KR900003343B1 - Making process for powder of reduction iron - Google Patents

Making process for powder of reduction iron Download PDF

Info

Publication number
KR900003343B1
KR900003343B1 KR1019860005940A KR860005940A KR900003343B1 KR 900003343 B1 KR900003343 B1 KR 900003343B1 KR 1019860005940 A KR1019860005940 A KR 1019860005940A KR 860005940 A KR860005940 A KR 860005940A KR 900003343 B1 KR900003343 B1 KR 900003343B1
Authority
KR
South Korea
Prior art keywords
powder
oxide powder
iron oxide
reducing agent
iron
Prior art date
Application number
KR1019860005940A
Other languages
Korean (ko)
Other versions
KR880001830A (en
Inventor
김경협
Original Assignee
포항종합제철 주식회사
안병화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 안병화 filed Critical 포항종합제철 주식회사
Priority to KR1019860005940A priority Critical patent/KR900003343B1/en
Publication of KR880001830A publication Critical patent/KR880001830A/en
Application granted granted Critical
Publication of KR900003343B1 publication Critical patent/KR900003343B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B15/00Other processes for the manufacture of iron from iron compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

The method is charaterized by (i) preparing ferrous oxide powder containing at least 10 wt.% solid reduction powder consisting of coke, anthracitecoal and charcoal, (ii) charging the ferrous oxide powder in the radial hollow cylinder positioned in cylinderic container and filling the solid reduction powder into the remaining empty of the container, and (iii) reducing the ferrous oxide powder by heating the container to 1,100-1,200 deg. C.

Description

환원철분 제조방법Reducing Iron Powder

제 1(a) 도는 종래방법에 따라 산화철 분말과 환원제 분말이 용기내에 장입된 상태를 나타내는 일부절개 사시도.Fig. 1 (a) is a partially cutaway perspective view showing a state where an iron oxide powder and a reducing agent powder are charged into a container according to a conventional method.

(b)는 제 1(a) 도의 A-A선을 따르는 단면도.(b) is sectional drawing along the A-A line | wire of FIG. 1 (a).

제 2(a) 도는 본 발명에 따라 산화철 분말과 환원제 분말이 용기내에 장입된 상태를 나타내는 일부절개 사시도.Fig. 2 (a) is a partially cutaway perspective view showing a state where an iron oxide powder and a reducing agent powder are charged into a container according to the present invention.

(b)는 제 2(a) 도의 B-B선을 따르는 단면도.(b) is sectional drawing along the B-B line | wire of FIG. 2 (a).

제 3 도는 산화철의 장입상태에 따른 금속화율을 환원시간별로 나타낸 그래프.3 is a graph showing the metallization rate according to the reduction time according to the charging state of iron oxide.

본 발명은 철광석이나 밀스케일(Mill Scale)등의 산화철로부터 환원철분을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing reduced iron powder from iron oxides such as iron ore or mill scale.

산화철로부터 환원철분을 제조하는 가장 일반적인 방법으로는 사거 환원법이 알려져 있다. 이는 사거로 불리우는 원통형 내열성 용기에 산화철 분말을 중공(中空) 원통형으로 장입하고 잔여 공간에는 고체 환원제 분말을 충전시킨후 가열하여 고체 환원제에서 발생하는 CO 가스가 산화철 분말층내로 확산되면서 산화철의 환원이 이루어지는 방법이다.The most common method for producing reduced iron powder from iron oxide is known as saga reduction. The iron oxide powder is charged into a hollow cylinder in a cylindrical heat-resistant container called saga, and the remaining space is filled with a solid reducing agent powder, followed by heating to diffuse CO gas generated from the solid reducing agent into the iron oxide powder layer, thereby reducing the iron oxide. It is a way.

그러나, 이 방법에 있어서는 환원시간이 상당히 길기 때문에 산화철 입자간에 소결이 일어나게 되어 환원후 얻어지는 환원철 덩어리는 매우 견고해짐으로 분쇄하기 어렵고 고밀도 환원처분의 제조가 어렵다는 단점을 갖고 있다.However, in this method, since the reduction time is considerably long, sintering occurs between the iron oxide particles, and the reduced iron agglomerate obtained after reduction is very hard, and has a disadvantage in that it is difficult to grind and to prepare a high density reduction disposal.

따라서, 본 발명은 환원시간을 단축하여 환원철 덩어리의 분쇄를 용이하게 할 뿐만 아니라 고밀도 환원철분을 제조하고자 하는데, 그 목적이 있다.Therefore, the present invention is intended to shorten the reduction time to facilitate the grinding of the reduced iron mass as well as to produce a high-density reduced iron powder, an object thereof.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 원통형 내열성 용기에서 산화철 분말을 환원하고, 분쇄, 자선분리, 탈탄, 재 분쇄처리하여 환원철분을 제조하는 방법에 있어서, 산화철 분말에 고체 환원제 분말을 그 합이 10중량% 이하가 되도록 혼합하여 다수의 방사상 돌출부를 갖는 중공원통형으로 원통형 내열성용기에 장입하고 상기 용기 내의 잔여공간에 상기 고체 환원제를 충전시킨 후 1100-1200℃에서 환원하여 환원철분을 제조하는 방법에 관한 것이다.The present invention provides a method for producing reduced iron powder by reducing iron oxide powder in a cylindrical heat-resistant container, and grinding, magnetic separation, decarburization, and regrinding, wherein the solid oxide powder is mixed with iron oxide powder so that the sum thereof is 10% by weight or less. The present invention relates to a method for producing reduced iron powder by charging a cylindrical heat resistant container in a hollow cylindrical shape having a plurality of radial protrusions, filling the solid reducing agent in the remaining space in the container, and then reducing it at 1100-1200 ° C.

이하, 본 발명의 작용 및 상기 수치한정이유에 대하여 설명한다.Hereinafter, the operation of the present invention and the reason for numerical limitation will be described.

본 발명은, 고체 환원제가 혼합된 산화철 분말을 다수의 방사장 돌출부를 갖는 중공 원통형으로 내열성용기내에 장입하므로서, 종래법보다 산화철 분말층과 고체 환원제 분말층간의 접촉계면이 현저히 확대되어 고체 환원제에서 발생하는 환원성 가스의 산화철 분말층으로의 확산이 증가됨을 알 수 있는데, 이는 환원시간을 단축하게 되는 작용을 하게 된다.According to the present invention, since the iron oxide powder mixed with the solid reducing agent is charged into the heat resistant container in a hollow cylinder having a plurality of radiation field protrusions, the contact interface between the iron oxide powder layer and the solid reducing agent powder layer is significantly enlarged than in the conventional method, resulting in the solid reducing agent. It can be seen that the diffusion of the reducing gas into the iron oxide powder layer is increased, which reduces the reduction time.

또한, 본 발명의 경우는 산화철 분말에 고체 환원제가 혼합되어 장입됨으로서 산화철층 내에서도 환원가스가 공급될 뿐 아니라 통기성이 양호해지기 때문에 환원시간을 단축시키는 작용을 하게 된다.In addition, in the case of the present invention, since the solid oxide is mixed and charged into the iron oxide powder, the reducing gas is not only supplied to the iron oxide layer but also has good air permeability, thereby reducing the reduction time.

이때 산화철 분말에 혼합되는 고체 환원제로서는 코우크스(coke), 무연탄, 목탄등을 사용할 수 있으며, 그 혼합량은 10중량% 이하가 바람직한데, 그 이유는 10중량% 를 초과하면 환원제에서 환원가스로 전환시 발생되는 열에 의해 환원철 입자간의 소결이 촉진되기 때문이다.At this time, coke, anthracite, charcoal, etc. may be used as the solid reducing agent mixed in the iron oxide powder, and the mixing amount thereof is preferably 10% by weight or less, because when it exceeds 10% by weight, the conversion from reducing agent to reducing gas is performed. This is because the sintering between the reduced iron particles is promoted by the heat generated during heating.

한편, 산화철 분말층외의 공간에서 충전되는 환원제는 종래방법과 같이 코우크스 및 무연탄등의 분말을 사용하고 유화가스의 발생을 위해서 석회석을 혼합사용하여도 좋다.On the other hand, the reducing agent filled in the space other than the iron oxide powder layer may use powders such as coke and anthracite, and mix limestone for generation of emulsion gas as in the conventional method.

환원반응은 1100℃이하에서도 원활이 진행되지만, 환원시간이 오래걸리고 환원철 입자내의 소결이 불충분하게 되어 분쇄하여 얻어지는 철분의 겉보기밀도가 낮아 고밀도철분을 얻기 곤란하고 1200℃이상에서는 환원철 입자간의 소결이 심하여 환원후 환원철 덩어리의 분쇄가 곤란해지므로, 환원온도는 1100-1200℃로 한정하는 것이 바람직하다.Although the reduction reaction proceeds smoothly below 1100 ℃, the reduction time is long and the sintering in the reduced iron particles is insufficient, so the apparent density of iron obtained by pulverization is low, so that it is difficult to obtain high-density iron powder. Since the reduction of the reduced iron mass after reduction becomes difficult, the reduction temperature is preferably limited to 1100-1200 ° C.

이상과 같은 방법으로 환원철분에는 통상의 방법에 의한 경우와 마찬가지로 미환원 철분이 잔존하고, 0.2% 전후이 탄소를 함유하고 있으며, 분쇄과정에서 가공경화가 발생하게 되어 분말 야금의 원료로는 바로 사용할 수 없다. 따라서 상기 환원철분을 공지된 방법 및 공정에 따라 수소나 암모니아 분해가스중에서 700-800℃온도로 가열처리하여 미환원 철분의 환원 및 탈탄을 하고 가공경화를 제거한다. 이하, 도면을 통해 본 발명을 보다 상세히 설명한다.As described above, unreduced iron remains in the reduced iron powder as in the conventional method, and contains about 0.2% of carbon, and work hardening occurs during the grinding process, so that it can be used as a raw material for powder metallurgy. none. Therefore, the reduced iron powder is heated to a temperature of 700-800 ° C. in hydrogen or ammonia decomposition gas according to a known method and process to reduce and decarburize unreduced iron powder and remove work hardening. Hereinafter, the present invention will be described in more detail with reference to the drawings.

제 1 도는 종래방법에 따라 산화철 분말의 장입 및 환원제 분말의 충전상태를 나타내는 것으로서, 제 1 도에 나타난 바와같이, 종래에는 내열성 용기(1)내에 적정량의 고체 환원제 분말(2)을 장입한 후, 용기(1)의 내경보다 작은 외경을 갖는 원통형 중공틀(4)을 삽입하고 이 원통형 중공틀(4) 내부에 산화철 분말(3)을 장입한 다음, 내열성 용기(1)내의 잔여공간을 고체 환원제 분말(2)로 충전하므로서, 내열성 용기(1)내에서 산화철 분말(3)은 중공원통형을 갖고 그 중공부 및 그 외부주위는 고체 환원제 분말(2)로 에워싸이게 된다.FIG. 1 shows charging of iron oxide powder and filled state of reducing agent powder according to a conventional method. As shown in FIG. 1, conventionally, after charging an appropriate amount of solid reducing agent powder 2 into a heat resistant container 1, A cylindrical hollow frame 4 having an outer diameter smaller than the inner diameter of the container 1 is inserted, and iron oxide powder 3 is charged into the cylindrical hollow frame 4, and then the remaining space in the heat resistant container 1 is replaced with a solid reducing agent. By filling with the powder (2), the iron oxide powder (3) in the heat resistant container (1) has a hollow cylindrical shape and its hollow portion and its outer periphery are surrounded by the solid reducing agent powder (2).

한편, 제 2 도는 본 발명에 따라 산화철 분말의 장입 및 환원제 분말의 충전상태를 나타내는 것으로서, 제 2 도에 나타낸 바와 같이, 본 발명은 원통형 내열성용기(1)내에 적정량의 고체 환원제 분말(2)을 장입한 후, 용기(1)의 내경보다 작은 외경을 갖는 방사상 돌출부(5)가 형성된 원통형 중공틀(4a)을 삽입하고 이 방사상의 원통형 중공틀(4a) 내부에 고체 환원제 분말이 혼합된 산화철 분말(3a)을 장입한 다음, 내열성 용기(1)내의 잔여공간을 고체 환원제 분말(2)로 충전하므로서, 내열성용기(1)내에서 고체 환원제 분말이 혼합된 산화철 분말(3a)은 다수의 방사상 돌출부(5)를 갖는 중공 원통형상을 갖고 그 중공부 및 그 외부주위는 고체 환원제 분말(2)로 에워싸이게 된다.On the other hand, Figure 2 shows the charging state of the iron oxide powder and the filling state of the reducing agent powder according to the present invention, as shown in Figure 2, the present invention is a suitable amount of solid reducing agent powder (2) in the cylindrical heat resistant container (1) After charging, the iron oxide powder in which the cylindrical hollow frame 4a in which the radial protrusion 5 with the outer diameter smaller than the inner diameter of the container 1 was formed was inserted, and the solid reducing agent powder was mixed in the radial cylindrical hollow frame 4a. After charging (3a) and filling the remaining space in the heat resistant container 1 with the solid reducing agent powder 2, the iron oxide powder 3a mixed with the solid reducing agent powder in the heat resistant container 1 has a large number of radial protrusions. It has a hollow cylindrical shape with (5) and its hollow portion and its outer periphery are surrounded by solid reducing agent powder (2).

제 2 도에서는 산화철 분말(3a)이 4개의 방사상 돌출부(5)를 갖는 것으로 도시되어 있으나, 본 발명은 이에 한정되는 것은 아니다.In FIG. 2, the iron oxide powder 3a is shown as having four radial protrusions 5, but the present invention is not limited thereto.

즉, 본 발명에서 고체 환원제 분말이 혼합된 산화철 분말(3a)을 다수의 방사상 돌출부(5)를 갖는 중공원통형으로 장입하는 이유는 산화철 분말(3a)층과 고체 환원제 분말(2)층간의 접촉계면이 현저히 확대되어 고체 환원제에서 발생되는 환원성가스의 산화철 분말층으로의 확산을 증가시키기 위한 것이므로, 본 발명의 산화철 분말(3a)은 산화철 분말(3a)층과 고체 환원제 분말(2)층간의 접촉계면에 있어서의 증가 측면에서 4개이하 또는 그 이상의 방사상 돌출부(5)를 갖도록 형성될 수 있다.That is, in the present invention, the reason for charging the iron oxide powder 3a mixed with the solid reducing agent powder into a hollow cylinder having a plurality of radial protrusions 5 is the contact interface between the iron oxide powder 3a layer and the solid reducing agent powder 2 layer. Since this is significantly enlarged to increase the diffusion of the reducing gas generated from the solid reducing agent into the iron oxide powder layer, the iron oxide powder 3a of the present invention is the contact interface between the iron oxide powder 3a layer and the solid reducing agent powder layer 2 It may be formed to have up to four or more radial protrusions 5 in terms of increase in.

또한, 상기 원통형 중공틀(4) 및 방사상의 원통형 중공틀(4a)의 재질로는 용기(1)내에서 산화철 분말의 형태를 유지함과 동시에 1100-1200℃(환원온도)까지의 승온과정에서 재(Ash)로 잔존할 수 있는 종이류등을 사용하는 것이 바람직하다.In addition, as the material of the cylindrical hollow frame 4 and the radial cylindrical hollow frame (4a) while maintaining the form of the iron oxide powder in the container (1) at the same time the temperature rise process up to 1100-1200 ℃ (reduction temperature) It is preferable to use papers or the like that can remain in Ash.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

[종래예 a][Prior example a]

100메쉬(Mesh)이하로 분쇄한 밀스케일(T, Fe : 74.01%, SiO2: 0.20%) 500g을 내경이 70㎜, 깊이가 150㎜인 원통형의 알루미나 도가니에 중공 원통형으로 장입하고, 잔여공간에 20메쉬이하의 코우크스 분말(F.C : 87.7%)을 충전하고, 1150℃에서 환원하였다.500 g of mill scale (T, Fe: 74.01%, SiO 2 : 0.20%) pulverized to 100 mesh or less was charged into a cylindrical alumina crucible having an internal diameter of 70 mm and a depth of 150 mm in a hollow cylinder, and remaining space. The coke powder (FC: 87.7%) of 20 mesh or less was charged, and it reduced at 1150 degreeC.

[비교예 b]Comparative Example b

밀스케일을 상기 도가니에 4개의 방사상 돌출부를 갖는 중공원통형으로 장입한 후에 상기 종래예 a와 동일조건으로 환원하였다.The mill scale was charged into the hollow crucible having four radial protrusions in the crucible and then reduced under the same conditions as in the conventional example a.

[발명예 c]Invention Example c

또한, 60메쉬 이하의 코우크스 분말 30g을 밀스케일에 혼합하여 도가니에 4개의 방사상 돌출부를 갖는 중공원통형으로 장입하고 기타 조건은 상기한 방법과 같이하여 환원을 실시하였다. 이상 각 조건에 따른 환원시 환원시간에 따른 금속화율을 분석하여 제 2 도에 나타내었다. 3시간 환원후의 금속화율을 비교해보면, 본 발명예 c의 경우에는 98.5%인 반면에 종래예 a의 경우는 82.5%의 낮은 금속화율을 나타내고 있다. 또한, 종래예 a의 경우는 환원시간을 연장하여 8시간 환원을 행하여도 금속화율은 92.3%로 낮게 나타났다.Further, 30 g of coke powder of 60 mesh or less was mixed in a mill scale, charged into a hollow cylinder having four radial protrusions in a crucible, and other conditions were reduced in the same manner as described above. As shown in FIG. 2, the metallization rate according to the reduction time in the reduction according to each condition is analyzed. Comparing the metallization rate after 3 hours reduction is 98.5% in the case of Example c of the present invention, while a low metallization rate of 82.5% is shown in the case of the conventional example a. In the case of the conventional example a, the metallization rate was as low as 92.3% even if the reduction time was extended for 8 hours.

한편, 산화철 분말에 코우크스 혼합없이 4개의 방사상 돌출부를 갖는 중공원통형으로 장입하여 환원시킨 비교예 b의 경우 종래예 a의 경우보다는 금속화율이 높게 나타나고 있으나, 본 발명예 c의 경우보다는 낮은 금속화율을 보여주고 있다.On the other hand, in the case of Comparative Example b charged by reducing the iron oxide powder into a hollow cylinder having four radial projections without mixing coke, the metallization rate is higher than in the case of the conventional example a, but the metallization rate is lower than in the case of the present invention example c Is showing.

즉 본 발명은 산화철층과 환원제층간의 계면적 확대에 의해 환원반응이 촉진되고 산화철 분말에 환원제 분말이 혼합됨으로서 환원반응이 더욱더 활발해지는 작용효과가 있음을 알 수 있다.That is, the present invention can be seen that the reduction reaction is promoted by the interfacial expansion between the iron oxide layer and the reducing agent layer and the reducing reaction powder is mixed with the iron oxide powder, thereby reducing the active reaction.

[실시예 2]Example 2

실시예 1에서 90%이상의 금속화율이 얻어질 수 있는 시간동안 환원을 실시한 후, 즉 종래예 a의 경우는 8시간 환원, 발명예 c의 경우는 3시간 환원한 후 냉각하여 얻어진 한원철 덩어리를 충격식 분쇄기에서 3분동안 분쇄하여 분말입도를 측정한 결과, 100메쉬 이하의 환원철분이 종래예 a의 경우는 53%, 본 발명에 c의 경우에는 97.5%로 나타났다. 즉, 일정수준 이상이 금속화율을 얻기 위해 종래방법은 본 발명보다 장시간 환원이 소요됨으로써 환원철분 입자간 소결이 심함을 알 수 있다.After the reduction was carried out for a time that a metallization rate of 90% or more can be obtained in Example 1, that is, the reduction of 8 hours in the case of the conventional example a, the reduction of 3 hours in the case of the invention example c, and then cooled the solid iron mass obtained by cooling As a result of measuring the particle size by grinding for 3 minutes in the impact mill, reduced iron powder of 100 mesh or less was found to be 53% in the case of the conventional example a and 97.5% in the case of the present invention. That is, in order to obtain a metallization rate of a predetermined level or more, the conventional method requires a reduction for a longer time than the present invention, and thus it can be seen that sintering between the reduced iron powder particles is severe.

[실시예 3]Example 3

실시예 1에서 종래예 a의 경우 8시간 환원하고 발명예 c의 경우 3시간 환원하여 얻어진 환원철분을 각각 전기로에 장입하고, 수소가스 분위기에서 800℃, 2시간 환원처리한 후 각각의 겉보기 밀도를 측정하고, 이를 다시 5톤/㎠의 압력으로 가압 성형한 환원철분의 성형체 밀도를 측정하고, 그 측정값을 하기 표 1에 나타내었다.In Example 1, the reduced iron powder obtained by reducing for 8 hours in the case of Conventional Example a and 3 hours in the Invention Example c was charged into an electric furnace, and then subjected to reduction treatment at 800 ° C. for 2 hours in a hydrogen gas atmosphere. Measurement was carried out, and again, the compact density of the reduced iron powder press-molded at a pressure of 5 ton / cm 2 was measured, and the measured values are shown in Table 1 below.

[표 1]TABLE 1

Figure kpo00002
Figure kpo00002

상기 표 1에 나타난 바와같이, 본 발명예 c의 경우가 종래예 a보다 겉보기 밀도가 0.20g/cm3높음을 알 수 있는데, 이는 환원철분 입자내 가공의 소멸이 종래방법보다 본 발명의 경우에 잘 이루어짐을 의미하는 것이다.As shown in Table 1, it can be seen that the case of the present invention c has an apparent density of 0.20 g / cm 3 higher than that of the conventional example a. It means well done.

한편, 동일 성형압력하에서 본 발명예 c의 종래예 a의 경우보다 0.33g/cm3의 밀도증가를 나타내므로, 본 발명의 방법에 의해 제조된 환원철분을 경제적으로 성형작업을 실시할 수 있게 됨을 알 수 있다.On the other hand, under the same molding pressure, since the density increase of 0.33 g / cm 3 than in the case of the conventional example a of the present invention c, it is possible to economically perform the molding operation for the reduced iron powder produced by the method of the present invention Able to know.

상술한 바와같이, 본 발명은 산화철 분말층과 환원제 분말층간의 계면적 확대에 의해 환원반응이 촉진되고 산화철 분말에 환원제 분말이 혼합됨으로서 환원반응이 더욱더 활발해져 환원시간을 환원철 덩어리의 분쇄를 용이하게 할 뿐만 아니라 고밀도 환원철분을 제조할 수 있는 효과가 있는 것이다.As described above, in the present invention, the reduction reaction is promoted by the interfacial expansion between the iron oxide powder layer and the reducing agent powder layer, and the reducing reaction is further enhanced by mixing the reducing agent powder with the iron oxide powder, thereby reducing the reduction time of the reduced iron mass. In addition, there is an effect that can produce a high-density reduced iron powder.

Claims (1)

원통형 내열성 용기(1)에서 산화철 분말을 환원하고, 분쇄, 자선분리, 탈탄, 재 분쇄처리하여 환원철분을 제조하는 방법에 있어서, 산화철 분말에 코우크스, 무연탄 및 목탄등의 고체 환원제 분말을 그 합이 10중량%이하가 되도록 혼합하여, 다수의 방사상 돌출부(5)를 포함하여 상기 용기(1)내에 위치하는 방사상의 원통형 중공틀(4a)에 장입한 다음 ; 상기 용기(1)내의 잔여공간에 상기 고체 환원제 분말을 충전하여 1100-1200℃에서 환원하는 것을 특징으로 하는 환원철분 제조방법.In a method for producing reduced iron powder by reducing iron oxide powder in a cylindrical heat-resistant container (1), grinding, charcoal separation, decarburization and regrinding, the solid oxide powder such as coke, anthracite coal and charcoal is added to the iron oxide powder. 10% by weight or less, and mixed into a radial cylindrical hollow frame 4a located in the container 1, including a plurality of radial protrusions 5; The method for producing reduced iron powder, characterized in that to reduce at 1100-1200 ℃ by filling the solid reducing agent powder in the remaining space in the vessel (1).
KR1019860005940A 1986-07-22 1986-07-22 Making process for powder of reduction iron KR900003343B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019860005940A KR900003343B1 (en) 1986-07-22 1986-07-22 Making process for powder of reduction iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019860005940A KR900003343B1 (en) 1986-07-22 1986-07-22 Making process for powder of reduction iron

Publications (2)

Publication Number Publication Date
KR880001830A KR880001830A (en) 1988-04-27
KR900003343B1 true KR900003343B1 (en) 1990-05-16

Family

ID=19251237

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019860005940A KR900003343B1 (en) 1986-07-22 1986-07-22 Making process for powder of reduction iron

Country Status (1)

Country Link
KR (1) KR900003343B1 (en)

Also Published As

Publication number Publication date
KR880001830A (en) 1988-04-27

Similar Documents

Publication Publication Date Title
US3953556A (en) Method of preparing uranium nitride or uranium carbonitride bodies
US4643873A (en) Fabrication of nuclear fuel pellets
US3158473A (en) Method for producing composite bodies
US3368890A (en) Metal powder from cast iron chips
US4264546A (en) Method for producing silicon nitride molded bodies by means of pseudoisostatic hot pressing
US2799570A (en) Process of making parts by powder metallurgy and preparing a powder for use therein
EP0313257B1 (en) Production of ceramic nuclear fuel pellets
JPS616247A (en) Manufacture of iron boron alloy or iron boron silicon alloy
KR900003343B1 (en) Making process for powder of reduction iron
SU975369A1 (en) Charge for producing abrasive material
US6918945B2 (en) Method for producing sponge iron, and reduced iron powder and method for production thereof
US2352316A (en) Method of producing shaped bodies from powdery ferrous material
US3419383A (en) Producing pulverulent iron for powder metallurgy by multistage reduction
US3635694A (en) Method of manufacturing manganese oxide pellets
US3489548A (en) Particulate powder of iron with copper contained therein
US3737301A (en) Process for producing iron-molybdenum alloy powder metal
CS273319B2 (en) Method of ferrous powders production from fine loose powdered iron trioxide
JP3721993B2 (en) Method for producing sponge iron and reduced iron powder
JPS55125240A (en) Sintering method for finely powdered starting material for iron manufacture
US2159412A (en) Process relating to the production of nickel carbonyl
DE68919843T2 (en) Manufacture of manganese carbide and iron (II) alloys.
JP2005325373A (en) Method for casting iron powder for magnetic material
US4415527A (en) Desulfurization process for ferrous powder
JPS56233A (en) Sintering of powdery sintered ore recovered as duff in crushing and screening sintered ore
KR100266480B1 (en) Uranium dioxide pellet manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19960229

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee