 후 여과기를 통과시켜 여과기내에 Zn(OH)25g을 충진시켰다(비교재 7). 그후 NiCl2용액 1ι를 Zn(OH)2가 충진된 여과기를 수회 통과시키면서 통과횟수에 따른 불순물 제거양상을 조사하여 표 3에 나타내었다(발명재 7∼9).In the same manner as in Korean Patent Application No. 93-12393, the waste Ni anode generated in the plating factory was dissolved with hydrochloric acid to synthesize a NiCl 2 solution. The impurity component in the plating solution at that time is shown in Table 3 (Comparative Example 6). In order to remove Fe, Si, Cr, Al, etc. in NiCl 2 solution, 2g of 74μm Zn (OH) 2 powder synthesized from waste ZnCl 2 solution was administered with NiCl 2大, and the filtrate was analyzed. (Invention 6). On the other hand, 5 g of Zn (OH) 2 was dissolved in 1 mol of mol and made sludge, followed by passing through a filter to fill 5 g of Zn (OH) 2 in the filter (Comparative Material 7). Thereafter, the NiCl 2 solution 1ι was passed through a Zn (OH) 2 -filled filter several times, and the impurities removed according to the number of passes were examined and shown in Table 3 (Inventive Materials 7-9).

[표3]Table 3

상기 표 3에 의하면 NiCl2용액내에 다량 존재하는 Fe,Si 이온도 Zn(OH)2를 사용하면 쉽게 제거됨을 알수 있다. 한편 여과기에 Zn(OH)2를 충전시킨후 도금용액을 통과시키는 방법을 사용하여도 2회 도금액을 순환시키면서 Fe,Si,Cr,A1 각기 10ppm 이하의 고순도 NiCl2용액을 제조할 수 있음을 알 수 있다.Zn(OH)2를 여과기에 장입하고 도금용액을 순환시키는 방법은 제거효율에서는 다소 뒤떨어지지만 연속 작업이 가능하다는 장점이 있다.According to Table 3, it can be seen that Fe, Si ions present in a large amount in the NiCl 2 solution are easily removed by using Zn (OH) 2 . On the other hand, using a method in which a plating solution was passed after Zn (OH) 2 was filled in the filter, it was found that a high-purity NiCl 2 solution of 10 ppm or less of Fe, Si, Cr, and A1 could be prepared by circulating the plating solution twice. The method of charging Zn (OH) 2 into the filter and circulating the plating solution is somewhat inferior in removal efficiency but has the advantage of being capable of continuous operation.

상기한 바와 같이, 본 발명에 의하면 Zn 도금작업시 발생하는 ZnCl2폐용액으로부터 Zn(OH)2를 합성하고 이를 이용하여 불순물을 제거함으로써, 종래의 알카리 투입법과는 달리 도금액의 pH 변동이 없을 뿐만아니라 도금성분인 Zn+2이온이 생성되고, 또한 폐 ZnCl2도금용액을 이용함으로써 페수처리 비용을 절감할 수 있는 것이다As described above, according to the present invention, by synthesizing Zn (OH) 2 from the ZnCl 2 waste solution generated during Zn plating operation and removing impurities using the same, there is no change in pH of the plating solution unlike the conventional alkali dosing method. In addition, Zn +2 ions, which are plating components, are generated, and wastewater treatment costs can be reduced by using waste ZnCl 2 plating solutions.

Claims (2)

1. Zn 혹은 Zn-Ni 도금을 하는 도금라인에서 Zn 도금작업시 배출되는 ZnCl2도금액에 알카리를 당량비로 첨가하여 Zn(OH)2스러지를 제조하는 단계 , 상기 제조된 Zn(OH)2스러지를 여과한 후,100C이하에서 건조시킨 다음 분쇄하여 입자크키가 0.01-0.5mm인 Zn(OH)2응집체를 제조하는 만계 및 상기 제조된 응집체를 Zn-Ni 도금용액이나 ZnM-Ni 도금용액의 출발원료인 NiC12도금용액에 각 도금액 기준으로 0.5-5gr/ι 투입하여 교반처리함으로써 상기 도금용액내의 스러지 형성 불순원소를 흡착제거시키는 단계를 포함하는 도금용액의 불순물 제거방법.1.A step of preparing Zn (OH) 2 sludge by adding alkali to the ZnCl 2 plating solution discharged during Zn plating in a Zn or Zn-Ni plating line in an equivalent ratio, the prepared Zn (OH) 2 sludge After filtration, dried under 100C and then pulverized to prepare Zn (OH) 2 aggregates having a particle size of 0.01-0.5 mm and the prepared aggregates were the starting materials of Zn-Ni plating solution or ZnM-Ni plating solution. A method for removing impurities in a plating solution comprising adsorbing and removing the sludge-forming impurity elements in the plating solution by adding 0.5-5gr / ι to each of the plating solutions and stirring the phosphorus NiC1 2 plating solution. Zn 혹은 Zn-Ni 도금을 하는 도금라인에서 Zn 도금작업시 배출되는 ZnCl2도금액에 알카리를 당량비로 첨가하는 Zn(OH) 스러지를 제조하는 단계; 상기 제조된 Zn(OH)2스러지를 여과한 후, 100℃에서 건조시킨 다음 분쇄하여 입자크기가 0.01-0.5mm인 Zn(OH)2응집체를 제조하는 단계: 상기 제조된 Zn(OH)2응집체를 여과기내에 장입하는 단계 및 상기 여과기내에 Zn-Ni 도금용액이나 Zn-Ni 도금용액의 출발원료인 NiCl2도금용액을 순환시켜 이들 도금용액내의 스러지 형성원소를 흡착제거시키는 단계를 포함하는 도금용액의 불순물 제거방법.Preparing Zn (OH) sludge for adding alkali to the ZnCl 2 plating solution discharged during Zn plating in a Zn or Zn-Ni plating line in an equivalent ratio; The prepared Zn (OH) 2 sludge was filtered, dried at 100 ° C., and then ground to prepare a Zn (OH) 2 aggregate having a particle size of 0.01-0.5 mm: the prepared Zn (OH) 2 aggregate A plating solution comprising the step of charging the catalyst into the filter and circulating the NiCl 2 plating solution as a starting material of the Zn-Ni plating solution or the Zn-Ni plating solution in the filter to adsorb and remove the sludge forming elements in the plating solutions. To remove impurities.
KR1019930031646A 1993-12-30 1993-12-30 Method for removing impurities of a plating solution KR960006598B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930031646A KR960006598B1 (en) 1993-12-30 1993-12-30 Method for removing impurities of a plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930031646A KR960006598B1 (en) 1993-12-30 1993-12-30 Method for removing impurities of a plating solution

Publications (2)

Publication Number Publication Date
KR950018687A KR950018687A (en) 1995-07-22
KR960006598B1 true KR960006598B1 (en) 1996-05-20

Family

ID=19374580

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930031646A KR960006598B1 (en) 1993-12-30 1993-12-30 Method for removing impurities of a plating solution

Country Status (1)

Country Link
KR (1) KR960006598B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803027B1 (en) * 2006-08-25 2008-02-18 현석호 Apparatus for removing impurities in plating solution and method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401992B1 (en) * 1998-12-21 2003-12-18 주식회사 포스코 MANUFACTURING METHOD OF ZnCl2 FROM SPENT Zn ELECTROLYTE
KR100423418B1 (en) * 1999-12-28 2004-03-19 주식회사 포스코 Method for purifying electric galvanizing electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803027B1 (en) * 2006-08-25 2008-02-18 현석호 Apparatus for removing impurities in plating solution and method thereof

Also Published As

Publication number Publication date
KR950018687A (en) 1995-07-22

Similar Documents

Publication Publication Date Title
CA1069626A (en) Colloid-free precipitation of heavy metal sulfides
DE69925903T2 (en) WATER TREATMENT METHOD
EP2874152B1 (en) Treatment method and use of a treatment device for waste water containing radioactive strontium
EP0828690B1 (en) Spheroidally agglomerated basic cobalt (ii) carbonate and spheroidally agglomerated cobalt (ii) hydroxide, process for their production and their use
CN101754932A (en) Process for the production of barium sulfate
CN1972870B (en) Process for complete utilisation of olivine constituents
CN109439908A (en) Preparation method for preparing high-purity copper powder and recycling crystalline aluminum chloride by using waste etching solution containing copper chloride
JPH11106806A (en) Silver powder composed of hexagonal sheet-shaped crystal silver grain and its production
KR960006598B1 (en) Method for removing impurities of a plating solution
JP2004533397A5 (en)
EP0017634A1 (en) A solid flocculating agent, a method for its manufacture and its use
CN103359789B (en) Preparation method of bismuth subcarbonate
CN109534533A (en) A kind of administering method of molybdenum calcining pickling waste waters
RU2738174C1 (en) Method of producing fine silver powder
CN1300350C (en) Technique for producing ammonium paratungstate from raw material of tungsten through iron exchange method of alkali breakdown
DE3908054C2 (en)
CA1180195A (en) Method and apparatus for removing metals from metal- salt solutions
RU2172351C1 (en) Method of purification of zinc sulfate solutions from impurities
CN113322382B (en) Treatment method for recovering nickel from nickel-containing sludge
JPH0673550A (en) Treatment of deteriorated electroless-plating solution
RU2019521C1 (en) Method of water purification
SU981301A1 (en) Method for cleaning ammophos solution from slime
JPH032302A (en) Manufacture of high purity copper fine powder
CN207845728U (en) One kind is for liquid filter device before being extracted in wet method refining cobalt technique
Arumugam et al. Dewatering Characteristics of Nickel Hydroxide Sludges with Preformed Ferric Hydroxide Sludge Solids

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060503

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee